objective
SYSTEMS, INC.

ASNI1C

ASN.1 Compiler
Version 6.6

C/C++ Users Guide
Reference Manual

Objective Systems, Inc. version 6.6 — May 2014

The software described in this document is furnished under a license agreement and may be used only in accordance
with the terms of this agreement.

Copyright Notice
Copyright ©1997-2014 Objective Systems, Inc. All rights reserved.

This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its entirety and
that the copyright and this notice are included.

Author’s Contact Information

Comments, suggestions, and inquiries regarding ASN1C may be submitted via electronic mail to info@obj-sys.com.

Table of Contents

L OVENVIEIW OF ASNILC ..ottt ettt e et e ettt e et ettt e et ettt e et e tb i r e e e e ab e et enb e aees 1
2. USING the COMPITES ... ettt e et e et e e e e e e ab s 2
Running ASNIC from the Command-liNeuuiiiiiiiioii e e 2
Using the GUI Wizard t0 RUN ASNILCooiiiiiiii ettt e e et e e et eeeee 16
USING PrOJECES ...ttt ettt ettt e e et e et e et e e e e tb e e e e ra e e e eneas 16
Common Code Generation OPLIONSieiieuuuieiiiiiie ettt e et et e et e e e 21

XD OPIONS .ttt ettt et ettt et ettt e e e e e eaans 27
CIC++ Code Generation OPLIONSccuuueeiiriieeteii ettt e ettt e et e et e e et eeeaa e e eana s 29

1600] 07111 =11 oo H PP SPPPTR 32
Using the Visua Studio Wizard to Generate ASNLIC PrOJECESccvvuuiiiiiiiieiiiiieeeeii e 34
Compiling and Linking Generated COUEuiiiirtieieii ettt 46
Porting Run-time Code to Other PlatfOrmScoouuiiiiiii e 47
Compiler ConfigUIation FilEi i et e s 48
ComPIler Error REPOMINGc.uuieeitieeeeit ettt ettt ettt et ettt e et ettt e et e eaa e e e eaa e e ennen s 58
3. ASN.L TO C/CH+ MBPPINGS - eetnetuneettetet e et e et et e et e e et e e et e e et e et et ea e e et e e et e aetn e ean e eeanaeeennaaeennns 59
TYPE IM@DIDINGS - ettt ettt ettt e ettt e et e e ettt e ettt e e e et et oo ettt b e et e e e et e a b e et e e e e e ebb e e e era e aeee 59
BOOLEAN .ottt ettt anas 59
INTEGER ...ttt ettt e oo e et e ettt e e e e e et e e e e bbbt e e e e e e e e eenbaban s 59

BIT STRING ..ottt ettt ettt ettt et e et n et e et e e e e e e e ennans 61
OCTET STRING ...ttt ettt r et e e et e e et et e e e e eaa s 65
ENUMERATED ..ottt ettt ettt e et e et e e e eae s 66
N1 OO 68
OBJECT IDENTIFIER ...ttt ettt e s 68
RELATIVE-OID ... ittt ettt e e e e e ettt bbb e e e e e e e eeabbb e e e aaaaeene 69
REA L ettt e e et e ettt b e e e e e e ettt b e e e aaeaaanes 69
SEQUENCE ...ttt et e ettt e et e et a e e et e e et et e e e et aee 69

S PP TSSPPPPPPPIN 75
SEQUENGCE OF ..ottt ettt ettt ettt e et et e e e nba e e eeeans 75

ST O e e e e e et et e et e e e e e aee 79
CHOICE ..o ittt ettt e ettt e ettt e et e e et e a e eeeat e een 79
1007 o I Y/ oL PP PP 82
CaraCter SIING TYPES vttt ettt et e et e et et e e e eaa e e eenans 83
BELLLCRS L aTo T Y o= PP PPT P TPPPPTRRPPIN 84
EXTERNAL .ottt e e et ettt bbb e e e e e e e et bbbt e e e e e e e e e abab e e e 85
EMBEDDED PDV ...ttt e et e ettt e e e e ettt bbb e e e e e e et b aaaaeeae 85
ParamMELEriZEO TYPES . .eevu ettt ettt e s 86
VAU MBPPINGS ...ttt ettt ettt ettt ettt e et et e e et e b e et e e et e et e e eaaa s 87
BOOLEAN VAU ...ttt e et e et eeene s 88
INTEGER VEIUE ...ttt ettt eeenan s 88
REAL VEIUE ...ttt ettt ettt e et e et e e e e e ene 89
Enumerated Value SPECITiCaIIONco.uuniiiiiiiii e 89
Binary and Hexadecimal StiNg ValUEcoouuniiiiiii e 89
CharaCter SIING VAIUE ... oottt Q0
Object Identifier Value SPeCifiCationccouuiiiiiiiiei e 90
CoNSIIUCIE TYPE VAIUBS ... ettt ettt e e et e e e et e e e e et e e e ena e eeees 20
Table Constraint REIAEd SITUCIUIEScoeeiiieeeii et e et e e e e eeees 93
Unions Table Constraint MOGE]coouuiiiiii e 93
Legacy Table Constraint MOGE!iiiiiii e 99

4. XSD TO CICH+ TYPE MAPPINGS ...ttt e e e et e e e e e e eeeenenas 108
XD SIMPIE TS ettt ittt ettt e ettt et 108
XD COMPIEX TYPES .ttt ettt ettt ettt e et e e et e e et et e e et et e e et et e e et et e e e e eba s 109

ASNIC

DS o B = o (U= oo P 109

DG o 1 | USRS 110
XSO:C0ICE ANA XSA:UNTON .uuiiieiii ittt et e e e e e 110

[RT= o1= L o T C o U1 o 1= 111
REPEAIING EIEIMENTS ...t ettt e e 112
DS o 1 113

DG o b 0P UPPRTRRUPPRN 113
XML Attribute DeClar@lionsiiiiiiiiii et e e e e eees 114
XSA:ANYATIFIOULE «.oe e e et e et ees 115
XSA:SIMPIECONTENT ..ttt e et et e e et e e e et e e e et 116

XSA: COMPIEXCONTENT ...ttt et e e et e et e e e et e e eaaan s 117
SUDSHITULION GIOUPS vttt ettt et et e e et e e e et e e e eai e e eaaans 118
5. Generated C/CH+ SOUMCE COURceeueieiiiii ettt ettt et ettt e e e e e e et e e e ebe s 120
<=0 [(0 I T = S 120
Generated C SOUICE FIIES ...t e et et e e 123
Maximum LiNES PEI FIle ... 123

Use of the -maxcfiles OPLioncoooiiiiiii e 123
CTc 0c 1= O =P 124
Generated C/C++ files and the -compat OPtiONccoviuiieiiii e 126
Generated C++ files and the -symbian OPtioNcouuuiiiiiiiii e 126
WIADIE SEBLIC D@EA ... eeeeeiiiee ettt e et e e e e e b s 126
EXEEIN LINKBOE ..ottt e e et e et et a e 126
Generated BUIl FIlES et e et 127
Generated MaKEFIE .. .o e 127
Generated VCH+ ProJeCt FIlESccouiiiiii e 128
6. Generated Encode/Decode Function and MethodSoooiuiiiiiiiiiic e 129
Encode/Decode FUNCLION PrOtOLYPESc.uuuniiiiiieieii et e e e e aeeaens 129
Generated C++ Control Class DEfiNItIONooieeuiiiiiii e 130
BER/DER 0r PER Class DEfINITIONoiiiiiiiiiiii e 130
XER Class DEfINITIONiieiiiiiieei e e e e e e e e e e e et e e et e e e e eean e eanaees 131
Generated MEINOOSouuiiii et 132
Generated Information Object Table SITUCIUIESiiiii e e e e e e e 132
Simple FOrmM CoOe GENEIELIONceietieeiii ettt et e et e e et e e e 134
Unions Table FOrm Code GENEIaHIONccuuueiiiiiiee ittt e 134
Legacy Table FOrm Code GENEFatioNcocuuuieiiiiii ettt 135
Additional Code Generated with the -tableS OptioNnccoeuviiiiiii i 136
Genera Procedure for Table Constraint ENCOINGuviiiiiiiiiiiiieei e 138
Genera Procedure for Table Constraint DeCOINGc.uuuieiiiiiiiiiiiii e 141
Genera Procedures for Encoding and DECOOINGcvuuuniiiiinieiiiii ettt 144
Dynamic Memory ManagemMENTooiiuueieeeiie et e e e e e et e e eab e e e eaba e eene 144
Populating Generated Sructure Variables for ENCOdiNGoovvviiviiiviiiiiiiiieeineeieee e 148
Accessing Encoded Message COMPONENLESceuuuieiiirineeeiii ettt e e eett e e eeai e e eeai e e eeninaeaeens 149
7. Generated BER FUNCHIONSiiiiiii ettt e e et e ettt e e e et e e e eaa e eeees 151
Generated BER ENCOOE FUNCLIONSiiiiiieieiii ettt e e e e eeeans 151

Generated C Function Format and Calling Parameterscccooviiviiiinieiiiinncce e 151
Generated C++ Encode Method Format and Calling Parametersooveveviiniiiiiiineeiiiineeceiieen 155
Generated BER Streaming ENCOOE FUNCLIONSiiiiiiniiiiiiiie et e 159
Generated Streaming C Function Format and Calling Parametersccoeevveviiiinieiiiinneecenennn. 159
Generated Streaming C++ Encode Method Format and Calling Parametersccoeveveevineeees 162
Generated BER DeCOUE FUNCLIONSuuiiiiiiiieeeiii ettt e et e e e e s 165
Generated C Function Format and Calling Parametersovveviiiinieiiiiineee e 166
Generated C++ Decode Method Format and Calling Parametersoovevvevnieiiiiinieeiiiinieeenns 170
BER Decode Performance Enhancement TEChNIQUESoiiiiiniiiiiiiieeeiii e 174

ASNIC

Dynamic Memory ManagEMENLccuuieiuueeiiieeiiieee e eei e e et e e et esateeateeetn e s e st eeaneaanaees 174
(00 1o = o 0o I 1= 0=l o] o [175
(D= o0 0 (ST o oY 175
Using Initialization FUNCLIONSuuiiiiiiii e e e e e e e et e e e e e eaaeees 176
BER/DER Deferred DECOUINGuuiiiuiieii i e e et e e e e e e e e e e e et e e e te e et e e e e aaanaaes 176
Generated BER Streaming Decode FUNCHIONSciuuiiiieiii e e e e e e e e e e e e aae e 177
Generated Streaming C Function Format and Calling Parameters..........ccoceevvviiiiiiiiieviieecieeen, 178
Generated Streaming C++ Decode Method Format and Calling Parameters.............cooccovveevnnnneen. 182

8. Generated PER FUNCLIONSiiiiiiiee ittt e et e e e et r e e ettt n e e e et s e e e ettaeeeeatnnaeaes 186
Generated PER ENCOOE FUNCHIONSuuiiiiiiieeiiie et e et e e e et e e e et eeeeatn s aeeeee 186
Generated C Function Format and Calling Parametersovvvviiieiiiieiii e 186
Generated C++ Encode Method Format and Calling Parameters..........coocovveviineviiieviineecnneeen, 186
Populating Generated Sructure Variables for ENCOdiNgccccvviiiiiiiiiiiiiiiccieec e, 187
Procedure for Calling C ENCOdE FUNCLIONSccuuiiiiiiiiie e e e e e e e 187
Procedure for Using the C++ Control Class Encode Methodccocevviiiiiiiiiiecineceeeie 189
Encoding a Series of PER Messages using the C++ Interfacec.ocoeveiiiiiiiin i, 192
Generated PER DeCOOE FUNCLIONSc.uuiiiiiiiiieeiiiii e e e e e e e e e e e et e e e et e e e e st e e e e aeees 192
Generated C Function Format and Calling Parametersc.oovvviieiiii i 193
Generated C++ Decode Method Format and Calling Parametersccooevivviiiieeiiiieiiieeeinees 193
Procedure for Calling C Decode FUNCHIONSccuuiiiiiiii e e e 193
Procedure for Using the C++ Control Class Decode Methodccooevviiiiiiniii i, 195
Decoding a Series of Messages Using the C++ Control Class Interface............ccoeevviiiiiiiieinnne, 196
Performance Considerations; Dynamic Memory Managementcocevuveviieiiineeeieesiieennennnns 198

9. Generated Octet Encoding Rules (OER) FUNCHIONSciuuiiiiccii e e e e e e e e e e e aen 199
Generated OER ENCOOE FUNCLIONSuuiiiiiiie et e e e e e e et e e e e aaa s 199
Generated C Function Format and Calling Parametersc.coveviiieeiiiiiiii e eee e, 199
Populating Generated Sructure Variables for ENCOdingcccuoviiiiiiiiiiiiiiiiccie e 199
Procedure for Calling C ENCOde FUNCLIONSccuuiiiiiiiiii e 199
Generated OER DECOUE FUNCLIONSivivtiiiiiii ettt e et e et e e e et s e e eata s e eennens 201
Generated C Function Format and Calling Parametersccoveviiieeiiiiiii i ee e, 201
Procedure for Calling C Decode FUNCHIONScouuiiiiiiiii e e e e 202

10. Generated Medical Device Encoding Rules (MDER) FUNCLIONSccoviiiiiiiiiie e 204
Generated MDER ENCOOE FUNCLIONSuiiiiiiiiii ettt e et e et e e e 204
Generated C Function Format and Calling Parametersoocvviiviiieeiii e, 204
Procedure for Calling C Encode FUNCHIONSoiiiiiiiii e e e e 204
Encoding a Series of Messages Using the C Encode FUNCLIONScccovvveiiiieiiinecii e, 206
Generated MDER DeCOUE FUNCLIONScivvuiiieiiiiieeeiii e et e e et e et e e et e e e et s e e e eatnneeeeaenaeeeee 206
Generated C Function Format and Calling Parametersccovevviieeiiii i e e, 206
Procedure for Calling C Decode FUNCHIONScouuiiiiiiiiii e e e 207
Decoding a Series of Messages Using the C Decode FUNCLIONScocvvvieiiiiiiiiiicie e, 208
TWO-PASE MESSAGING ...evvuiitiiiiiieei et e e e et e e e e e et e e et e e et e e ean e e et s e e at e eaa e eatnaesaneaetnaaeanaeannaees 208
TWO-PhESE ENCOOING ...cvuiiiiicii e e e e e e e e et e et e et e e et e e aan s 209
TWO-PhESE DECOUINGciviiieii e e e e e e e e e e e e e e e e et e e et e e et eeaes 211

11. Generated XML FUNCLIONSuuiiiiiiiiei sttt e et e e et e e et s e e et e e e e et e e e eaen s 213
L@ Y T ST SPRTTRSPPPN 213
Differences between OSys-XER and XER (BASIC-XER)coiiiiiiiiiiiiiiiiieeeeeeeeeiiiinneeeeeeenanns 214
EXTENDED-XERuiiiiiiiiiiiiie sttt e e et e et e e e e e e e e et e s e e e e e e e aessta e e e e e e e eeesennnnas 214
Generated XER Encode Functions (Old Style - DePrecated)oovvvneiiiiiiiiieiiiiecie e e eeeieeeaaeens 216
Generated C Function Format and Calling Parametersccovevviieeiiiiiiiiecee e e, 216
Generated C++ Encode Method Format and Calling Parameters..........coocovveviiiiviiiieiiieeeineens 217
Procedure for Calling C ENCOde FUNCLIONSccuuiiiiiiiii e 217
Procedure for Using the C++ Control Class Encode Methodcooovviiiiiiiiiiccinececeen, 218

Tips for Upgrading to the NEW SEYIEcoun i e 220
Generated XER Decode Functions (Old Style - Deprecated)c.ovevviiiiiiiiiii e 220

ASNIC

Procedure for Using the C INEErfacecovuiiiiiiiii e 222

Generated C Function Format and Calling Parameterscccvvevvieeiiiiiiiiieece e e, 222

Procedure for Calling C Decode FUNCLIONSccuuiiiiiiiii e e e 222
Procedure for Using the C++ INtErfacecoouiiiiiiiiii e 224
Procedure for Interfacing with Other C and C++ X ML Parser Libraries..........cccoocoevivinnnnnnnn. 225

Tips for Upgrading to the NEW SEYIEcoun i e 226

Generated XML ENCOOE FUNCHIONSuiiiiiiiiies it e et e e e et e e e eete e e e eena e eeees 226
Generated C Function Format and Calling Parametersccovevviieeiiiiiiiieeie e ee e 226

Procedure for Calling C ENCOde FUNCLIONSccuuiiiiiiiiii e e e 227

Generated C++ Encode Method Format and Calling Parameters..........ccoocovvvviniiiiiieviieeeinenns 228

Procedure for Using the C++ Control Class Encode Methodcoocvviiiiiiiiiiccinec e, 229

Generated XML DeCOUE FUNCLIONSuuuiiiiiiieteii s ee et e ettt e et e e e e et e e et e e e e aane s 230
Generated C Function Format and Calling Parameterscoevevvieeiiiiiii i eee e, 231

Procedure for Calling C Decode FUNCLIONScovuiiiiiiiii e e e 231

Generated C++ Decode Method Format and Calling Parameters...........cooovvviveiiiniiiiieiiineeennnn, 233

Procedure for Using the C++ Control Class Decode Methodccooovviiiiiiiinieeee, 233

12. Generated JavaScript Object Notation (JSON) FUNCHONScccuiiiiiiiiiici e 235
Generated JSON ENCOOE FUNCLIONSuuiiiiiiiiiiiiis ettt e et e e et e e e e 235
Generated C Function Format and Calling Parameterscooovviiiiiiiiii e, 235

Procedure for Calling C Encode FUNCHIONSoiiiiiiiiicie e e 235

ENCOdiNG @ SEri€S Of IMESSAgES ...u.iviniiii e et e et e e e e e e e e e e et e e et e e e ean s 236

Generated C++ ENcoding MEthOScoouiiiiiiiiii e e 236

Encoding a Series of Messages using the C++ Control ClasS.........cccovevviieiiiiiiiiiecii e, 237

Generated JSON DeCOUE FUNCHIONSiiiiiiieiiii et e et e et e e et e e e et e e e e et aaeeeaensaeeeees 237
Generated C Function Format and Calling Parametersc.coveviiieeiiiiiiii e eee e, 237

Procedure for Calling C Decode FUNCLIONSccuuiiiiiiiiiii e e e e e 238

Decoding a Series of Messages Using the C Decode FUNCLIONScocevvviiiiniiiineeiii e 239

Generated C++ ENcoding MEthOScoouiiiiiiiiii e e 239

Decoding a Series of Messages using the C++ Control ClasS...........ccovvevviieiiiiiiiii e 240

13. Generated 3GPP Layer 3 (BGL3) FUNCLIONS ... ccuuiiiiieiie e e e e e e e e e e e e e e et e e e e eaaas 241
Generated 3GPP Layer 3 ENCOdE FUNCHIONSuiiiiiiiii et e e e e e e e 241
Generated C Function Format and Calling Parametersccoveviiieeiiiiiii i ee e, 241

Populating Generated Sructure Variables for ENCOdingcccuoviiiiiiiiiiiiiiiiccie e 242

Procedure for Calling C ENCOde FUNCLIONSccuuiiiiiiiiii e 242

Generated 3GPP Layer 3 Decode FUNCLIONScvvuiiiii e e e e e e e e e e e eaens 243
Generated C Function Format and Calling Parametersccovevviieeiiii i e e, 243

Procedure for Calling C Decode FUNCHIONScouuiiiiiiiiii e e e 244

14. Additional Generated FUNCHIONScoiuueiiiiiiiii e e et e et e e et e e et e e e eaa s 247
Generated [Nitialization FUNCHIONSuuiiiiiiiie e e e e e et e e e 247
Generated Memory Free FUNCLIONSooiiiiiii e e e e e e e e e e et e e e e eees 247
Generated Print FUNCLIONSuiiiiiiiei it e et e et e et a e e et n e e et r e e e aaa e e e eateneeesenns 248
Print t0 Sandard OULPULiiiiiiii e e e e e e e e et e e et e e e eaaaas 248

T (o T oo P 249

L AT AR (O TS (== T o SRR 249

[0L o 1 1= PSP 250

Generated COMPAre FUNCLIONSuiiiii e e e e e e e e e e e e et e e et e et e e aa e e et e e eaaaeeenaas 251
Generated COPY FUNCHIONSuuiiii e e e e e e e e e e et e e e e e et e e e e et e e eaneeeanees 252
Generated TESE FUNCHIONS ... ciieviiee it e et e e e et e e e et e e e et e e e e et e e e e att e e e eetenaeeeetnaeeees 254

15, Event Handler INEEITACEuuiiiiii ettt e e et e e ettt e e e et e e e eatneeeeatnaeaees 256
HOW T WWOTKS L.t e e e et e e et e e e et n e e e et e e e e eaen s 256

L[0T (o T U E N L PP 257

16. IMPORT/EXPORT Of TYPES 1. iiitiitiieetiiiie ettt ettt ettt e et e e et e e e et e e e et e e e e et e e e e st e e eeatn s 262
17. ROSE and SNMP MECIO SUPPOM ...uuiiiieiiieiii ettt e s e e e e e e e e e e et e e et e e et e e et e e et e esaaeeaneestneannnaes 263
ROSE OPERATION and ERRORiiiiiiiiiiiiiiii et e et e et e e e e 263

Vi

ASNIC

SNMP OBJECT-TYPE ... ea e

A. Runtime Status Codes

ASNLC EITOr MESSA0ES ... vttiititiiittee ettt e et e e e et s eneenns
GENEral SEAIUS MESSAES ...vuvvtniiii i eeiee et et e et e et e e e e et e e et e e et e e et e e e e e et e e et e e et e e et e eaneeanans
ASN.1-SPECITIC SLALUS IMESSAOES ... evvuiiiteiiieeiai ettt e e et e e e e e e e e et e e et e e et eeat e e et e e et e eett e eanaeannaees

Vii

Chapter 1. Overview of ASN1C

The ASN1C code generation tool transates an Abstract Syntax Notation 1 (ASN.1) or XML Schema Definitions
(XSD) source file into computer language source files that allow ASN.1 data to be encoded/decoded. This release of
the compiler includes options to generate code in four different languages: C, C++, C#, or Java. Thismanual discusses
the C and C++ code generation capabilities. The ASN1C Java User’s Manual discusses the Java code generation
capability. The ASN1C C# User’s Manual discusses the C# code generation capability.

Each ASN.1 module that is encountered in an ASN.1 source file results in the generation of the following two types
of C/C++ languagefiles:

1. Aninclude (.h) file containing C/C++ typedefs and classes that represent each of the ASN.1 productions listed in
the ASN.1 sourcefile, and

2. A set of C/C++ source (.c or .cpp) files containing C/C++ encode and decode functions. One encode and decode
function is generated for each ASN.1 production. The number of files generated can be controlled through
command-line options.

Thesefiles, when compiled and linked with the ASN.1 low-level encode/decode function library, provide acomplete
package for working with ASN.1 encoded data.

ASN1C works with the version of ASN.1 specified in ITU-T international standards X.680 through X.683 (ISO/IEC
8824). It generates code for encoding/decoding data in accordance with the following encoding rules:

» Basic Encoding Rules (BER), Distinguished Encoding Rules (DER), or Canonical Encoding Rules (CER) as
published in the ITU-T X.690 and 1SO/IEC 8825-1 standards.

» Packed Encoding Rules (PER) as published in the ITU-T X.691 and ISO/IEC 8825-2 standards. Both aligned and
unaligned variants are supported viaa switch that is set at run-time.

* XML Encoding Rules (XER) as published in the ITU-T X.693 and 1 SO/IEC 8825-3 standards.
» Medical Device Encoding Rules (MDER) as published in the ISO/IEEE 11073 standards.
» Octet Encoding Rules (OER) as published in the NTCIP 1102:2004 standard.

Additional support for XML is provided in the form of an option to generate an equivalent XML Schema Definitions
(XSD) file for a given ASN.1 specification. Encoders and decoders can then be generated using the -xml option to
format or parse XML documents that conform to this schema. Thislevel of support is closer to the W3C definition of
XML then isthe ITU-T X.693 XER definition. As of release version 6.0, it is possible to compile an XML schema
definitions (X SD) file and generate encoders/decoders that can generate XML in compliance with the schema as well
as binary encoders/encoders that implement the ASN.1 binary encoding rules.

ASNIC is capable of parsing all ASN.1 syntax as defined in the standards. It is capable of parsing advanced syntax
including Information Object Specificationsasdefined inthe ITU-T X.681 standard aswell as Parameterized Typesas
defined in ITU-T X.683. The compiler isalso capable of using table constraints asdefined in ITU-T X.682 to generate
single-step encoders and decoders that can encode or decode multi-part messages in asingle function call.

ASNI1C also contains a special command-line option - -asnstd x208 - that allows compilation of deprecated features
from the older X.208 and X.209 standards. These include the ANY data type and unnamed fields in SEQUENCE,
SET, and CHOICE types. The compiler can also parse type syntax from common macro definitions such asthe ROSE
OPERATION and ERROR macros.

Chapter 2. Using the Compiler
Running ASN1C from the Command-line

The ASN1C compiler distribution contains command-line compiler executables as well as a graphical user interface
(GUI) wizard that can aid in the specification of compiler options. This section describes how to run the command-
line version; the next section describes the GUI.

To test if the compiler was successfully installed, enter asnlc with no parameters as follows (note: if you have not
updated your PATH variable, you will need to enter the full pathname):

asnlc

Y ou should observe the following display (or something similar):

ASN1C Conpil er, Version 6.6.x
Copyright (c) 1997-2013 (bjective Systems, Inc. All R ghts Reserved.

Usage: asnlc <fil ename> <options>

<fil enane> ASN. 1 or XSD source filenane(s). Miltiple filenanes
may be specified. * and ? wldcards are all owed.

| anguage options:

-C generate C code

-C++ generate C++ code

-c# generate C# code

-java generate Java code

-cldc generate Java ME CLDC conpati bl e code

-xsd [<fil ename>] generate XM. schenma definitions

encodi ng rul e options:

- ber gener ate BER encode/ decode functions
-cer generate CER encode/ decode functions
-der gener ate DER encode/ decode functions
- oer generate COER encode/ decode functions
- nder gener ate MDER encode/ decode functi ons
- per generate PER encode/ decode functions
- uper generate unal i gned PER encode/ decode functions
- xer generate XER encode/ decode functions
-xm generate XM encode/ decode functions
-json generate JSON encode/ decode functi ons
-39l 3 generate 3GPP | ayer 3 encode/ decode functions

basi c options:

-asnl [<file>] generate pretty-printed ASN.1 source code

-asnstd <std> set standard to be used for parsing ASN. 1
source file. Possible values - x208, x680, m xed
(default is x680)

- conpact generate conpact code

-conpat <version> generate code conpatible w th previous
conpil er version. <version> format is

Using the Compiler

-config <file>

- depends

-htm

-1 <directory>

-l ax

-l axsynt ax

-list

-al | ow anbi g-t ags

- noCont ai ni ng

- nodat est anp

- nodecode

- noencode

- nol ndef Len
-noOhj ect Types

- noOpenkExt

-not ypes

-noxm ns

-0 <directory>
-libdir <directory>
-bindir <directory>
-objdir <directory>
-pdu <type>

-usepdu <type>

-print [<fil enane>]

X.X (for example, 5.3)

specify configuration file

conpile main file and dependent | MPORT itens
generate HTM. marked-up version of ASN. 1

set inport file directory

do not generate constraint checks in code

do not do a thorough ASN. 1 syntax check

generate listing

al | ow anbi guous tags in input specifications

do not generate inline type for CONTAI NI NG <t ype>
do not put date/time stanmp in generated files

do not generate decode functions

do not generate encode functions

do not generate indefinite length tests

do not gen types for itenms enbedded in info objects
do not generate open extension el ements

do not generate type definitions

do not generate XM. nanespaces for ASN. 1 nodul es
set output file directory (also '-srcdir <dir>")
set output libraries directory

set output binary directory

set output object directory

designate <type> to be a Protocol Data Unit (PDU)
(<type> may be "all" to select all type definitions)
specify a Protocol Data Unit (PDU) type for which
sampl e reader/witer prograns and test code has to
be generated

generate print functions

-prtfm details | bracetext format of output generated by print

- shor t names

- synt axcheck
-trace

- [no] Uni queNames

-war ni ngs

C/ C++ opti ons:
-array
-arraySi ze <size>
-cppNs <nanespace>
-dynam cArray
-1i nkedLi st
-hfile <fil enane>

-cfile <fil enane>

- genBi t Macr os

- genFree

- hdr Guar dPf x <pf x>
-max| i nes <nune

-noBi t Str 32
- noEnumConvert

reduce the Il ength of conpiler generated names

do syntax check only (no code generation)

add trace diag nsgs to generated code

resol ve nane cl ashes by generating uni que nanes
def aul t =on, use -noUni queNanes to di sable

out put conpil er warni ng messages

use arrays for SEQUENCE OF/ SET OF types
specify the size of the array variable
add a C++ nanespace to generated code (C++ only)
use dynam c arrays for SEQUENCE OF/ SET OF types
use linked-1ists for SEQUENCE OF/ SET OF types
C or C++ header (.h) filenane
(default is <ASN. 1 Modul e Nane>. h)
C or C++ source (.c or .cpp) filenane
(default is <ASN. 1 Modul e Nane>. c)
generate nanmed bit set, clear, test nacros
generate nenory free functions for all types
add prefix to header guard #defines in .h files
set limt of number of lines per source file
(default value is 50000)
do not use BitStr32 type for small bit strings
do not generate conversion functions for enunerated
items (BER/ CER/ DER/ PER onl y)

Using the Compiler

-nolnit

-oh <directory>
- peri ndef
-static
-strict-size
-use-enumtypes

do not generate initialization functions

set output directory for header files

add support for PER indefinite (fragmented) |engths
generate static elenments (not pointers)

strictly interpret size constraints

use generated enumtypes in code instead of integers

C/ C++ makefil e/ project options:
-genhMake [<fil enane>] generate makefile to conpile generated code
-genMakeDLL [<fil enane>] generate makefile to build DLL
-genMakelLi b [<fil enane>] generate makefile to build static library

-make [<fil enanme>]

same as -genMake as descri bed above.

-nmake [<fil enane>] generate Wndows nnake file (sane as -genhMake -w32)
-vcproj [<version>] generate Visual Studio project files.

-bui | ddl |
-dl I, -usedll
-m

- W32

- w64

Java options:
-conpare
-dirs
-genbui I d
- genant
- genj sour ces
- get set
-noevent s

- pkgnhane <t ext>
- pkgpf x <text>
-javad

C# options:
-nspfx <text>
- namespace <text>
-dirs
-csfile <fil enane>
- gencssour ces
- genhhake
-vcproj [version]

pro options:
-events
-stream
-strict
-tabl es
-t abl e-uni ons

<version> is 2012, 2010, 2008 (default), 2005, 2003,
(W ndows only)
generate nmakefile/project to build DLL
generate nakefile/project to use DLL's
generate nakefile/project to use nultithreaded |ibs
generate code for Wndows 32-bit QS (defaul t =G\U)
generate code for Wndows 64-bit QS (defaul t =G\U)

generate conparison functions

out put Java code to nodul e name dirs

generate build script

generate ant build.xm script

generate <modul ename>.nk for list of java files

generate get/set nethods and protected nenber vars

di sabl e generation of event handl er code. Also
di sabl es el enent tracking for error handling.

Java package name

Java package prefix

generate code for Java 1.4

C# namespace prefix

C# nanespace nane

out put C# code to nmodul e nanme dirs

generate one .cs file or one per nodule (*.cs)

generate <modul ename>.nk for list of C# files

generate nakefile to build generated code

generate Visual Studio C# project files.
[version] is 2012, 2010, 2008 (default), 2005.
(W ndows only)

generate code to invoke SAX-like event handl ers
generate stream based encode/ decode functi ons

do strict checking of table constraint conformance
generate table constraint functions

generate union structures for table constraints

- par am <name>=<val ue> create types from paramtypes using given val ue
-prtToStr [<fil ename>]

VC6.

Using the Compiler

generate print-to-string functions (C C++)
-prtToStrm [<fil ename>]

generate print-to-stream functions (C C++)
-genTest [<fil ename>]

generate sanple test functions
-reader gener ate sanpl e reader program
-witer generate sanple witer program
-conpare [<fil enane>]

generate conparison functions (C C++)
-copy [<fil ename>] generate copy functions (C C++)
-maxcfil es generate separate file for each function (C C++)

XSD options:
-appinfo [<itens>] generate applnfo for ASN.1 itens
<itens> can be tags, enum and/or ext
ex: -appinfo tags, enum ext
default = all if <items> not given
-attrs [<itens>] generate non-native attributes for <items>
<itens> is same as for -appinfo
-targetns [<nanespace>] Specify target nanmespace

<nanmespace> i s nanespace URI, if not given
no target nanmespace declaration is added
-useAsnlXsd reference types in asnl.xsd schem

Synbi an options:
-synbi an [<items>] generate code for Symbian OS
<itens> can be dl
e.g. -symbian dl
default = synbian application style code
i cense options:
-li ckey <key> set |icense key val ue

Notethat this usage summary shows all optionsfor the pro version of ASN1C. Some of these options are not available
in the basic version.

To use the compiler, at aminimum, an ASN.1 or XSD source file must be provided. The source file specification can
be a full pathname or only what is necessary to qualify the file. If directory information is not provided, the user's
current default directory is assumed. If afile extension is not provided, the default extension ".asn" is appended to
the name. Multiple source filenames may be specified on the command line to compile a set of files. The wildcard
characters ‘*’ and ‘%’ are aso alowed in source filenames (for example, the command asnlc *. asncode> will
compile all ASN.1 filesin the current working directory).

The source file(s) must contain ASN.1 productions that define ASN.1 types and/or value specifications. This file
must strictly adhere to the syntax specified in ASN.1 standard ITU-T X.680. The -asnstd x208 command-line option
should be used to parse files based on the 1990 ASN.1 standard (x.208) or that contain references to ROSE macro
specifications.

The following table lists all of the command line options and what they are used for. The options are shown in
alphabetical order. Notethat the Javaand C# options are not shown here. They are shown intheir respective documents.

Option Argument Description

-3013 None This option is used to generate code for encoding and
decoding 3GPP Layer 3 messages. Support is primarily
provided for Non-Access Stratum (NAS) message types

Using the Compiler

Option Argument Description

as definein 3GPP TS 24.007, 24.008 , and 24.301 (LTE-
NAS). Asof thisrelease, only the C languageis supported.

-alow-ambig-tags None This option suppresses the check that is done for
ambiguous tags within a SEQUENCE or SET type within
a specification. Special code is generated for the decoder
that assigns values to ambiguous elements within a SET
in much the same way as would be done if the elements
were declared to bein a SEQUENCE. This option used to
be called -noAmbigTag.

-applnfo <items> This option only has meaning when generating an XML
schema definitions (X SD) file using the -xsd option.

It instructs the compiler to generate an XSD application
information section (<appinfo>) for certain ASN.1-only
items. The items are specified as a comma-delimited list.
Valid values for items are tags, enum, and ext.

<items> is an optional parameter. If it is not specified,
it is assumed that application information should be
produced for al three item classes: ASN.1 tags, ASN.1
enumerations, and extended elements.

-array none This option specifies that an array type will be used for
SEQUENCE OF/SET OF constructs.
-arraySize <size> This option specifies the default size of static array

variables. Thiswill be overridden by the value of a SIZE
constraint on the given type, if it exists.

-asnl <filename> Thisoption causes pretty-printed ASN.1to be generated to
the given file name or to stdout if no filename was given.
Besides the obvious use of providing neatly formatted
ASN.1 source code, the option isalso useful for producing
ASN.1 source code from XML schema document (XSD)
files as well as producing trimmed specifications when
<include> or <exclude> configuration directives are used.

-asnstd x208 This option selects the version of ASN.1 syntax to be
X680 parsed. ‘x680" (the default) refers to modern ASN.1 as
mixed specified in the ITU-T X.680-X.690 series of standards.

‘x208' refers to the now deprecated X.208 and X.209
standards. This syntax alowed the ANY construct aswell
as unnamed fields in SEQUENCE, SET, and CHOICE
constructs. This option aso allows for parsing and
generation of code for ROSE OPERATION and ERROR
macros and SNMP OBJECTTY PE macros. The ‘mixed’
option is used to specify a source file that contains
modules with both X.208 and X.680 based syntax.

-attrs <items> This option only has meaning when generating an XML
schema definitions (XSD) file using the -xsd option.

It instructs the compiler to generate non-native attributes
for certain ASN.1-only items that cannot be expressed in

Using the Compiler

Option Argument Description

XSD. The items are specified as a comma-delimited list.
Valid values for items are tags, enum, and ext.

<items> is an optional parameter. If it is not specified,
it is assumed that application information should be
produced for al three item classes: ASN.1 tags, ASN.1
enumerations, and extended elements.

-ber None This option is used to generate encode/decode functions
that implement the Basic Encoding Rules (BER) as
specified in the X.690 ASN.1 standard.

-bindir <directory> This option is used in conjunction with the -genMake
option to specify the name of the binary executable
directory to be added to the makefile. Linked executable
programs will be output to this directory.

-bitMacros None This option is used to generate additional macros to set,
clear, and test named bits in BIT STRING constructs.
By default, only bit number constants are generated. Bit
macros provide slightly better performance because mask
values required to do the operations are computed at
compile time rather than runtime.

-C None Generate C source code.

-C# or -csharp None Generate C# source code. Seethe ASN1C C# User’ sGuide
for more information and options for generating C# code.

-C++ or -cpp None Generate C++ source code.

-cer None This option isued to generate encode/decode functions

that implement the Canonical Encoding Rules (CER) as
specified in the X.690 ASN.1 standard.

-cfile [<filename>] This option allows the specification of a C or C++ source
(.c or .cpp) file to which al of the generated encode/
decode functions will be written. If not specified, the
default isto writeto aseriesof .c or .cpp files based on the
ASN.1 module name(s) of the documents being compiled.

-compact None This option is used to generate more compact code at
the expense of some constraint and error checking. This
is an optimization option that should be used after an
application isthoroughly tested.

-compat <versionNumber> Generate code compatible with an older version of
ASN1C. The compiler will attempt to generate code more
closely aigned with the given previous release of the
compiler.

<versionNumber> is specified as x.x (for example, -
compat 5.2)

-config <filename> Thisoption isused to specify the name of afile containing
configuration information for the source file being parsed.
A full discussion of the contents of a configuration fileis
provided in the Compiler Configuration File section.

Using the Compiler

Option

Argument

Description

-cppns

<namespace>

This option is used to add a C++ namespace name to
generated C++ files.

-depends

None

This option is used to generate a full set of header and
source files that contain only the productions in the main
file being compiled and items those productions depend
on from IMPORT files.

-der

None

This option is used to generate encode/decode functions
that implement the Distinguished Encoding Rules (DER)
as specified in the X.690 ASN.1 standard.

-dil

None

When used in conjunction with the -genMake command-
line option, the generated makefile uses dynamically-
linked libraries (DLLs in Windows, or .so filesin UNIX)
instead of statically-linked libraries.

-dynamicArray

none

This option specifies that a dynamic array type is to be
used for SEQUENCE OF/SET OF constructs.

-genbuild

None

This option is used to generate a build script when
producing Java source code. The generated build script is
either abatch file (Windows) or a shell script (UNIX).

-genCompare
-compare

[<filename>]

This option alows the specification of a C or C++ source
(.c or .cpp) fileto which generated compare functionswill
be written. Compare functions allow two variables of a
given ASN.1 type to be compared for equality.

The <filename> argument to this option is optional.
If not specified, the functions will be written to
<modulename>Compare.c where <modulename> is the
name of the module from the ASN.1 sourcefile.

-genCopy
-Copy

[<filename>]

This option allows the specification of a C or C++ source
(.c or .cpp) file to which generated copy functions will
be written. Copy functions allow a copy to be made of
an ASN1C generated variable. For C++, they cause copy
constructors and assignment operators to be added to
generated classes.

The <filename> argument to this option is optional.
If not specified, the functions will be written to
<modulename>Copy.c where <modulename> isthe name
of the module from the ASN.1 source file.

-genFree

None

This option instructs the compiler to generate a memory
free function for each ASN.1 production. Normally,
memory isfreed within ASN1C by using the rtixMemFree
run-time function to free all memory at once that is held
by acontext. Generated free functions allow finer grained
control over memory freeing by just allowing the memory
held for specific objects to be freed.

-genMake

[<filename>]

This option instructs the compiler to generate a portable
makefile for compiling the generated C or C++ code. If
used with the -w32 command-line option, a makefile
that is compatible with the Microsoft Visua Studio

Using the Compiler

Option

Argument

Description

nmake utility is generated; otherwise, a GNU-compatible
makefileis generated.

Note that the -nmake option may now be used instead of
the -make -w32 combination to produce a Visual Studio
makefile.

-genMakeDLL

[<filename>]

This option instructs the compiler to generate a portable
makefile for compiling the generated C or C++ codeinto
aDynamic Link Library (DLL).

-genMakelLib

[<filename>]

This option instructs the compiler to generate a portable
makefile for compiling the generated C or C++ codeinto
adtatic library file.

-genPrint
-print

[<filename>]

This option alows the specification of a C or C++ source
(.c or .cpp) file to which generated print functions will be
written. Print functions are debug functions that allow the
contents of generated type variablesto bewritten to stdout.

The <filename> argument to this option is optional.
If not specified, the print functions will be written to
<modulename>Print.c where <modulename> is the name
of the module from the ASN.1 sourcefile.

-genPrtToStr -prtToStr

[<filename>]

This option alows the specification of a C or C++
source (.c or .cpp) fileto which generated "print-to-string”
functions will be written. "Print-to-string” functions are
similar to print functions except that the output is written
to auser-provided text buffer instead of stdout. Thismakes
it possible for the use to display the results on different
output devices (for example, in atext window).

The <filename> argument to this option is optional.
If not specified, the functions will be written to
<modulename>Print.c where <modulename> is the name
of the module from the ASN.1 sourcefile.

-genPrtToStrm -prtToStrm

[<filename>]

This option allows the specification of a C or C++ source
(.c or .cpp) file to which generated "print-to-stream"
functions will be written. "Print-to-stream" functions are
similar to print functions except that the output is written
to a user-provided stream instead of stdout. The stream is
in the form of an output callback function that can be set
within the run-time context making it possible to redirect
output to any type of device.

The <filename> argument to this option is optional.
If not specified, the functions will be written to
<modulename>Print.c where <modulename> is the name
of the module from the ASN.1 sourcefile.

-genTables
-tables

[<filename>]

This option is used to generate additional code for the
handling of table constraints as defined in the X.682
standard. See the Generated Information Object Table
Sructures section for additional details on the type
of code generated to support table constraints. Note:

Using the Compiler

Option Argument Description

An dternaitve option for C/C++ is -table-unions which
generates union structures for table constraints. These are
generally easier to work with then the legacy void pointer
approach used in this option.

-genTest [<filename>] This option allows the specification of a C or C++ source
(.cor .cpp) fileto which generated "test" functionswill be
written. "Test" functions are used to populate an instance
of a generated PDU type variable with random test data.
This instance can then be used in an encode function call
to test the encoder. Another advantage of these functions
is that they can act as templates for writing your own
population functions.

The <filename> argument to this option is optional.
If not specified, the functions will be written to
<modulename>Test.c where <modulename> is the name
of the module from the ASN.1 sourcefile.

-hdrGuardPrefix [<prefix>] This option allows the specification of a prefix that will
be used in the generated #defines that are added to header
files to make sure they are only included once.

-hfile [<filename>] This option alows the specification of a header (.h)
file to which al of the generated typedefs and function
prototypes will be written. If not specified, the default is
<modulename>.h where <modulename> is the name of
the module from the ASN.1 sourcefile.

-html None Thisoption is used to generated HTML markup for every
compiled ASN.1 file. This markup contains hyperlinks to
all referenced items within the specifications. One HTML
fileisgenerated for each corresponding ASN.1 sourcefile.

-l <directory> Thisoption isused to specify adirectory that the compiler
will search for ASN.1 source files for IMPORT items.
Multiple - qualifiers can be used to specify multiple
directoriesto search.

-java None Generate Java source code. See the ASN1C Java User’s
Guide for more information on Java code generation.

-json None This option is used to generate encode/decode functions
for Javascript Object Notation (JSON). See our
whitepaper Javascript Object Notation (JSON) Encoding
Rules for more information.

-lax None This option instructs the compiler to not generate code to
check constraints. When used in conjunction with the -
compact option, it produces the smallest code base for a
given ASN.1 specification.

-laxsyntax None This option instructs the compiler to not do a thorough
syntax check when compiling a specification and to
generate code even if the specification contains non-fatal
syntax errors. Use of the code generated in this case can
have unpredictable results; however, if a user knows that

10

Using the Compiler

Option

Argument

Description

certain parts of a specification are not going to be used,
this option can save time.

-libdlir

<directory>

This option is used in conjunction with the -genMake
option to specify the name of the library directory to be
added to the makefile.

-lickey

<key-value>

This option is used to enter a license key value that was
provided to the user to enable the compiler for either
evaluation or permanent use.

-linkedList

none

This option specifies that a linked-list type is to be used
for SEQUENCE OF/SET OF constructs.

-list

None

Generate listing. This will dump the source code to the
standard output device asiit is parsed. This can be useful
for finding parse errors.

-maxcfiles

None

Maximize number of generated C files. This option
instructsthe compiler to generate aseparate .c filefor each
generated C function. In the case of C++, a separate .cpp
file is generated for each control class, type, and C
function. Thisis a space optimization option - it can lead
to smaller executable sizes by allowing the linker to only
link in the required program module object files.

-maxlines

<number>

This option is used to specify the maximum number
of lines per generated .c or .cpp file. If this number is
exceeded, anew fileisstarted witha"_n" suffix where"n"
is a sequential number. The default value if not specified
is 50,000 lines which will prevent the VC++ "Maximum
line numbers exceeded" warning that is common when
compiling large ASN.1 sourcefiles.

Note that this number is approximate - the next file
will not be started until this number is exceeded and
the compilation unit that is currently being generated is
complete.

-mder

None

This option is used to generate functions that implement
the Medical Device Encoding Rules (MDER) as specified
in the IEEE/ISO 11073 standard.

-mt

None

When used in conjunction with the -genMake command-
line option, the generated makefile uses multi-threaded
libraries.

-nmake

[<filename>]

This option instructs the compiler to generate a Visual
Studio compatible makefile. It is equivalent to using the -
genMake -w32 combination of command-line options.

-noContaining

None

This option suppresses the generation of inline code to
support the CONTAINING keyword. Instead, a normal
OCTET STRING or BIT STRING typeisinserted aswas
donein previous ASN1C versions.

-nodecode

None

Thisoption suppressesthe generation of decode functions.

-noencode

None

Thisoption suppressesthe generation of encodefunctions.

11

Using the Compiler

Option Argument Description

-nolndefLen None Thisoptioninstructsthe compiler to omit indefinite length
tests in generated decode functions. These tests result in
the generation of a large amount of code. If it is known
that an application only uses definite length encoding, this
option can result in amuch smaller code base size.

-nolnit None This option is used to suppress the generation of
initialization functions. A variable of agenerated structure
can always be initialized by memset’ing the variable to
zero. However, thisisnot usually the most efficient way to
initializeavariable becauseif it containslarge byte arrays,
a significant amount of processing is required to set all
bytes to zero (and they don’t need to be). Initialization
functions provide asmart alternative to memset’ing in that
only what needs to be set to zero actualy is.

Note that previous versions of ASN1C did not generate
initialization functions by default. The -genlnit switch has
been deprecated in favor of -nolnit.

-noEnumConvert None This option suppresses the generation of utility functions
in C and C++ that assist in converting enumerated values
to strings and vice versa. XER and XML encodings are
unaffected by this option, since conversions are necessary
for encoding and decoding.

-noObjectTypes None This option suppresses the generation of application
language types corresponding to ASN.1 types embedded
within information object definitions.

-noOpenExt None This option suppresses addition of an open extension
element (extEleml) in constructsthat contain extensibility
markers. The purpose of the element is to collect any
unknown items in a message. If an application does not
care about these unknown items, it can use this option to
reduce the size of the generated code.

-notypes None This options suppresses the generation of type definitions.
It is used in conjunction with the -events options to
generate pure parser functions.

-noxmins None This option suppresses the insertion of XML namespace
entries in generated XML documents. This includes
xml ns attributes and prefixed names.

-nouniquenames None This option suppresses the automatic generation of unique
names to resolve name clashes in the generated code.
Name clashes can occur, for example, if two modules are
being compiled that contain a production with the same
name. A unique name is generated by prepending the
module name to one of the productions to form a name of
the form <module>_<name>.

Note that name collisions can aso be manually resolved
by using the typePrefix, enumPrefix, and valuePrefix
configuration items (see the Compiler Configuration File
section for more details).

12

Using the Compiler

Option

Argument

Description

Previous versions of ASN1C did not generate unique
names by default. The compiler option -uniquenames has
been deprecated in favor of -nouniquenames.

<directory>

This option is used to specify the name of a directory to
which al of the generated files will be written.

-objdir

<directory>

This option is used in conjunction with the -genMake
option to specify the name of the object file directory to be
added to the makefile. Compiled object fileswill be output
to this directory.

-oh

<directory>

This option is used to specify the name of a directory to
which only the generated header files (*.h) will bewritten.

-oer

None

This option is used to generate encode/decode functions
that implement the Octet Encoding Rules (OER) as
specified in the NTCIP 1102:2004 standard. Currently
only the C language is supported.

-param

<name>=<value>

This option is used to instantiate all parameterized types
within the ASN.1 modules that are being compiled with
the given parameter value. In this declaration, <name>
refers to the dummy reference in a parameterized type
definition and <value> refers to an actual value.

-pdu

<typeName>

Designate given type name to be a "Protocol Definition
Unit" (PDU) type. Thiswill cause a C++ control class to
be generated for the given type. By default, PDU typesare
determined to be typesthat are not referenced by any other
types within a module. This option alows that behavior
to be overridden.

The "al" keyword may be specified for <typeName> to
indicate that all productions within an ASN.1 module
should be treated as PDU types.

_per

None

This option is used to generate encode/decode functions
that implement the Packed Encoding Rules (PER) as
specified in the ASN.1 standards.

-perindef

None

This option is used to generate encode/decode functions
that implement the Packed Encoding Rules (PER) as
specified in the ASN.1 standards including support for
indefinite (fragmented) lengths.

-prtfmt

bracetext
details

Sets the print format for generated print functions. The
detailsoption causesaline-by-linedisplay of all generated
fieldsin a generated structure to be printed. The bracetext
option causes a more concise printout showing only the
relevant fields in a C-like brace format. As of release
version 6.0, bractext isthe default (details was the default
or only option in previous versions).

-shortnames

None

Generate a shorter form of an element name for a deeply
nested production. By default, all intermediate names are
used to form names for elements in nested types. This
can lead to very long names for deeply nested types.

13

Using the Compiler

Option Argument Description

This option causes only the production name and the last
element name to be used to form a generated type name.

-static None This has the same effect as specifying the global
<storage> dtatic </storage> configuration item. The
compiler will insert static elements instead of pointer
variablesin some generated structures.

-stream None This option is used to generate stream-based encoders/
decoders instead of memory buffer based. This makes it
possible to encode directly to or decode directly from a
source or sink such as afile or socket. In the case of BER,
it will also cause forward encoders to be generated which
will use indefinite lengths for all constructed elementsin

amessage.

Notethat stream and memory-buffer based encode/decode
functions cannot be used/combined in any way. The two
are mutually exclusive. If the -stream option is selected,
then only stream-based run-time functions can be used
with the generated code.

-strict None This option is used to generate code for strict validation
of table constraints. By default, generated code will not
check for value field constraints.

-strict-size None This option causes strict interpretation of size constraints
to be enabled. This may result in the generation of
more optimized code as unnecessary size variable holders
are eiminated. For example, a declaration of OCTET
STRING (SIZE(10)) will result in the generation of a 10
byte static array rather than a structure with a count field
and array.

-syntaxcheck None This option is used to do a syntax check of the ASN.1
source files only. No code is generated.

-table-unions None This option is used to generate union structures for table
constraints in C/C++ instead of void pointers as is done
when the -tables option isused. These are generally easier
to use as they present all optionsin a user-friendly way.

-targetns <namespace> This option only has meaning when generating an XML
schema definitions (XSD) file using the -xsd option.

It alows gpecification of a target namespace.
<namespace> is a namespace URI; if it is not provided,
no target namespace declaration is added to the generated
XSD file.

-trace None This option is used to tell the compiler to add trace
diagnostic messages to the generated code. These
messages cause print statements to be added to the
generated code to print entry and exit information into
the generated functions. This is a debugging option
that allows encode/decode problems to be isolated to a
given production processing function. Once the code is

14

Using the Compiler

Option Argument Description
debugged, this option should not be used as it adversely
affects performance.

-uper None This option is used to specify the generation of code to

support the unaligend variant of the Packed Encoding
Rules (PER). This provides for dightly more compact
code than the -per option because aignment checks are
removed from the generated code.

-use-enum-types None This option is used to specify that generated enumerated
types are to be used directly in the code as opposed to
integer types. The advantages of integer types are @) they
are of a known size, and b) they can store unknown
identifiersthat may be received for extensible enumerated
types. However, the direct use of enumerated types makes
it easier to inspect variables using the debugger in various
IDE's.

-usepdu <PDU type name> This option is used to specify the name of the Protocol
Data Unit (PDU) type to be used in generated reader and
writer programs.

-VCproj This option is used to generate Visual C++- or Visual
vch Studio-compatible project files to compile generated
2003 source code. This is a Windows-only option. By passing
2005 one of thelisted years, the compiler will generate a project
2008 that links against libraries provided for those versions of
2010 Visual Studio or Visual C++. For example, specifying
2012 2005 will generate a project that links against librariesin

the* vs2005 directory. Not specifying ayear will cause
the compiler to link against libraries compiled for Visual
Studio 2008.

A custom build ruleis generated that del etes the generated
source files and then invokes ASN1C to regenerate them
when arebuild is done. Doing aclean operation will cause
the generated sourcefilesto be deleted; asubsequent build
will regenerate them.

For Visual C++ 6.0 project filesyou can seethisbuild rule
by locating the first ASN.1 file under the Source Filesfor
the project, right clicking it, choosing Settings... and then
choosing the Custom Build tab.

For Visual Studio 2005, 2008, 2010, and 2012 project files
the procedure to see the custom rule is very similar to
that for Visual C++ 6.0, except that you choose Properties
whenyouright click onthefirst ASN.1file, and then click
on Custom Build Step or Custom Build Tool on the left.

-w32 None This option is used with makefile and/or Visual Studio
project generation to indicate the generated file is to be
used on a Windows 32-hit system. In the case of makefile
generation, thiswill cause a makefile to be generated that
is compatible with the Visua Studio nmake utility.

15

Using the Compiler

Option Argument Description

-w6b4 None This option is similar to the -w32 option documented
above except that it specifies a Windows 64-bit system.

-warnings None Output information on compiler generated warnings.

-xer None This option is used to generate encode/decode functions

that implement the XML Encoding Rules (XER) as
specified in the X.693 ASN.1 standard. The -xsd option
can be used in conjunction with this option to generate a
schema describing the XML format.

-xml None This option is used to generate encode/decode functions
that encode/ decode data in an XML format that is
more closely aligned with World-Wide Web Consortium
(W3C) XML schema. The -xsd option can be used
in conjunction with this option to generate a schema
describing the XML format.

-xsd [<filename>] This option is used to generate an equivalent XML
Schema Definition (XSD) for each of the ASN.1
productions in the ASN.1 source file. The definitions are
written to the given filename or to <modulename>.xsd
if the filename argument is not provided. There are
two supported mappings from ASN.1 to XSD, one
corresponding to the -xml option and one corresponding
tothe-xer option. Thedefault isto follow the -xml variant.
If the -xer option is given, then that variant is followed.

Using the GUI Wizard to Run ASN1C

ASNI1C includesagraphical user interface (GUI) wizard that can be used asan alternative to the command-lineversion.
Itisacross-platform GUI and has been ported to Windows and several UNIXes. The GUI makesiit possible to specify
ASN.1 files and configuration files viafile navigation windows, to set command line options by checking boxes, and
to get online help on specific options.

The Windowsinstallation program should have installed an * ASN1C Compiler’ option on your computer desktop and
an ‘ASN1C’ option on the start menu. The wizard can be launched using either of these items. The UNIX version
should beinstalledin ASN1C | NSTALL_DI R/ bi n; nodesktop shortcutsare created, soit will be necessary to create
one or to run the wizard from the command-line.

Using Projects

Thewizard is navigated by means of Next and Back buttons. Following is the initial window:

16

Using the Compiler

% ASN1C

ASN1C Project Wizard

Mew Project

Open Project

License key: 0771-7381-0137-3354|

ASMNIC 6.5.2

License check Failed
Please enter a valid license key

Cancel

17

Using the Compiler

The status window will display the version of the software you have installed as well as report any errors upon startup
that occur, such asamissing licensefile.

The Project Wizard will allow you to save your compilation options and file settings into a project file and retrieve
them later. If you wish to make a new project, click the icon next to Create a New Project:

Create a New ASN.1 Project
Savein | 3 emploves w @ j‘ % [~

by Recent
Documents

==

I

Desktop

"J

‘-'-}

ty Documents

8

by Cormputer

g File name: emplopes W | Save
by M etiork, Save as type: *. acproj W | Cancel

Previously saved projects may be recalled by clicking the icon next to Open an Existing Project:

18

Using the Compiler

Load ASN1C Project

Look in: | [employes w O T e G-

_._2_ D emploves, acpro]

by Recent
Documents

N

Desktop

\$

ty Documents

<

by Cormputer

File name: | W | Open
by Metwork, | Files of tppe: ® ACproj v | Cancel

The project format has changed in ASN1C 6.3 to help accommodate the transition to Qt 4.5. Changes to the interface
necessitated changes to the underlying project file format. Projects made with previous versions may be loaded with
version 6.3, but new projects are incompatible with previous versions. Additional metadata are stored in the project
file to help with version tracking.

@

Files may be added to a project in the following window:

19

Using the Compiler

% ASN1C

Select Files and Directories

ASM.1 | 25D Files

enployes. asn

Browse

Include [Import Direckaories

Rermove

iZonfiguration File(s): | Browse

Cutput Direckary: i facvesz fecpp)sample _ber femploves | Browse

| <Back || mext> |[cance

20

Using the Compiler

In thiswindow, the ASN.1 file or filesto be compiled are selected. Thisisdone by clicking the Add button on theright
hand side of the top windows pane. A file selection box will appear allowing you to select the ASN.1 or XSD filesto
be compiled. Files can be removed from the pane by highlighting the entry and clicking the Remove button.

ASN.1 specifications and XML Schema Documents must not be compiled in the same project. Once an ".asn" file has
been added, no ".xsd" files may be added.

Includedirectoriesare selected in asimilar manner inthe middle pane. These are directoriesthe compiler will searchfor
import files. By default, the compiler looksfor filesin the current working directory with the name of the module being
imported and extension ".asn" or ".xsd". Additional directories can be searched for these files by adding them here.

User-defined configuration files are specified in the third pane. These allow further control of the compilation process.

They are optional and are only needed if the default compilation processisto be altered (for example, if atypeprefix is
to be added to a generated type name). See the Compiler Configuration File section for details on defining thesefiles.

Common Code Generation Options

Code generation options common to all language types are specified in the following tabbed window:

21

Using the Compiler

% ASN1C

Common Code Generation Options

Language Options | Function Options Ltility Cptions

Input File Type

(%) Modern A5M.1 {1997+ based on X680 standard)

() Legacy ASM. 1 (based on obsolete %.208 standard with ROSE or SNMP macros)
#ML Schema (K500
[] Lax Svntax Check

Additional Translations

Generate equivalent XML schema (<500 File
[] Generate HTML Files For input ASM. 1
Generate 850, 1 file based on ¥.694 (%50 input only)

Application Language Type

O c (%) C++ () lava (O ca () Mone (syntax check only)

Encoding Rules

EER. DER CER [PER* []®ER [] ®ML OER MDER:
* celect aligned or unaligned PER. at run-tirne

iZode Options

Generate code for all dependent imported type definitions
[] Generate code compatible with compiler version

Cancel

22

Using the Compiler

Language options, pictured above, encompass not only the output language choice, but also input specification type,
encoding rules, and code compatibility options.

Certain optionswill beinactive (greyed out) depending on thefiletype selected. For example, if an X SD fileisselected,
the option Generate ASN.1 file based on X.694 will be active and the option Gener ate equivalent XML schema (XSD)
file will beinactive.

Checking Generate code for all dependent imported type definitions will cause the compiler to search and generate
code for modules specified in the | MPORTS statement of an ASN.1 specification.

Basic encoding rules are selected by default. Only one of BER, DER, and CER can be checked at any time. XML and
XER are also mutually exclusive options.

Generated function options are shown in the following tab:

23

Using the Compiler

% ASN1C

Common Code Generation Options

Language Cpkions Function Opkions Ltility Cptions
izenerated Function Tvpes
Encode [Copy [Print Functions
Decode [] compare stdouk string stream
[] stream Print Format

Brace text Det ails

_ansktrainks

[] Do not generate constraint checks (-lax)

[] Enable strick constraint checks (-strick)

[] menerate code to handle table constraints (-tables; legacy setting in CJC++)
[] Do not generate inline containing kypes {-noContaining)

[] allow ambiguous tags (-allow-ambig-tags)

Space Opkimizaktion
[] Generate compact code {-compact)
[] Do not generate indefinite length processing code (-nolndeflen)
[] Do not generate code to savefrestore unknown extensions (-noOpenEx:k)

[] Do not generate types For items embedded in information objects

[N T SO T | NN S -1 1 S SRS) DN S S

24

Using the Compiler

The optionsin this tab control which functions are generated and what modifications are made to those functions.

By default, encoding and decoding functions are generated by the compiler. If the target application does not require
encoding or decoding capabilities (for example, if it is only intended to read messages and does not need to write
them), unchecking the corresponding checkbox will reduce the amount of code generated.

Check Sreamto modify generated encode and decode functionsto use streamsinstead of memory buffers. Thisallows
encoding and decoding to a source or sink such as a file or socket. Stream-based encoding and decoding cannot be
combined with buffer-based.

As an aid to debugging, Print functions may also be generated. Three different different types exist: print to stdout,
print to string, and print to stream. These allow the contents of generated types to be printed to the standard output,
astring, or astream (such as afile or socket).

Constraint checking may berelaxed or tightened depending on sel ected options. Constraints may beignored completely
by checking Do not generate constraint checks. To tighten constraints, check Enable strict constraint checks. ASN1C
supports decoding and encoding values described by table constraints; checking Generate code to handle table
constraints will enable this behavior. This option is alegacy option for C and C++ code generation: generating table
constraints in unions is the preferred method (see the following section).

To reducethe codefootprint, several other options may be selected: Generate compact code, Do not gener ateindefinite
length processing code, Do not gener ate code to save/restor e unknown extensions, and Do not gener ate types for items
embedded in information objects may all be used to reduce the amount of generated code. Generate compact code
cannot be used in conjunction with Generate compatible code. If XML validation is not needed, check Do not generate
XML namespacesfor ASN.1 modules. Thiswill result in asmaller codebase aswell assmaller output XML data. Check
Generate short form of type names if generated type names are too long for the target language.

The following tab provides options for generating utility functions and applications:

25

Using the Compiler

% ASN1C

Common Code Generation Options

Language Opkions Function Options Utility Cptions

Sample Program Generation

[] Generate writer sample program {-wriker)

[] Generate reader sample program {-reader)

[] Generate code for populating data structures (-kest)

[] Generate run-time test code For populating data struckures {-randtest)

Prokocaol Data Units (POUS)

[] Treat all types as Protocol Data Units (PDIU's) ¢-pdu all)

[] Specify a POU For the sample programs (-usepdu)

Debugging and Event Handlers

[] Generate code tao invoke event handler callback Functions (-events)

[] Generate pure parser (event handler callbacks with no bvpes) (-notypes)
[] &dd tracing diagnostic messages to code (-trace)

iokther Options

#utomatically create unigue names for duplicate ikems

[] Do not add date stamp to generated Files (-nodatestamp)
Enker cormand-line opkions not available in GUI:

26

Using the Compiler

The Sample Program Generation frame allows you to generate boilerplate reader and writer applications as well as
randomized test data for populating a sample encoded message. The items in the Protocol Data Units frame may be
used in conjunction to select the appropriate PDU data type to be used in the sample programs.

The Debugging and Event Handlers frame contains options that generate code for adding trace diagnostics and event
handling hooks into generated code. It is possible to generate a type parser by generating only an event handler and
no data types for the decoded messages. This grants a great deal of flexibility in handling input data at the expense
of generating pre-defined functions for most common encoding and decoding tasks. Users of embedded systems may
find this useful asit will shrink the output considerably while allowing them fine control over decoding procedures.

The Other Options frame contains miscellaneous modifications to code output, including type name resolution

(avoiding duplicate names), date stamp removal (useful when generated code will be stored in source control), and a
lineitem for including any new command-line features not yet represented in the GUI.

XSD Options

If the Generate equivalent XML schema (XSD) file option was checked in the Common Code Generation Options
screen, the following window will be presented for modifying the contents of the generated X SD:

27

Using the Compiler

% ASN1C

XSD Generation Options

|:| izenerate Application Information Annotations
Tags
Enurner ations

Exbensions

|:| izenerate Mon-native Aktribute Annotations
Tags
Enurner ations

Exbensions

Specify the Target XML Mamespace

Reference Types in the asnl.xsd schema

Cancel

28

Using the Compiler

These options are described in Running ASN1C from the command-line.

C/C++ Code Generation Options

The following windows describe the options available for generating C or C++ source code.

29

Using the Compiler

% ASN1C

C/C++ Code Generation Options

Code Modifications | Makefiles and Projects

iZuskamize Generated Code

iaenerate Inikialization Functions

[] Generate Memory Free Functions (-genfree)

[] Generate Mamed Bit Macros {-genBitMacros)

[] Generate code ko handle kable constraints using unions {-table-unions)

[] Interpret size constraints skrickly (-strick-size)

Generated C/C++ Twpe Modifiers

[] Generate static member wariables in choice constructs (-skatic)
[] Generate Fully-qualified enumerated identifiers (-Fgenum?

[] Generate Symbian-compatible code For DLLs

[] &dd a header quard prefix

[] &dd a C++ namespace

Cukput File Oplions

(%) Oukput code to .cf.h files based on module namedax lines per File:

() Oukput each generated Function to a separate source File (-maxcfiles’
() output all code ko a single .of.h File.c h

Cancel

30

Using the Compiler

The first tab, Code Modifications, contains options for adding C/C++-specific function types, adding type modifiers,
and changing how files are output.

By default, ASN1C generatesinitialization functions that are used by generated code to ensure that newly-constructed
types have appropriate default values. Memory free functions are not generated by default, but may be added when
users need to free specific types individually instead of relying on ASN1C's built-in memory management functions.
Bit macro functions may also be generated for setting, clearing, and testing bitsin Bl T STRI NG productions.

Table constraints in C/C++ were modified for ASN1C version 6.2 to make their data structures easier to manipulate.
The table unions option causes a CHO CE-like union structure to be generated for information object classes. In
practice, the generated code is more compact, easier to read, and confers several advantagesfor developers (principally
type safety and readability).

The Generate static elements option is used to add static elements to CHO CE constructs instead of pointer values.
Using fully-qualified enumerated types will cause ASN1C to emit enumerated types prefixed by their parent module
name. Enumerated types are often reused in different modules, and ASN1C's automatic name resolution is usually
insufficient to disambiguate which type is which. This option only needs to be selected in C, since C++ enumerations
are contained in classes.

The other options are described in greater detail in Running ASN1C from the command-line.

31

Using the Compiler

@ ASMIC - sample.acproj

C/C++ Code Generation Options

| Code Modifications | Makefiles and Projects |

[7] Generate Makefiles
Windows (nmake)

@ GNU

[7] Generate visual Studio Project
VS 2012
VS 2010
@ V5 2008
VS 2005
VS 2003

VS 6.0 (1998)
Generate Libraries

@ Generate static libraries
Generate shared libraries
Generate multi-threaded libraries

[Link applications using shared libraries

[Mext] [Cancel

The preceding window contains options for generating makefiles and Visual Studio projects. Makefile and project
targets may be modified by selecting Generate Librariesor Link applicationsusing shared libraries. If thelatter option
is checked, applications will be dynamically linked instead of statically linked.

Compilation

When al options have been specified, the final screen may be used to execute the compilation command:

32

Using the Compiler

% ASNI1C - employee.acproj

Compile

iZompilation Cptions
Generate lisking (-lisk)

Showw compilation warnings (-warnings)

iZompilakion command

"Cilacves2ibimasnlc” "emplovee, asn” -0 " facweS2 cpp/sample_berfemployes” -
usefsnlxsd -ber -xsd -cpp -depends -nostrict-size -list -warnings

iZompilation Results

|E Save Project ||__JI Compile |

< Back. | Finish | Cancel

33

Using the Compiler

Included in the window are the compiler command, an option to save the project, and the output from compilation.
Selected options are reflected in the command line.

It is also possible to generate a printed listing of the input specifications. Warnings encountered during compilation
will also be printed if the appropriate check box is marked.

Click Finish to terminate the program. The wizard will ask whether or not to save any changes made, whether a new
project has been created or not.

Using the Visual Studio Wizard to Generate
ASN1C Projects

On Windows systems ASN1C includes a Visual Studio wizard to help you with creating projects that use ASN1C in
Visua Studio 2005 or later. Thewizard simply invokesthe ASN1C GUI program. Y ou use the GUI to define whatever
options you want to have set for generating your code and your project file. Then when you click on the Compile
button on the last screen of the GUI, the project file will be created for you. The wizard then loads the project file
into your Visual Studio workspace.

To use the wizard, follow these steps:

1. Edit the file ASN1CWizard.vsz in the vswizard folder of your ASN1C distribution with a text editor. Make the
customizations to the file that are noted in the comments at the top. Take special note of the instruction to remove
the comment lines, as the wizard mechanism will not function if those lines remain in thefile.

2. Copy the ASN1CWizard.vsz file, the ASN1CWizard.vsdir file, and the ASN1CWizard.ico file to the VC\projects
folder of your Visua Studio installation (e.g., C:\Program Files (x86)\Microsoft Visua Studio 8\V C\vcprojects).
The wizard can then be invoked by clicking Visual C++ from the Visual Studio New Project dialog and then
choosing ASN1C as the project template.

For example, let'sassume you want to use the Visual Studio Wizard to work with code generated from the employee.asn
file, whichisincluded in numerous samples provided with ASN1C. Thefirst step isto edit the ASN1CWizard.vsz file.
Below isatypica ASN1CWizard.vsz file as furnished with an ASN1C kit (version 6.5.0 in this example):

These coment -type |ines nmust be renoved in order for this .vsz file to work.

The ABSOLUTE_PATH par aneter bel ow nmust be set to the full path specification
of the vswizard folder within your ASNLC installation.

The OSROOTDI R paraneter bel ow can be set to the root of the ASNLC
installation. |If OSROOIDIR is al ready defined as a Wndows environnent
variable, then as long as that definition is what's desired, the definition
of OSROOIDIR in this file can be renpved. |If OSROOIDIR is defined both in
this file and as a Wndows environnment variable, then the definition in this
file will take precedence. Since this file needs to be copied into the
Visual Studio folder hierarchy (see READVE.txt), this feature can be

useful if nmultiple ASNIC and Visual Studio versions are installed, and a

di fferent version of ASNIC is to be used dependi ng on what version of Visual
Studio is being used.

VSW ZARD 7.0

W zar d=VsW zar d. VsW zar dEngi ne. 8. 0

HHHFHHF T HF IR

Using the Compiler

Par am=" W ZARD NAME = ASNL1CW zard"

Par am=" ABSCLUTE_PATH = C:.\ acv650\vsw zard
Par am=" OSROOTDI R = C:\ acv650"

Par am=" FALLBACK_LCI D = 1033"

Par am="W ZARD U = FALSE"

Par am=" SOURCE_FI LTER = t xt

For this example let's assume that ASN1C 6.5.0 was installed into E:\acv650 instead of C:\acv650. Let's also assume
that you want to retain the OSROOTDIR setting in thisfile. Y ou would need to modify thisfile so it looks like this:

Par am=" W ZARD NAME = ASNL1CW zard"

Par am=" ABSCLUTE_PATH = E:\ acv650\vsw zard
Par am=" OSROOTDI R = E:\ acv650"

Par am=" FALLBACK_LCI D = 1033"

Par am="W ZARD U = FALSE"

Par am=" SOURCE_FI LTER = t xt

Making a copy of the furnished ASN1CWizard.vsz file and editing the copy is recommended.
Y ou then would copy your modified ASN1CWizard.vsz fileinto the appropriate Visual Studio folder. Y ouwould also
copy the ASN1CWizard.icofileand the ASN1CWizard.vsdir file from the vswizard folder of your ASN1C distribution

into the same location.

Now when you invoke the New Project dialog in Visual Studio and click on Visual C++, you'll see atemplate named
ASNIC:

35

Using the Compiler

Project types: Templates: [{MET Framework 3.5
Smart Device = || Visual Studio installed templates
Office EW@ =¥ Custom Wizard
Data ba.se A Eﬂ Windows Forms Application @ CLR Console Application
‘T:glfm 9 A Win32 Console Application Tel] ATL Project
Workflow ._Fﬁ MFC &pplication @ Makefile Project
Visual C# ﬁATL Smart Device Project {3 Class Library
Other Languages CECLR Ermpty Project EEmpty Project
Visual Basic — ||| % MFC ActiveX Control :ﬁ MFC DLL
Visual C++ | _ﬁE MFC Smart Device ActiveX Control _ﬁﬁ MFC Smart Device Application
ATL +/% MFC Smart Device DLL = Win32 Project
CLR _.F_‘Winﬂ Srnart Device Project @Windows Forms Control Library
General &-E'EWindows Service
MFC
Smart Device —I|| My Templates
Win32 - || ki Search Online Templates...
ASMLC Project Wizard
Mame: ASM1CL
Location: Chmydecsitemp - E
Solution Mame: ASMICL

Create directory for solution

[] Add to Scurce Control

Loox Jla

In this example Visual Studio 2008 is used and the dialog is invoked without a solution currently loaded. So Visual
Studio suggests ASN1C1 as both the project name and the solution. If, however, the new project dialog is invoked
from within the context of a currently loaded solution, Visual Studio will default to adding the project to the current
solution. Also note that for this example we assume that you have chosen the folder ¢:\mydocsitemp as the location.

Next a small window appears that simply tells you that the wizard will now invoke the ASN1C GUI:

36

Using the Compiler

- — — 5
ASNIC GUI - e S|

This wizard will now invoke the ASNLC GUL Use the GUIto choose your ASN1C
options, and then click the Compile button on the last screen,

Ok l ’ Cancel

- P = — =

When you click OK in thiswindow, the ASN1C GUI launches:

37

Using the Compiler

ASN1C Project Wizard

|:| Mew Project

|;| Open Project

License key:

ASNI1C 6.5.A
Registered To:
Mame:

Company:

Email:

When the ASN1C GUI isinvoked from the Visual Studio wizard, the available options are more limited because the
wizardinstructsthe GUI only to enable optionsthat are relevant to the project. In thiswindow, for example, the options
to create anew project or open an existing project are disabled.

When you click Next, you are presented with the window that allows you to select the specification files that will be
part of the code generation:

38

Using the Compiler

\{__—z m‘ ASMI1CL.acpraj

Select Files and Directories

ASN. 1 %D Files

Indude § Import Directories

Configuration File(s): Browse

Output Directory: | C:/mydocs/temp/ASN1C1/ASN1C 1 | Browse |

| e ot | [] |

Notice here that the option to specify an output directory is disabled; thisvalueis pre-established by the Visual Studio
wizard. For purposes of this example, let's assume that you specify employee.asn as the file from which to generate
code:

39

Using the Compiler

- :L E; B

@ ASMIC - ASN1CI.acproj

Select Files and Directories

ASM. 1 /XS0 Files
Cohvmydocshtemphemployee . asn

Browse

Remove

Indude § Import Directories

Remove

Configuration File(s): Browse

Qutput Directory: C:/mydocsftempfASN1C1/ASM1C T
o] o

When you click Next, you are presented with the Common Code Generation Options screen:

40

Using the Compiler

£§ ASMIC - ASNlCl,acEroi -

T
Common Code Generation Options

Language Options | Function Options I Litility Cptions |

Input File Type

71 Modern ASM, 1 {1997+ based on ¥.5680 standard)
1 Legacy ASM. 1 (based on obsolete X, 208 standard with ROSE or SMMP macros)
XML Schema (X500
[] Lax Syntax Chedk

Additional Translations

[7] Generate equivalent XML schema (XSD) file
[7] Generate HTML files for input ASN. 1
Generate ASM. 1 file based on X.694 (X5D input only)

Application Language Type

) C 0 C++ # i@ Mone (syntax check only)

|-
1]
o
[y}
&

Encoding Rules

[(leer [[loer [[lcer []per= [[]xer []¥m. []oER [] MDER

* gelect aligned or unaligned PER at run-time

Code Options

[] Generate code for all dependent imported type definitions
[7] Generate code compatible with compiler version 6.4 -

| [Next][Cancel

Notice that the option to generate Java code is disabled because the ASN1C GUI knows that it's generating a Visua
Studio project. The option to generate C# is enabled because Visual Studio can work with C#. The C# wizard capability
isdiscussed in the ASN1C C# User's Manual.

For the purposes of this example let's assume you choose to generate C code for BER:

41

Using the Compiler

sdhe Didodw L2 [

@ ASMIC - ASN1CL.acproj

Common Code Generation Options

Language Options | Function Options I Litility Cptions |

Input File Type

(71 Modern ASM, 1 (1997 + based on ¥.5630 standard)
(71 Legacy ASM, 1 {(based on obsolete ¥, 208 standard with ROSE ar SMMP macros)

XML Schema (X500
[] Lax Syntax Chedk

Additional Translations

[7] Generate equivalent XML schema (XSD) file
[7] Generate HTML files for input ASN. 1
Generate ASM. 1 file based on X.694 (X5D input only)

Application Language Type

@ C i C+ (71 Mone (syntax chedk only)

|-
1]
o

[y}
+

Encoding Rules

EER DER ceR [JPer* []xEr []xmL [] cER [MDER
* gelect aligned or unaligned PER at run-time

Code Options

[] Generate code for all dependent imported type definitions
[7] Generate code compatible with compiler version

1]
b
4

Mext] [Cancel

Let's assume that you make no other selections and click Next until you come to the Compile screen. If you look as
you're clicking, you'll see that the option to generate a Visua Studio project file is checked and can't be unchecked,
and the version of Visual Studio is 2008, which is the version you're using.

42

Using the Compiler

[- L] @|ﬁ1

@ ASMIC - ASN1CL.acproj

Compile
Compilation Cptions

[Generate listing (dist)

[] show compilation warnings {-warnings)
Compilation command

"C:hasn1c_doug'asn 1cidevibintasn 1™ "Crimydocsitemplemployee .asn™ -0
“Cifmydocs ftemp /ASMIC 1/ASMN1C 1" -ber - -nostrict-size -vcpraj 2008

Compilation Results

=) Save Project| ([Compile

[Einish][Cancel]

At this point you would click the Compile button to do the code generation. Once the generation is done, you would
click the Finish button.

Visua Studio then resumes control. Since in this case the generated project is not part of a solution, it asks you if
you want to create a new .9ln file. The suggested folder for the new .gin file in this case is the same folder where the
new .veproj file was created.

43

Using the Compiler

- _
%Saueﬁle.&.s G . ey R e —

» ASNICI]

v W <<-m;r::|-o:3 b temp » ASNICS.
_

@ Documents
Jl Music

[Pictures
B videos

m

1M Computer
£, Windows 7 (C)
o Extra Space (E:)

Organize « Mew folder = - I@
‘Lﬂf_l Recent Places = Mame Diate modified Type Size
1 Dropbox
Mo iterns match your search,
il Libraries

L

File name: & docsitemph ASMNLCIVASHNLCIVASHNICL 5ln

Save as type: ’UTF-E Solution File (*.5ln)

4 Hide Folders I

For this example we'll assume you choose to save the .dn filein the suggested location. Y ou now have a solution with
one project, and the project contains the source code generated from the employee.asn file:

Using the Compiler

&) ASN1C1 - Microsoft Visual Studio (Administrator)

File Edit Mew Project Buwld Debug Teools Window

A RRFRAA" N- I WEENF - R AR =Ry =Y

@A
E Seolution "ASN1CL' {1 project)
= [Header Files
. n| Employee.h
E| .7 Source Files
----- @ employee.asn
----- 'fE Employee.c
----- ¢+ EmployeeDec.c
- 'fE EmployeeEnc.c

Using the Compiler

Compiling and Linking Generated Code

C/C++ source code generated by the compiler can be compiled using any ANSI standard C or C++ compiler. The only
additional option that must be set istheinclusion of the ASN.1 C/C++ header file include directory with the - option.

When linking a program with compiler-generated code, it is necessary to include the ASN.1 run-time libraries. It is
necessary to include at least one of the encoding rules libraries (asnlber, asnlper, or asnlxer) as well asthe common
run-time functions library (asnirt). See the ASN1C C/C++ Run-time Reference Manual for further details on these
libraries.

For static linking on Windows systems, the name of thelibrary filesareasnlber_a.lib, asnlper_a.lib, or asnixer_a.lib
for BER/DER/CER, PER, XER, or XML respectively, and asnlrt_a.lib for the common run-time components. On
UNIX/Linux, thelibrary names arelibasnlber.a, libasnlper.a, libasnlxer.a, libasnixml.a and libasnirt.a. Thelibrary
filesarelocated in thelib subdirectory. For UNIX, the —L switch should be used to point to the subdirectory path and -
lasnlber, -lasnlper, -lasnlxer, -lasnlxml and/or -lasnlrt used to link with the libraries. For Windows, the -LIBPATH
switch should be used to specify the library path.

There are several other variations of the C/C++ run-time library files for Windows. The following table summarizes
what options were used to build each of these variations:

Library Files Description

asnirt_a.lib Static single-threaded libraries. These are built without -MT (multithreading)
asnlber _a.lib and-MD (dynamiclink libraries) options. These are not thread-safe. However,
asnlper _a.lib they provide the smallest footprint of the different libraries.

asnlxer _a.lib
asnlxm a.lib

asnlrt.lib DLL libraries. Theseare used to link against the DLL versions of the run-time
asnlber.lib libraries (asnlrt.dll, etc.)

asnlper.lib
asnlxer.lib

asnixm .lib

asnlrtnt_a.lib Static multi-threaded libraries. Theselibrarieswere built with the-MT option.

asnlbernt _a.lib They should be used if your application contains threads and you wish to link

asnlpernt _a.lib with the static libraries. (The DLLs are al so thread-safe.)

asnlxernt _a.lib

asnlxmnm a.lib In Visua Studio 2005 and greater, al libraries are multi-threaded by default,
- so these libraries are not available for those versions.

asnlrtnd _a.lib DLL-ready multi-threaded libraries. These libraries were built with the -MD

asnlbernd a.lib option. They allow linking additional object modulesin with the ASN1C run-

asnlpernd_a.lib time modules to produce larger DLLs.

asnlxernd a.lib
asnlxmnd a.lib

For dynamic linking on UNIX/Linux, ashared object version of each run-timelibrary isincluded inthelib subdirectory.
Thisfile typically has the extension .so (for shared object) or .4l (for shared library). See the documentation for your
UNIX compiler to determine how to link using these files.

Compiling and linking code generated to support the XML encoding rules (XER) is more complex then the other
rules because XER requires the use of third-party XML parser software. This requires the use of additional include
directories when compiling and libraries when linking. The C++ sample programs that are provided use the EXPAT
XML parser (http://expat.sourceforge.net/). All of the necessary include files and binary libraries are included with
the distribution for using this parser. If adifferent parser isto be used, consult the vendor’ s documentation for compile
and link procedures.

46

Using the Compiler

See the makefile in any of the sample subdirectories of the distribution for an example of what must be included to
build a program using generated source code.

Porting Run-time Code to Other Platforms

The run-time source version of the compiler includes ANSI-standard source code for the base run-time libraries. This
code can be used to build binary versions of the run-time librariesfor other operating environments. Included with the
source code is a portable makefile that can be used to build the libraries on the target platform with minimal changes.
All platform-specific items are isolated in the platform.mk file in the root directory of the installation.

The procedure to port the run-time code to a different platform is as follows (note: this assumes common UNIX or
GNU compilation utilities are in place on the target platform).

1. Create a directory tree containing a root directory (the name does not matter) and lib, src, rt*src, and build_lib
subdirectories (note: in these definitions, * isawildcard character indicating there are multiple directories matching
this pattern). The tree should be as follows:

lib rtsrc STC build lib

rthersre

2. Copy thefilesending in extension ".mk" from the root directory of the installation to the root directory of the target
platform (note: if transferring from DOS to UNIX or vice-versa, FTP the filesin ASCII mode to ensure lines are
terminated properly).

3. Copy all filesfrom the src and the different rt* src subdirectories from theinstallation to the src and rt* src directories
onthetarget platform (note: if transferring from DOSto UNIX or vice-versa, FTPthefilesin ASCII modeto ensure
lines are terminated properly).

4. Copy the makefile from the build_lib subdirectory of the installation to the build_lib subdirectory on the target
platform (note: if transferring from DOS to UNIX or vice-versa, FTP the filesin ASCII mode to ensure lines are
terminated properly).

5. Edit the platform.mk filein the root subdirectory and modify the compilation parametersto fit those of the compiler
of the target system. In general, the following parameters will need to be adjusted:

a. CC: C compiler executable name
b. CCC: C++ compiler executable name
c. CFLAGS : Flagsthat should be specified on the C or C++ command line

The platform.w32 and platform.gnu files in the root directory of the installation are sample files for Windows 32
(Visual C++) and GNU compilersrespectively. Either of these can be renamed to platform.mk for building in either
of these environments.

6. Invoke the makefilein the build_lib subdirectory.

If all parameters were set up correctly, the result should be binary library files created in the lib subdirectory.

47

Using the Compiler

Compiler Configuration File

In additionto command line options, configuration commands can be used to apply specific compiler optionsto specific
itemswithin aschema. These options can be applied to specific modules, productions, and elementsaswell asglobally.

Configuration items may be specified in one or two ways (or a combination of both):
» Using specia comments embedded directly in an ASN.1 file, or
» Using an external XML configuration file

A simple form of XML is used as the format for the configuration items. XML was chosen because it is fairly well
known and provides anatural interface for representing hierarchical data such as the structure of ASN.1 modules and
productions.

In the case of embeddeding directivesdirectly inthe ASN.1 sourcefile, the directive isincluded asa comment directly
before the item to which it isto be applied. For example:

BackupBear er CapCct et G oup5 :: = SEQUENCE ({
octet5 BearerCapCctet5,
- - <end3GExt El em name="octet5. ext"/ >
oct et 5a Bearer CapCct et 5a

}

In this case, the end3GEXt El emconfiguration item would be applied to the oct et 5a element.

An external configuration file would target the item to which the directive is to be applied by specifying module,
production, and element in an XML hierarchy. An example of thisis as follows:

<asnlconfi g>
<nmodul e nanme="TS24008| ES” >
<producti on nanme="BackupBear er CapCct et G oup5” >
<el enent name="oct et 5a” >
<end3GExt El em nane="octet5. ext"/ >
</ el ement >
</ producti on>
</ modul e>
</ asnlconfig>

At the outer level of the markup is the <asnlconfi g> </asnlconfi g> tag pair. Within this tag pair, the
specification of global itemsand modul es can be made. Global itemsareapplied to al itemsin all modules. An example
would bethe <st or age> qudlifier. A storage class such as dynamic can be specified and applied to al productions
in al modules. This will cause dynamic storage (pointers) to be used for any embedded structures within all of the
generated code to reduce memory consumption demands.

The specification of a module is done using the <nbdul e></ nodul e> tag pair. This tag pair can only be nested
within the top-level <asnlconf i g> section. The moduleisidentified by using the required <nanme></ nane> tag
pair or by specifying the name as an attribute (for example, <nodul e nane=" MyModul e" >). Other attributes
specified within the <nodul e> section apply only to that module and not to other modules specified within the
specification. A complete list of all module attributesis provided in the table at the end of this section.

The specification of an individual production is done using the <pr oduct i on></ pr oduct i on> tag pair. This
tag pair can only be nested within a<nodul e> section. The production isidentified by using the required <name></
name> tag pair or by specifying the name as an attribute (for example, <pr oduct i on name="MyPr od" >). Other
attributes within the production section apply only to the referenced production and nothing else. A complete list of
attributes that can be applied to individual productionsis provided in the table at the end of this section.

48

Using the Compiler

When an attribute is specified in more than one section, the most specific application is always used. For example,
assume a<t ypePr ef i x> qualifier is used within a module specification to specify a prefix for all generated types
in the module and ancther one is used to a specify a prefix for asingle production. The production with the type prefix
will be generated with the type prefix assigned to it and all other generated types will contain the type prefix assigned
at the module level.

Valuesin the different sections can be specified in one of the following ways:

1. Using the <nane>val ue</ nanme> form. This assigns the given value to the given name. For example, the
following would be used to specify the name of the "H323-MESSAGES" module in a module section:

<nane>H323- MESSAGES</ nane>

2. Flag variables that turn some attribute on or off would be specified using a single <nane/ > entry. For example,
to specify agiven production isaPDU, the following would be specified in a production section:

<i sPDU/ >

3. An attribute list can be associated with some items. Thisis normally used as a shorthand form for specifying lists
of names. For example, to specify alist of type namesto be included in the generated code for a particular module,
the following would be used:

<i ncl ude types="TypeNanel, TypeNane2, TypeNane3"/ >
The following are some examples of configuration specifications:
<asnlconfi g><st orage>dynani c</ st orage></asnlconfi g>

This specification indicates dynamic storage should be used in all places where its use would result in significant
memory usage savings within all modules in the specified sourcefile.

<asnlconfi g>
<nmodul e>
<name>H323- VESSAGES</ nane>
<sour ceFi | e>h225. asn</ sour ceFi | e>
<typePrefi x>H225</typePrefi x>
</ nmodul e>

</ asnlconfig>

This specification appliesto module * H323-MESSAGES ' in the source file being processed. For IMPORT statements
involving thismodule, it indicates that the sourcefile *h225.asn’ should be searched for specifications. It also indicates
that when C or C++ types are generated, they should be prefixed with ‘H225. This can help prevent name clashes if
one or more modules are involved and they contain productions with common names.

The following tables specify the list of attributes that can be applied at all of the different levels: global, module, and
individual production:

Global Level
These attributes can be applied at the global level by including them within the <asnlconf i g> section:

Name Values Description

<events></events> defaultValue keyword. This configuration item is for use with Event Handling as
described in alater section in this document. It is used to
include a special event that is fired when a PER message
is being parsed. This event occurs at the location a value
should be present in the message but is not and a default

49

Using the Compiler

Name

Values

Description

value has been specified inthe ASN.1 filefor the element.
In this case, the norma event sequence (startElement,
contents, endElement) is executed using the default value.

<includedir></includedir>

<Include directory>

This configuration item is used to specify a directory that
will be search for IMPORT files. It is equivalent to the -
| command-line option.

<protocol></protocol >

<Protocol identifier>

Specifies a protocol identifier to be associated with the
ASN.1 specification set. For C/C++, thisspecifiesaprefix
that will be used with generated encode and decode
functions. Currently, this only applies to 3GPP Layer 3
functions.

<rootdir></rootdir>

<ASNIC root directory>

This configuration item is used to specify the root
directory of the ASN1C installation for makefileor Visual
Studio project generation. It is only needed if generation
of theseitemsis done outside of the ASN1C installation.

<storage></storage>

dynamic, static, list, array,
or dynamicArray keyword.

If dynamic , it indicates that dynamic storage (i.e.,
pointers) should be used everywhere within the generated
types where use could result in lower memory
consumption. These places include the array element for
sized SEQUENCE OF/SET OF types and all aternative
elements within CHOICE constructs. If static, it indicates
static types should be used in these places. In general,
static types are easier to work with. If list, a linked-list
type will be used for SEQUENCE OF/SET OF constructs
instead of an array type. If array, an array typewill beused
for SEQUENCE OF/SET OF constructs. The maxSize
attribute can be used in this case to specify the size of
the array variable (for example, <storage maxSize="12">
array </storage>). If dynamicArray, a dynamic array
will be used for SEQUENCE OF/SET OF constructs. A
dynamic array is an array that uses dynamic storage for
the array elements.

Module Level

These attributes can be applied at the module level by including them within a<nmodul e> section:

Name Values Description
<name> </name> module name This attribute identifies the module to which this section
applies. Either this or the <oid> element/attribute is
required.
<oid> module OID (object| This attribute provides for an aternate form of module
identifier) identification for the case when module name is not

unique. For example, a given ASN.1 module may have
multiple versions. A unique version of the module can be
identified using the OID value.

<codename> </codename>

C/C++, Java, or C# name

Thisitem specifies an alternate name for the module to be
used in generated code. By default, the module name is
usedintheformit appearsinthe ASN.1 specification with
hyphens converted to underscores.

50

Using the Compiler

Name

Values

Description

<include types="names'
values="names"/>

ASN.1 type or value names
are specified as an attribute
list

This item allows a list of ASN.1 types and/or values
to be included in the generated code. By default, the
compiler generates code for all types and values within a
specification. Thisallowsthe user to reducethe size of the
generated code base by selecting only asubset of thetypes/
values in a specification for compilation. Note that if a
typeor valueisincluded that has dependent typesor values
(for example, the element typesin aSEQUENCE, SET, or
CHOICE), all of the dependent typeswill be automatically
included aswell.

<include
encoders="names'/>

ASN.1 type names specified
as an attribute list.

Thisitem allows a list of ASN.1 types to be included in
the generated code for which only encode functions will
be generated.

<include
decoders="names'/>

ASN.1 type names specified
as an attribute list.

This item allows alist of ASN.1 types to be included in
the generated code for which only decode functions will
be generated.

<include
memfree="names"/>

ASN.1 type names specified
as an attribute list.

This item allows alist of ASN.1 types to be included in
the generated code for which only memory free functions
will be generated.

ASN.1 module name(s)
specified as an attribute list.

Thisform of theinclude directivetellsthecompiler toonly
include types and/or values in the generated code that are
imported by the given module(s).

<include importsFrom=
n narT]e"/>
<exclude types="names'

values="names'/>

ASN.1 typeor values names
are specified as an attribute
list

This item alows a list of ASN.1 types and/or values
to be excluded in the generated code. By default, the
compiler generates code for all types and values within
a specification. This is generally not as useful as in
include directive because most typesin a specification are
referenced by other types. If an attempt ismadeto exclude
atype or value referenced by another item, the directive
will beignored.

<storage> </storage>

dynamic, static, list, array,
or dynamicArray keyword.

Thedefinitionisthe sameasfor the global case except that
the specified storage typewill only be applied to generated
C and C++ types from the given module.

<sourceFile> </sourceFile>

source file name

Indicates the given module is contained within the given
ASN.1 source file. Thisis used on IMPORTS to instruct
the compiler where to look for imported definitions.

<prefix> </prefix>

prefix text

Thisisused to specify ageneral prefix that will be applied
toall generated C and C++ names (note: for C++ types, the
prefix isapplied after thestandard * ASN1T_’ prefix). This
can be used to prevent name clashes if multiple modules
areinvolved in acompilation and they all contain common
names.

<typePrefix> </typePrefix>

prefix text

Thisis used to specify a prefix that will be applied to all
generated C and C++ typedef names (note: for C++, the
prefix isapplied after thestandard ‘ ASNLT _’ prefix). This
can be used to prevent name clashes if multiple modules
areinvolved in acompilation and they all contain common
names.

51

Using the Compiler

Name

Values

Description

<enumPrefix>
enumPrefix>

</

prefix text

This is used to specify a prefix that will be applied to
all generated enumerated identifiers within a module.
This can be used to prevent name clashes if multiple
modulesareinvolved in acompilation. (note: thisattribute
is normally not needed for C++ enumerated identifiers
because they are already wrapped in a structure to allows
the type name to be used as an additional identifier).

<valuePrefix>
valuePrefix>

</

prefix text

This is used to specify a prefix that will be applied to
al generated value constants within a module. This can
be used to prevent name clashes if multiple modules
are involved that use a common name for two or more
different value declarations.

<classPrefix>
classPrefix>

</

prefix text

This is used to specify a prefix that will be applied to
al generated items in a module derived from an ASN.1
CLASS definition.

<objectPrefix>
objectPrefix>

</

prefix text

This is used to specify a prefix that will be applied to
al generated items in a module derived from an ASN.1
Information Object definition.

<objectsetPrefix>
objectsetPrefix>

</

prefix text

This is used to specify a prefix that will be applied to
all generated items in a module derived from an ASN.1
Information Object Set definition.

<noPDU/>

n/a

Indicates that this module contains no PDU definitions.
This is normaly true in modules that are imported
to get common type definitions (for example,
InformationFramework). This will prevent the C++
version of the compiler from generating any control class
definitions for the types in the module.

<intCType>

byte, intl6, uintl6, int32,
uint32, int6é4, string

Thisisused to specify aspecific Cinteger type be used for
al unconstrained integer types. By default, ASN1C will
use the int32 (32-bit integer) type for al unconstrained
integers.

<arcCType>

int32, int64

Theisused to specify aspecific Cinteger type be used for
the arc types in Object Identifier definitions. By default,
int32 (32-bit integer arc values) are generated.

<namespace>
namespace>

</

namespace URI

Thisis used to specify the target namespace for the given
module when generating XSD and/or XML code. By
default, the compiler will not include a targetNamespace
directive in the generated XSD code (i.e. all items will
not be assigned to any namespace). This option only has
meaning when used with the - xml / -xsd command line
options.

<hFile> </hFile>

C/C++ header filename

Thisis used to specify the name of a C/C++ header fileto
be used to store generated definitions for the module. By
default, the header file name is set to the ASN.1 name of
the module with '.h' appended to the end.

<dlias asnlname="name"

codename="name"/>

ASN.1 to computer
language name mapping

This item alows a name in the ASN.1 specification
being compiled to be mapped to an aternate name in
the generated computer language files. The primary use

52

Using the Compiler

Name

Values

Description

is to alow shorter names to be used in places where a
combination of names may be very long. In this release,
the only names that can be used in the alias statement are
information object set names.

Production Level

These attributes can be applied at the production level by including them within a<pr oduct i on> section:

Name Values Description

<name> production name Thisattributeidentifiesthe production (type) to which this
</name> section applies. It isrequired.

<addarg name="name" | Argument name, type, and|Thisitem addsan argument to the generated C encodeand/

type="type" func="encode|
decode"/>

function specified using
attributes.

or decode function. The name and C type of the argument
are specified in the name and type attributes respectively.
The func attribute is optional and only required if the
argument should be added to either the encode or decode
function only. By default, the argument is added to
both the encode and decode function. This item is only
supported for C 3GPP layer 3 code generation.

<aligned/>

n/a

This item is used to specify that byte alignment is to be
doneafter encoding or decoding an instance of thetargeted
type. Thisitemisonly supported for C 3GPP layer 3 code
generation.

<cDecFuncName> </

cDecFuncName>

<C source file name

Thisitem isused to substitute the C source code contained
within the given file for what would have been generated
for the C decode function for the given type. The current
include path is searched for the given filename. Thisitem
is only supported for C 3GPP layer 3 code generation.

<cEncFuncName> </

cEncFuncName>

<C source file name

Thisitemisused to substitute the C source code contained
within the given file for what would have been generated
for the C encode function for the given type. The current
include path is searched for the given filename. Thisitem
isonly supported for C 3GPP layer 3 code generation.

<ctype>

byte, intl6, uintl6, int32,
uint32, int64, string,
chararray

This is used to specify a specific C integer or character
string type be used in place of the default definition
generated by ASN1C. Inthe case of integers, ASN1C will
normally try and use the smallest integer type available
based on the value or value range constraint on theinteger
type. If the integer is not constrained, the int32 (32-hit
integer) type will be used. For character string, ASN1C
will use a character string pointer (char*) by default. The
‘chararray' item can be used on strings with size constrains
to specify astatic character array variable be used.

<enumPrefix> </

enumPrefix>

prefix text

This is used to specify a prefix that will be applied to
al generated enumerated identifiers within a module.
This can be used to prevent name clashes if multiple
modulesareinvolved in acompilation. (note: thisattribute
is normally not needed for C++ enumerated identifiers

53

Using the Compiler

Name

Values

Description

because they are already wrapped in a structure to allows
the type name to be used as an additional identifier).

<format> </format>

base64, hex, xmllist

This is used to set format options specific to XER
encoding. The base64 or hex dternative is used to set
the output format that binary data in OCTET STRING
variables is displayed in in XML markup. The xmllist
aternativeis used with SEQUENCE OF or SET OF types
to denote that items should be displayed in XML space-
separated list format as opposed to a using a separate
element for each list item.

<is3GExtList pre-eol="0|1"
post-eol="0|1"/>

n/a

This item specifies that this production will be modelled
as a 3G extended list. This can only be applied to
SEQUENCE OF productions. It is used in 3G layer
3 messages when the extension of a repeating type is
controlled by an extension bit that occurs either before
or after the record. If the pre-eol attribute (short for
"preceding end-of -list") isspecified, it indicate abit before
the record signals whether another record follows. The
value (0 or 1) indicates which bit value signal end-of-list.
The post-eol attribute is the same except that it indicates
the control bit follows after the record. Thisitem is only
supported for C 3GPP layer 3 code generation.

<is3GMessage/>

n/a

This item specifies that this production represents a
3G layer 3 message type as opposed to a 3G layer 3
information element (IE). Thisitem is only supported for
C 3GPP layer 3 code generation.

<isBiglnteger/>

n/a

This item specifies that this production will be used to
store an integer larger than the C or C++ int type on
the given system (normally 32 hits). A C string type
(char*) will be used to hold atextual representation of the
value. This qualifier can be applied to either an integer
or constructed type. If constructed, all integer elements
within the constructed type are flagged as big integers.

<isOpenType/>

n/a

Thisitem is used to indicate that any element of thistype
will be decoded as an open type (i.e. skipped). Refer to
the section on deferred decoding for further information.
Note that this variable can only be used with BER, CER,
or DER encoding rules.

<isPDU/>

n/a

This item is used to indicate that this production
represents a Protocol Data Unit (PDU). This is defined
as a production that will be encoded or decoded from
within the application code. This attribute only makes
a difference in the generation of C++ classes. Control
classes that are only used in the application code are only
generated for types with this attribute set.

<isTBCDString/>

n/a

Thisitem is used to indicate that this production is to be
encoded and decoded as a telephony binary coded string
(TBCD). Thisis type is not part of the ASN.1 standards

Using the Compiler

Name

Values

Description

but is a widely used encoding format in telephony
applications.

<length fixed-

size="number"/>

n/a

Thisitem isused to configure alength field inan OCTET
STRING type for 3GPP layer 3 messages. By default, a
length field isa single byte, but there are occasions where
the field width may be different. This allows a fixed-size
encoded field width to be specified. The most common
values are 0 (no length field) or 2.

<noDecoder/>

n/a

Indicates that no decode function should be generated for
this production. Thisitem is only supported for C 3GPP
layer 3 code generation.

<noEncoder/>

n/a

Indicates that no encode function should be generated for
this production. Thisitem is only supported for C 3GPP
layer 3 code generation.

<setvar name="name"
value="value"/>

n/a

This item is used within encode and decode functions to
set a given variable within a generated structure to the
given value. Normally it is used in conjunction with the
‘addarg' configuration item to set a variable to value of an
additional argument passed into a function. Thisitem is
only supported for C 3GPP layer 3 code generation.

<storage> </storage>

dynamic, dtatic, list, array,
or dynamicArray keyword.

The definition is the same as for the global case except
that the specified storage type will only be applied to the
generated C or C++ type for the given production.

<typePrefix> </typePrefix>

prefix text

Thisis used to specify a prefix that will be applied to all
generated C and C++ typedef names (note: for C++, the
prefix isapplied after thestandard * ASN1T_’ prefix). This
can be used to prevent name clashes if multiple modules
areinvolved in acompilation and they all contain common
names.

Element Level

These attributes can be applied at the element level by including them within an <el enent > section:

Name Values Description

<name> element name Thisattributeidentifiesthe el ement within aSEQUENCE,

</name> SET, or CHOICE construct to which this section applies.
Itisrequired.

<addarg name="name" | Argument name, function|Thisitem addsan argument tothegenerated C encodeand/

func="encode|decode"/>

specified using attributes.

or decode function that is invoked to encode or decode
the element. The name attribute specified the value to be
passed. The func attribute is optional and only required
if the argument should be added to either the encode or
decode function only. By default, the argument is added
to both the encode and decode function. Thisitem isonly
supported for C 3GPP layer 3 code generation.

<aligned/>

n/a

This item is used to specify that byte alignment is to be
done after encoding or decoding thiselement. Thisitemis
only supported for C 3GPP layer 3 code generation.

55

Using the Compiler

Name

Values

Description

<cDecSrcName>
cDecSrcName>

</

<C sourcefile name

Thisitemisused to substitute the C source code contained
within the given file for what would have been generated
for decoding the element. The code in this case is not a
completefunction but rather a snippet to beinserted within
a larger function. The current include path is searched
for the given filename. Thisitem is only supported for C
3GPP layer 3 code generation.

<cEncSrcName> </

CEncSrcName>

<C source file name

Thisitem isused to substitute the C source code contained
within the given file for what would have been generated
for encoding the element. The code in this case is not a
completefunction but rather asnippet to beinserted within
a larger function. The current include path is searched
for the given filename. Thisitem is only supported for C
3GPP layer 3 code generation.

<ctype>

chararray

This is used to specify a specific C type be used in
place of the default definition generated by ASN1C. In
the case of elements, the only supported customization
is for character string types which would normally be
represented by a character pointer type (char*) to be
changed to use static character arrays. This can only be
doneif the string type contains a size constraint.

<end3GExtElem
name="element name"/>

<Element name> attribute

Thisitem is used to delimit a group of optional elements
that start with an 'ext’ boolean element. A common
pattern in the specification of 3GPP IE's is to include an
extension bit to signal the presence or absence of group
of elements (these normally comprise asingle octet). This
is essentially an aternative way to specify an optional
element group in ASN.1. Thisitem is only supported for
C 3GPP layer 3 code generation.

<iei format="t|tv[tIv"
length="length"/>

IEl hex value

Thisitem isused to indicate an element is part of the non-
imperative part 3GPP layer 3 message. These are optional
elementswith single bytetags. Thetag isthelEl hex value
specified at the value of the item. The format attribute
specifiesif theitemisatag (t), tag/value(tv), or tag/length/
value (tlv). The length attribute is only required if format
if tv to specify the length of the value. Thisitem is only
supported for C 3GPP layer 3 code generation.

<inline/>

n/a

This item is used to indicate that code generated for a
nested item within a constructed type should be expanded
inline rather than pulled out to create a separate new type.

<is3GExtList pre-eol="0J1"
post-eol="0|1"/>

n/a

Thisitem specifies that this element will be modelled asa
3G extended list. This can only be applied to elements of
type SEQUENCE OF. It is used in 3G layer 3 messages
when the extension of arepeating typeis controlled by an
extension bit that occurs either before or after the record.
If the pre-eal attribute (short for "preceding end-of-list") is
specified, itindicate abit before the record signal swhether
another record follows. The value (0 or 1) indicateswhich
bit value signal end-of-list. The post-eol attribute is the
same except that it indicates the control bit follows after

56

Using the Compiler

Name Values Description

the record. Thisitem is only supported for C 3GPP layer
3 code generation.

<is3GLength n/a This item is used to mark an element as a 3GPP length
bitFieldSize="nbits" field element. Normally this an element with the name
units="bitgbytes"/> 'length’ of type INTEGER that is the first element in a

SEQUENCE. Thisindicates specia processing should be
done on the element. On encode, any value populated
in this field will be ignored and the actua length of the
encoded data will be calculated and populated in this
field after encoding is complete. On decode, this element
is used to determine when end of message occurs. The
'bitFieldLength’ attribute is used to specify thefield sizeif
it not an even octet (8 bits). The 'units' attribute specifies
theunitsstored inthelength field (bits or bytes). Thisitem
isonly supported for C 3GPP layer 3 code generation.

<is3GVarLenList n/a This item specifies that this element will be modelled
lengthElem="name"/> as a 3G variable length list. This can only be applied to
elements of type SEQUENCE OF. It isused in 3G layer
3 messages when a length element is used to determine
the number of itemsin the list. The 'lengthElem’ attribute
specifiesthe element within the structure that containsthis
count. Thisitemisonly supported for C 3GPP layer 3 code
generation.

<isOpenType/> n/a This flag variable specifies that this element will be
decoded asan opentype(i.e. skipped). Refer to the section
on deferred decoding for further information. Note that
this variable can only be used with BER, CER, or DER
encoding rules.

<length fixed-|n/a Thisitem isused to configure alength field inan OCTET
size="number"/> STRING type for 3GPP layer 3 messages. By default, a
length field isa single byte, but there are occasions where
the field width may be different. This allows a fixed-size
encoded field width to be specified. The most common
values are 0 (no length field) or 2. This item is only
supported for C 3GPP layer 3 code generation.

<notUsed/> n/a This flag variable specifies that this element will not be
used at al in the generated code. It can only be applied
to optional elements within a SEQUENCE or SET, or to
elements within a CHOICE. Its purpose is for production
of more compact code by allowing users to configure out
items that are of no interest to them.

<perEncoding> </| hex data This variable allows a user to substitute a known binary
perEncoding> PER encoding for the given element. This encoding will
be inserted into the encoded data stream on encoding and
skipped over on decoding. Its purpose is the production
of more compact and faster code for PER by bypassing
run-time cal cul ations needed to encode or decode variable
data.

57

Using the Compiler

Name Values Description
<selector element="name"|n/a This item is used to configure an element within a
value="value"/> CHOICE in a3GPP layer 3 message. It specifiesthevalue

of another element within the container type which selects
this element. The 'element’ field specifies the name of
the element within the container type and 'value' specifies
the value. are 0 (no length field) or 2. This item is only
supported for C 3GPP layer 3 code generation.

<setvar name="name" |n/a This item is used within encode and decode functions to
value="value"/> set a given variable within a generated structure to the
given value. Normally it is used in conjunction with the
‘addarg' configuration item to set avariable to value of an
additional argument passed into a function. Thisitem is
only supported for C 3GPP layer 3 code generation.

<storage> </storage> dynamic, static, list, array, | The definition is the same as for the global case except
or dynamicArray keyword. |that the specified storage type will only be applied to the
generated C or C++ type for this element.

Compiler Error Reporting

Errors that can occur when generating source code from an ASN.1 source specification take two forms: syntax errors
and semantics errors.

Syntax errors are errors in the ASN.1 source specification itself. These occur when the rules specified in the ASN.1
grammar are not followed. ASN1C will flag these types of errors with the error message ‘ Syntax Error’ and abort
compilation on the source file. The offending line number will be provided. The user can re-run the compilation with
the*-I’ flag specified to seethelineslisted asthey are parsed. Thiscan be quite helpful in tracking down asyntax error.

The most common types of syntax errors are as follows:

« Invalid caseonidentifiers; modul e name must begin with an uppercasel etter, productions (types) must beginwith an
uppercase |etter, and element names within constructors (SEQUENCE, SET, CHOICE) must begin with lowercase
letters.

 Elements within constructors not properly delimited with commas: either a comma is omitted at the end of an
element declaration, or an extra commais added at the end of an element declaration before the closing brace.

* Invalid special characters: only letters, numbers, and the hyphen (-) character are allowed. The use of the underscore
character () inidentifiersisnot allowedin ASN.1, butisallowed in C. Since C doesnot allow hyphensinidentifiers,
ASN1C converts all hyphensin an ASN.1 specification to underscore charactersin the generated code.

Semantics errors occur on the compiler back-end as the code is being generated. In this case, parsing was successful,
but the compiler does not know how to generate the code. These errors are flagged by embedding error messages
directly inthe generated code. The error messages always begin with an identifier with the prefix ‘ %ASN-’, so asearch
can be done for this string in order to find the locations of the errors. A single error message is output to stderr after
compilation on the unit is complete to indicate error conditions exist.

58

Chapter 3. ASN.1 To C/C++ Mappings
Type Mappings
BOOLEAN

The ASN.1 BOOLEAN type is converted into a C type named OSBOOL. In the global include file 0sSysTypes.h,
OSBOOL isdefined to bean unsi gned char.

ASN.1 production:

<name> ::= BOCOLEAN
Generated C code:

t ypedef OSBOOL <nane>;
Generated C++ code:

t ypedef OSBOOL ASNLIT <nane>;

For example, if B : : = [PRI VATE 10] BOOLEAN was defined as an ASN.1 production, the generated C type
definition would bet ypedef OSBOOL B. Note that the tag information is not represented in the type definition.
It is handled within the generated encode/decode functions.

The only difference between the C and C++ mapping is the addition of the ASN1T__ prefix on the C++ type.

INTEGER

The ASN.1 INTEGER type is converted into one of several different C types depending on constraints specified on
the type. By default, an INTEGER with no constraints results in the generation of an OSINT32 type. In the global
include file osSysTypes.h, OSI NT32 isdefined to beani nt which isnormally asigned 32-hit integer value on most
computer systems.

ASN.1 production:

<nanme> ::= | NTEGER
Generated C code

typedef OSI NT32 <nane>;
Generated C++ code:

t ypedef OSI NT32 ASNLT_ <nane>;

Vaue range constraints can be used to alter the C type used to represent a given integer value. For example, the
following declaration from the SNMP SMI specification would cause an OSUINT32 type (mapped to a C unsigned
int) to be used:

Counter ::= [APPLI CATION 1] I MPLICI T I NTEGER (0. .4294967295)

Inthiscase, an OSI NT32 could not be used because all values within the given range could not be represented. Other
value ranges would cause different integer types to be used that provide the most efficient amount of storage. The
following table shows the types that would be used for the different range values:

59

ASN.1 To C/C++ Mappings

Min Lower Bound Max Upper Bound ASNI1C Type C Type

-128 127 OSI NT8 char (signed 8-bit int)

0 255 OSUI NT8 unsi gned char
(unsigned 8-bit number)

-32768 32767 OSI NT16 short (signed 16-bit int)

0 65535 OSUI NT16 unsi gned short
(unsigned 16-bit int)

-2147483648 2147483647 OSI NT32 i nt (signed 32-hit integer)

0 4294967295 OSUI NT32 unsi gned i nt (unsigned
32-hit integer)

The C typethat isused to represent a given integer val ue can a so be altered using the "<ctype>" configuration variable
setting. This allows any of the integer types above to be used for a given integer type as well as a 64-bit integer type.
The values that can be used with <ctype> are: byte, int16, uint16, int32, uint32, and int64. An example of using this
setting is as follows:

Suppose you have the following integer declaration in your ASN.1 sourcefile:
Myl nt Type ::= [APPLI CATI ON 1] | NTEGER

You could then have ASN1C use a 64-bit integer type for this integer by adding the following declaration to a
configuration file to be associated with this module:

<producti on>

<nanme>M/I nt Type</ nane>

<i nt CType>i nt 64</i nt CType>
</ producti on>

The <i nt CType> setting is also available at the module level to specify that the given C integer type be used for
all unconstrained integers within the module.

Large Integer Support

In C and C++, the maximum size for an integer type is normally 64 bits (or 32 bits on some older platforms). ASN.1
has no such limitation on integer sizes and some applications (security key values for example) demand larger sizes.
In order to accommodate these types of applications, the ASN1C compiler alows an integer to be declared a "big
integer" viaaconfiguration file variable (the <isBiglnteger/> setting is used to do this - see the section describing the
configuration file for full details). When the compiler detects this setting, it will declare the integer to be a character
string variable instead of a C int or unsigned int type. The character string would then be populated with a character
string representation of the value to be encoded. Supported character string representations are hexadecimal (strings
starting with 0x), octal (strings starting with 0o) and decimal (no prefix).

For example, the following INTEGER type might be declared in the ASN.1 sourcefile:
SecurityKeyType ::= [APPLI CATI ON 2] | NTEGER
Then, in aconfiguration file used with the ASN.1 definition above, the following declaration can be made;

<pr oduct i on>
<nanme>Secur it yKeyType</ nane>
<i sBi gl nt eger/ >

</ producti on>

Thiswill cause the compiler to generate the following type declaration:

60

ASN.1 To C/C++ Mappings

typedef const char* SecurityKeyType

The SecurityKeyType variable can now be popul ated with a hexadecimal string for encoding such as the following:
SecurityKeyType secKey = "O0xfd09874da875cc90240087cd12fd";

Note that in this definition the Ox prefix isrequired to identify the string as containing hexadecimal characters.

On the decode side, the decoder will populate the variable with the same type of character string after decoding.

There are also a number of run-time functions available for big integer support. This set of functions provides an
arbitrary length integer math package that can be used to perform mathematical operations as well as convert values
into various string forms. Seethe ASN1C C/C++ Common Run-time User'sManual for adescription of thesefunctions.

BIT STRING

The ASN.1 BIT STRING typeis converted into a C or C++ structured type containing an integer to hold the number
of bits and an array of unsigned characters ("OCTETS") to hold the bit string contents. The number of bits integer
specifies the actual number of bits used in the bit string and takes into account any unused bitsin the last byte.

The type definition of the contents field depends on how the bit string is specified in the ASN.1 definition. If asize
constraint is used, a static array is generated; otherwise, apointer variableis generated to hold adynamically allocated
string. The decoder will automatically allocate memory to hold aparsed string based on thereceived length of the string.

In the static case, the length of the character array is determined by adjusting the given size value (which represents
the number of bits) into the number of bytes required to hold the bits.

Dynamic Bit String
ASN.1 production:
<name> ::= BIT STRI NG
Generated C code:
typedef ASNLIDynBitStr <name>;
Generated C++ code:
typedef ASNLTDynBitStr ASNLT <nane>;

In this case, different base types are used for C and C++. The difference between the two is the C++ version includes
constructors that initialize the value and methods for setting the value.

The ASN1DynBItSr type (i.e., the type used in the C mapping) is defined in the asnltype.h header file asfollows:

typedef struct ASNIDynBitStr {
OSUI NT32 nunbi ts;
const OSCCTET* dat a;

} ASNLDynBit Str;

The ASN1TDynBItStr typeis defined in the asn1CppTypes.h header file as follows:

struct ASNITDynBitStr : public ASN1DynBitStr {
/] ctors
ASNLITDynBitStr () : numbits(0) {}
ASNLTDynBi t Str (OSUI NT32 _nunbits, OSOCTET* _data);

61

ASN.1 To C/C++ Mappings

ASNLTDynBi t Str (ASNLDynBit Stré& _bs);
} ASNLTDynBit Str;

Note that memory management of the byte array containing the bit string data is the responsibility of the user. The
wrapper class does not free the memory on destruction nor deep-copy the data when a string is copied.

Static (sized) BIT STRING

ASN.1 production:
<name> ::= BIT STRING (SI ZE (<l en>))
Generated C code

typedef struct {

OSUI NT32 nunbi ts;

OSOCTET dat a[<adj usted_I en>*];
} <name>;

If the -strict-size command-line option is used, the numbits component within this type definition may be of adifferent
type (OSUINT8 or OSUINT16) or eliminated completely if the type is constrained to be afixed-size.

Generated C++ code:

typedef struct <nane> {

OSUI NT32 nunbi ts;

OSCCTET dat a[<adj usted_I en>*];

/1 ctors

ASNLIT_<nane> ();

ASNLIT_<name> (OSU NT32 _nunbits, const OSCCTET* _data);
} ASNLT_<nane>;

* <adjusted len> = ((<len> - 1)/8) + 1;

If the -strict-size command-line option is used, the numbits component within thistype definition may be of adifferent
type (OSUINT8 or OSUINT16) or eliminated completely if the type is constrained to be a fixed-size.

For example, the following ASN.1 production:
BS ::= [PRI VATE 220] BIT STRING (SIZE (42))
Would trand ate to the following C typedef:

typedef struct BS {
OSUI NT32 nunbi ts;
OSOCTET dat a[6] ;
} BS

In this case, six octets would be required to hold the 42 bits: eight in the first five bytes, and two in the last byte.

In the case of small-sized strings (less than or equal to 32 bits), a built-in type is used rather than generating a custom
type. Thisbuilt-in typeis defined as follows:

typedef struct ASNIBitStr32 {
OSUI NT32 nunbi ts;
OSOCTET dat a[4] ;

} ASNLBit Str32;

62

ASN.1 To C/C++ Mappings

The C++ variant (ASN1TBItStr32) adds constructors for initialization and copying.

Note that for C++, ASN1C generates special constructors and assignment operators to make populating a structure
easier. In this case, two constructors were generated: a default constructor and one that takes numbits and data as
arguments.

If the -strict-size command-line option is used, the numbits component would be eliminated since the type is
constrained to be afixed-size.

Named Bits

Inthe ASN.1 standard, it is possible to define an enumerated bit string that specifies named constants for different bit
positions. ASN1C provides support for this type by generating symbolic constants and optional macros that can be
used to set, clear, or test these named hits. These symbolic constants equate the bit name to the bit number defined
in the specification. They can be used with the rtBitSet, rtBitClear, and rtBitTest run-time functions to set, clear, and
test the named bits. In addition, generated C++ code contains an enumerated constant added to the control class with
an entry for each of the bit numbers. These entries can be used in calls to the methods of the ASN1CBItSr class to
set, clear, and test bits.

The -genBitMacros command line option can be used to generate macros to set, clear, or test the named bitsin a bit
string structure. These macros offer better performance then using the run-time functions because all calculations of
mask and index values are done at compile time. However, they can result in alarge amount of additional generated
code.

For example, the following ASN.1 production:

NamedBS ::= BIT STRING { bitOne(1), bitTen(10) }
Would trand ate to the following if -genBitMacros was specified:

/* Nanmed bit constants */

#defi ne NanmedBS bit One 1

#defi ne SET_BS3_bit One(bs) \
<code to set bit..>

#def i ne CLEAR BS3_bi t One(bs) \
<code to clear bit..>

#defi ne TEST_BS3_bit One(bs) \
<code to test bit..>

#defi ne NanmedBS bit Ten 10

#defi ne SET_BS3_bit Ten(bs) \
<code to set bit..>

#def i ne CLEAR BS3_bit Ten(bs) \
<code to clear bit..>

#defi ne TEST_BS3_bit Ten(bs) \
<code to test bit..>

/* Type definitions */

63

ASN.1 To C/C++ Mappings

typedef struct ASNIT_NanedBS {
OSUI NT32 nunbi ts;
OSOCTET dat a[2] ;

} NanedBS;

The named bit constants would be used to access the data array within the ASN1T_NamedBStype. If bit macros were
not generated, the rtxSetBit function could be used to set the named bit bitOne with the following code:

NanmedBS bs;
menset (&bs, 0, sizeof(bs));
rtxSetBit (bs.data, 10, NanedBS_bit One);

The statement to clear the bit using rtxClearBit would be as follows:
rtxClearBit (bs.data, 10, NanedBS bitOne);
Finally, the bit could be tested using rtxTestBit with the following statement:

if (rtxTestBit (bs.data, 10, NanedBS bitOne) {
bit is set

}

Note that the compiler generated afixed length dataarray for this specification. It did this because the maximum size of
the string isknown dueto the named bits- it must only belarge enough to hold the maximum valued named bit constant.

Contents Constraint

It ispossible to specify acontents constraint on aBIT STRING type using the CONTAINING keyword. Thisindicates
that the encoded contents of the specified type should be packed within the BIT STRING container. An example of
thistype of constraint is as follows:

ContainingBS ::= BI T STRING (CONTAI NI NG | NTECER)

ASN1C will generate a type definition that references the type that is within the containing constraint. In this case,
that would be INTEGER; therefore, the generated type definition would be as follows:

t ypedef OSI NT32 Cont ai ni ngBS;

The generated encoders and decoders would handle the extra packing and unpacking required to get thisto and from a
BIT STRING container. Thisdirect use of the containing type can be suppressed through the use of the -noContaining
command-line argument. In this case, anormal BIT STRING type will be used and it will be the users responsibility
to do the necessary packing and unpacking operations to encode and decode the variable correctly.

ASN1CBIitStr Control Class

When C++ code generation is specified, a control classis generated for operating on the target bit string. Thisclassis
derived from the ASN1CBItStr class. This class contains methods for operating on bits within the string.

Objects of this class can aso be declared inline to make operating on bits within other ASN.1 constructs easier. For
example, in a SEQUENCE containing a bit string element the generated type will contain a public member variable
containing the ASNT type that holds the message data. If one wanted to operate on the hit string contained within
that element, they could do so by using the ASN1CBItStr classinline as follows:

ASNLICBi t Str bs (<seqVar >. <el enent >) ;
bs.set (0);

ASN.1 To C/C++ Mappings

In this example, <seqVar> would represent a generated SEQUENCE variable type and <element> would represent a
bit string element within this type.

See the section on the ASN1CBItSr class in the ASN1C C/C++ Common Run-time User's Manual for details on all
of the methods availablein this class.

OCTET STRING

The ASN.1 OCTET STRING typeis converted into a C structured type containing an integer to hold the number of
octets and an array of unsigned characters (OCTETS) to hold the octet string contents. The number of octets integer
specifies the actual number of octets in the contents field.

The alocation for the contents field depends on how the octet string is specified in the ASN.1 definition. If a size
constraint isused, astatic array of that sizeisgenerated; otherwise, apointer variableisgenerated to hold adynamically
allocated string. The decoder will automatically allocate memory to hold a parsed string based on the received length
of the string.

For C++, constructors and assignment operators are generated to make assigning variables to the structures easier.
In addition to the default constructor, a constructor is provided for string or binary data. An assignment operator is
generated for direct assignment of a null-terminated string to the structure (note: this assignment operator copies the
null terminator at the end of the string to the data).

Dynamic OCTET STRING

ASN.1 production:

<name> ::= OCTET STRI NG
Generated C code:

typedef ASNLDynCct Str <nane>;
Generated C++ code:

typedef ASN1TDynCct Str ASNLT_<nane>;

In this case, different base types are used for C and C++. The difference between the two is the C++ version includes
constructors, assignment operators, and other hel per methods that make it easier to manipulate binary data.

The ASN1DynOctStr type (i.e., the type used in the C mapping) is defined in the asnltype.h header file as follows:

typedef struct ASNLDynCct Str {
OSUI NT32 nunoct s;
const OSCCTET* dat a;

} ASN1DynCct Str;

The ASN1TDynOctSr type is defined in the ASN1TOctSr.h header file. This class extends the C ASN1DynOctSr
class and adds many additional constructors and methods. See the C/C++ Common Run-time Reference Manual for
a complete description of this class.

Static (sized) OCTET STRING
ASN.1 production:
<nanme> ::= OCTET STRING (SIZE (<l en>))

Generated C code:

65

ASN.1 To C/C++ Mappings

typedef struct {
GSUI NT32 nunoct s;
OSOCTET dat a[<l en>] ;
} <name>;

If the -strict-size command-line option is used, the numocts component within this type definition may be of adifferent
type (OSUINT8 or OSUINT16) or eliminated completely if the type is constrained to be a fixed-size.

Generated C++ code:

typedef struct {
OSUI NT32 nunoct s;
OSOCTET dat a[<l en>] ;
/] ctors
ASNLAT_<nane> ();
ASNL1T_<nane> (OSUI NT32 _nunoct s,
const OSCCTET* _data);
ASNLT <name> (const char* cstring);
/] assignnent operators
ASNLT_<name>& operator= (const char* cstring);
} ASNLIT_<nane>;

If the -strict-size command-line option is used, the numocts component within thistype definition may be of adifferent
type (OSUINT8 or OSUINT16) or eliminated completely if the type is constrained to be afixed-size.

Contents Constraint

It is possible to specify a contents constraint on an OCTET STRING type using the CONTAINING keyword. This
indicates that the encoded contents of the specified type should be packed within the OCTET STRING container. An
example of thistype of constraint is as follows:

Cont ai ni ngOS :: = OCTET STRI NG (CONTAI NI NG | NTEGER)

ASNI1C will generate a type definition that references the type that is within the containing constraint. In this case,
that would be INTEGER; therefore, the generated type definition would be as follows:

t ypedef OSI NT32 Cont ai ni ngCs;

The generated encoders and decoders would handle the extra packing and unpacking required to get thisto and from
an OCTET STRING container. This direct use of the containing type can be suppressed through the use of the -
noContaining command-line argument. In this case, a normal OCTET STRING type will be used and it will be the
users responsibility to do the necessary packing and unpacking operationsto encode and decode the variable correctly.

ENUMERATED

The ASN.1 ENUMERATED type is converted into different types depending on whether C or C++ code is being
generated. The C mapping is either aC enum or integer type depending on whether or not the ASN.1 typeisextensible
or not. The C++ mapping adds astruct wrapper around thistypeto provideanamespaceto aid in making the enumerated
values unique across al modules.

C Mapping
ASN.1 production:

<nane> ::= ENUMERATED (<idl>(<val 1>), <id2>(<val2>), ...)

66

ASN.1 To C/C++ Mappings

Generated code :

t ypedef enum {
idl val 1,
id2 val 2,

} <name>_Root

t ypedef OSUI NT32 <nane>;

The compiler will automatically generate anew identifier valueif it detects a duplicate within the source specification.
The format of this generated identifier is'id_n' where id is the original identifier and n is a sequential number. The
compiler will output an informational message when this is done. This message is only displayed if the -warnings
qualifier is specified on the command line.

A configuration setting is also available to further disambiguate duplicate enumerated item names. Thisis the "enum
prefix" setting that is available at both the module and production levels. For example, the following would cause the
prefix "h225" to be added to all enumerated identifiers within the H225 module:

<nodul e>

<nane>H225</ nanme>

<enunPr ef i x>h225</ enunPr ef i x>
</ nodul e>

The -fgenum (fully-qualified enum) option may aso be used to make C names unique. When specified, enumerated
identifiers will be automatically prefixed with the enclosing type name. In the specification above, each of the
identifiers would have the form "<name>_<id>". This can be useful in situations where common identifiers are often
repeated in different types. Thisis not a problem in C++ because the identifiers are wrapped in a struct declaration
which provides a namespace for the values (see the C++ section below for more details).

The -use-enum-types (use enumerated types) option causes the direct use of the generated enum type as the C type.
The general patterninthiscaseis.

t ypedef enum {
idl = val 1,
id2 = val 2,

<name>_UNKNOWN
} <name>;

The advantages of the type generated in the former case are a) the integer typeis of aknown size, and b) it can hold
unknown values or PER index valuesin the case of an unknown extensible value being received. However, some users
don't care about this and would prefer the second case which provide a more debug friendly format for modern IDE's
which can normally shown the symbolic value rather than the numeric.

In addition to the generated type definition, helper functions are also generated to make it easier to convert to/from
enumerated and string format. The signatures of these functions are as follows:

const OSUTF8CHAR* <nane> ToString (OSI NT32 val ue);
i nt <nane>_ToEnum (OSCTXT* pctxt, const OSUTF8CHAR* val ue, <nane>* pval ue);

The first function would be used to convert an enumerated value into string form. The second would do the opposite
- convert from string to enumerated.

C++ Mapping

67

ASN.1 To C/C++ Mappings

ASN.1 production:
<nanme> ::= ENUMERATED (<idl>(<val 1>), <id2>(<val2>), ...)
Generated code:

struct <nanme> {
enum Root {
idl = vall,
id2 = val 2,

}
[enum Ext {

extidl = extval 1,

}]...
}

t ypedef OSUI NT32 ASNLT_<nane>

The struct type provides a namespace for the enumerated elements. This allows the same enumerated constant names
to be used in different productions within the ASN.1 specification. An enumerated item is specified in the code using
the <name>::<id> form.

Every generated definition contains a Root enumerated specification and, optionally, an Ext specification. The Root
specification contains the root elements of the type (or al of the elementsif it is not an extended type), and the Ext
specification contains the extension enumerated items.

The form of the typedef following the struct specification depends on whether or not the enumerated type contains
an extension marker or not. If amarker is present, it means the type can contain values outside the root enumeration.
An OSUINT32 is always used in the final typedef to ensure a consistent size of an enumerated variable and to handle
the case of unknown extension values.

If the -use-enum-types (use enumerated types) command-line option is sel ected, the type generated for C++ isidentical
to what is generated for the C case documented above when this option is selected.

NULL

The ASN.1 NULL type does not generate an associated C or C++ type definition

OBJECT IDENTIFIER

The ASN.1 OBJECT IDENTIFIER typeis converted into a C or C++ structured type to hold the subidentifier values
that make up the object identifier.

ASN.1 production:

<nane> ::= OBJECT | DENTI FI ER
Generated C code:

typedef ASNLCBJI D <nane>;
Generated C++ code:

typedef ASN1ITCbjId ASNLT_<name>;

68

ASN.1 To C/C++ Mappings

In this case, different base types are used for C and C++. The difference between the two is the C++ version includes
constructors and assignment operators that make setting the value a bit easier.

The ASN10BJID type (i.e., the type used in the C mapping) is defined in asnltype.h to be the following:

typedef struct {

OSUI NT32 numids; /* nunber of subidentifiers */

OSUI NT32 subi d[ASN_K_MAXSUBI DS] ; / * subidentifier values */
} ASNLOBIJI D

The constant ASN_K_MAXSUBIDS specifies the maximum number of sub-identifiers that can be assigned to avalue
of the type. This constant is set to 128 as per the ASN.1 standard.

The ASN1TObjld type used in the C++ mapping is defined in ASN1TObjld.h. This class extends the C ASN10BJID
structure and adds many additional constructors and helper methods. See the ASN1C C/C++ Common Run-time
Reference Manual for more details.

RELATIVE-OID

The ASN.1 RELATIVE-OID typeis converted into a C or C++ structured typethat isidentical to that of the OBJECT
IDENTIFIER described above:

ASN.1 production:

<nanme> ::= RELATIVE-Q D
Generated C code:

typedef ASN1OBJI D <nane>;
Generated C++ code:

typedef ASN1ITCbjId ASNLT_<name>;

A RELATIVE-OID isidentical to an OBJECT IDENTIFIER except that it does not contain the restriction on theinitial
two arc values that they fall within a certain range (see the X.680 standard for more details on this).

REAL

The ASN.1 REAL typeis mapped to the C type OSREAL. In the global include file 0sSysTypes.h, OSREAL is defined
to be adouble.

ASN.1 production:

ASN. 1 producti on:
Generated C code:

t ypedef OSREAL <name>;
Generated C++ code:

t ypedef OSREAL ASNLT <nane>;

SEQUENCE

This section discusses the mapping of an ASN.1 SEQUENCE type to C. The C++ mapping is similar but there are
some differences. These are discussed in the C++ Mapping of SEQUENCE subsection at the end of this section.

69

ASN.1 To C/C++ Mappings

An ASN.1 SEQUENCE is a constructed type consisting of a series of element definitions. These elements can be of
any ASN.1 typeincluding other constructed types. For example, it is possible to nest a SEQUENCE definition within
another SEQUENCE definition as follows:

A ::= SEQUENCE {
X SEQUENCE {
al | NTEGER,
a2 BOOLEAN
}

y OCTET STRING (Sl ZE (10))
}

In this example, the production has two elements: x and y. The nested SEQUENCE x has two additional elements:
al anda2.

The ASNIC compiler first recursively pulls al of the embedded constructed elements out of the
SEQUENCE and forms new internal types. The names of these types are of the form <name>_<el enment -
nanel> <el ement name2>_ ... <el enent - nameN>. For example, in the definition above, two temporary
types would be generated: A x and A_y (A _yis generated because a static OCTET STRING maps to a C++ struct

type).
The general form is asfollows:
ASN.1 production:

<name> ::= SEQUENCE ({
<el ement 1- name> <el enent 1-t ype>,
<el ement 2- name> <el enent 2-t ype>,

}
Generated C code:

typedef struct {
<typel> <el enent 1- nane>;
<type2> <el enent 2- nane>;

} <nane>;
- Or -
typedef struct {
} <tenmpNanel>
typedef struct {
} <tenmpNane2>
typedef struct {
<t empNanel> <el enent 1- nanme>;
<t empNane2> <el enment 2- nanme>;
} <name>;
The <t ypel> and <t ype2> placeholders represent the equivalent C types for the ASN.1 types <el enent 1-
t ype> and <el enent 2- t ype> respectively. This form of the structure will be generated if the internal types are

70

ASN.1 To C/C++ Mappings

primitive. <t enpNane 1> and <t enpNane2> areformed using the algorithm described abovefor pulling structured
types out of the definition. Thisform is used for constructed elements and elements that map to structured C types.

The example above would result in the following generated C typedefs:

typedef struct A x {

OSI NT32 ail;
OSBOOL az;
} AX;

typedef struct Ay {
OSUI NT32 nunoct s;
OSCCTET dat a[10] ;

} ALY,

typedef struct A {
A X X
Ay y;

}A

Inthis case, elements x and y map to structured C types, so temporary typedefs are generated.

In the case of nesting levels greater than two, all of the intermediate element names are used to form the final name.
For example, consider the following type definition that contains three nesting levels:

X ::= SEQUENCE ({
a SEQUENCE ({
aa SEQUENCE { x | NTEGER, y BOCOLEAN 1},
bb | NTEGER
}
}
In this case, the generation of temporary types resultsin the following equivalent type definitions:
X-a-aa ::= SEQUENCE { x | NTEGER, y BOOLEAN }
X-a ::= SEQUENCE { aa X-a-aa, bb INTEGER }
X ::= SEQUENCE { X-a a }

Note that the name for the aa element type is X- a- aa. It contains both the name for a (at level 1) and aa (at level
2). The concatanation of all of the intermediate element names can lead to very long names in some cases. To get
around the problem, the -shortnames command-line option can be used to form shorter names. In this case, only the
type name and the last element name are used. In the example above, this would lead to an element name of X- aa.
The disadvantage of thisisthat the names may not always be unique. If using this option results in non-unique names,
an _n suffix is added where n is a sequential number to make the names unique.

It is possible to suppress the pulling out of nested types to form new types through the use of the <i nl i ne/ >
configuration item. This will not work in all cases, however. It is at times necessary to use the si zeof operator on
an intermediate type to determine the size of a structure for memory allocations. If atemporary type is not created, it
will not be possible to determine this size. An error will be reported in this case.

Note that although the compiler can handle embedded constructed types within productions, it is generally not
considered good style to define productions this way. It is much better to manually define the constructed types for
use in the final production definition. For example, the production defined at the start of this section can be rewritten
as the following set of productions:

71

ASN.1 To C/C++ Mappings

X 1= SEQUENCE ({
al | NTEGER,
a2 BOOLEAN

COCTET STRI NG
: SEQUENCE {
X X,
Yy
}

This makes the generated code easier to understand for the end user.
Unnamed Elements

Note

As of X.680, unnamed elements are not allowed: elements must be named. ASN1C till provides backward
compatibility support for this syntax however.

Inan ASN.1 SEQUENCE definition, the <element-name> tokens at the beginning of element declarationsare optional.
It is possible to include only a type name without a field identifier to define an element. This is normally done with
defined type elements, but can be done with built-in types as well. An example of a SEQUENCE with unnamed
elements would be as follows:

Anlnt ::= [PRIVATE 1] | NTEGER

Aseq ::= [PRI VATE 2] SEQUENCE ({
X | NTEGER,
Anl nt

}

In this case, the first element (x) is named and the second element is unnamed.

ASNI1C handles this by generating an element name using the type name with the first character set to lower case.
For built-in types, a constant element name is used for each type (for example, alnt isused for INTEGER). Thereis
one caveat, however. ASN1C cannot handle multiple unnamed elementsin a SEQUENCE or SET with the same type
names. Element names must be used in this case to distinguish the elements.

So, for the example above, the generated code would be as follows:

typedef OSI NT32 Anlnt;

typedef struct Aseq {
OSI NT32 x;
Anl nt anlnt;

} Aseq;

OPTIONAL keyword

Elements within a sequence can be declared to be optional using the OPTIONAL keyword. This indicates that the
element is not required in the encoded message. An additional construct is added to the generated code to indicate
whether an optional element is present in the message or not. This construct is a bit structure placed at the beginning
of the generated sequence structure. This structure always has variable name 'm' and contains single-bit elements of
the form '<element-name>Present’ as follows:

72

ASN.1 To C/C++ Mappings

struct ({
unsi gned <el enent - nanel>Present : 1,
unsi gned <el enent - nane2>Present : 1,

bomo

In this case, the elements included in this construct correspond to only those elements marked as OPTIONAL within
the production. If a production contains no optional elements, the entire construct is omitted.

For example, the production in the previous example can be changed to make both elements optional:

Aseq ::= [PRI VATE 2] SEQUENCE {
X | NTEGER OPTI ONAL,
Anlnt OPTI ONAL

}

In this case, the following C typedef is generated:

typedef struct Aseq {
struct {
unsi gned xPresent : 1,
unsi gned anlntPresent : 1

}m

OSI NT32 X;

Anl nt anl nt;
} Aseq;

When this structure is popul ated for encoding, the developer must set the xPresent and anl ntPresent flags accordingly
to indicate whether the elements are to be included in the encoded message or not. Conversely, when a message is
decoded into this structure, the developer must test the flags to determine if the element was provided in the message
or not.

Thegenerated C++ structurewill contain aconstructor if OPTIONAL elementsare present. This constructor will set all
optional bitsto zero when avariable of the structured type is declared. The programmer therefore does not have to be
worried about clearing bitsfor elementsthat are not used; only with setting bitsfor the elementsthat are to be encoded.

DEFAULT keyword

The DEFAULT keyword allows a default value to be specified for elements within the SEQUENCE. ASN1C will
parse this specification and treat it as it does an optional element. Note that the value specification is only parsed in
simple casesfor primitive values. It isup to the programmer to provide the value in complex cases. For BER encoding,
avalue must be specified be it the default or other value.

For DER or PER, it is a requirement that no value be present in the encoding for the default value. For integer and
boolean default values, the compiler automatically generates code to handle this requirement based on the value in
the structure. For other values, an optional present flag bit is generated. The programmer must set this bit to false
on the encode side to specify default value selected. If thisis done, a value is not encoded into the message. On the
decode side, the developer must test for present bit not set. If thisisthe case, the default value specified in the ASN.1
specification must be used and the value in the structure ignored.

Extension Elements

If the SEQUENCE type contains an open extension field (i.e, a ... at the end of the specification or a ..., ... in the
middle), a specia element will be inserted to capture encoded extension elements for inclusion in the final encoded

73

ASN.1 To C/C++ Mappings

message. Thiselement will be of type OSRTDList and have the name extEleml. Thisisalinked list of open typefields.
Each entry inthelist is of type ASN1OpenType. Thefieldswill contain complete encodings of any extension elements
that may have been present in a message when it is decoded. On subsequent encode of the type, the extension fields
will be copied into the new message.

The-noOpenExt command line option can be used to alter this default behavior. If thisoptionis specified, the extEleml
element is not included in the generated code and extension data that may be present in a decoded message is ssmply
dropped.

If the SEQUENCE type contains an extension marker and extension elements, then the actual extension elements
will be present in addition to the extEleml element. These elements will be treated as optional elements whether they
were declared that way or not. The reason is because a version 1 message could be received that does not contain
the elements.

Additional bits will be generated in the bit mask if version brackets are present. These are groupings of extended
elements that typically correspond to a particular version of a protocol. An example would be as follows:

Test Sequence ::= SEQUENCE {
i tem code | NTEGER (0. . 254),
i tem nane | AS5String (SIZE (3..10)) OPTI ONAL,
R
ur gency ENUMERATED { normal, high } DEFAULT nor nal ,
[[alternate-item code | NTEGER (0. . 254),
alternate-item nane | A5String (SIZE (3..10)) OPTI ONAL
11
}

In this case, a specia hit flag will be added to the mask structure to indicate the presence or absence of the entire
element block. Thiswill be of theform"_v#ExtPresent" where # would be replaced by the sequential version number.
In the example above, this number would be three (two would be the version extension number of the urgency field).
Therefore, the generated bit mask would be as follows:;

struct ({
unsi gned item namePresent : 1;
unsi gned urgencyPresent : 1;
unsi gned _v3ExtPresent : 1;
unsi gned alternate_item nanePresent : 1;

}om

In this case, the setting of the v3ExtPresent flag would indicate the presence or absence of the entire version block.
Note that it is also possible to have optional items within the block (alternate-item-name).

C++ Mapping of SEQUENCE

The C++ mapping of an ASN.1 SEQUENCE typeisvery similar to the C mapping. However, there are some important
differences:

1. As with all C++ types, the prefix ASN1T _ is added before the typename to distinguish the data class from the
control class (the control class containsan ASN1C _ prefix).

2. A default constructor is generated to initialize the structure elements. This constructor will initialize all elements
and set any simple default values that may have been specified in the ASN.1 definition.

3. If the -genCopy command line switch was specified, a copy constructor will be generated to allow an instance of
the data contained within a PDU control class object to be copied.

74

ASN.1 To C/C++ Mappings

4. Also if -genCopy was specified, a destructor is generated if the type contains dynamic fields. This destructor will
free all memory held by the type when the object is deleted or goes out of scope.

SET

The ASN.1 SET typeisconverted into aC or C++ structured type that isidentical to that for SEQUENCE as described
in the previous section. The only difference between SEQUENCE and SET isthat elements may be transmitted in any
order in a SET whereas they must be in the defined order in a SEQUENCE. The only impact this has on ASN1C is
in the generated decoder for a SET type.

The decoder must take into account the possibility of out-of-order elements. Thisis handled by using aloop to parse
each element in the message. Each time an item is parsed, an internal mask bit within the decoder is set to indicate
the element was received. The complete set of received elements is then checked after the loop is completed to verify
all required elements were received.

SEQUENCE OF

The ASN.1 SEQUENCE OF typeis converted into one of the following C/C++ types:
A doubly-linked list structure (OSRTDL.ist for C, or ASN1TSeqOfList, aclass derived from OSRTDLIist, for C++)

» A structure containing an integer count of elements and a pointer to hold an array of the referenced data type (a
dynamic array)

* A structure containing an integer count of elements and afixed-sized array of the referenced datatype (astatic array)

The linked list option is the default for constructed types. An array is used for a sequence of primitive types. The
allocation for the contents field of the array depends on how the SEQUENCE OF is specified in the ASN.1 definition.
If asize constraint is used, a static array of that size is generated; otherwise, a pointer variable is generated to hold a
dynamically allocated array of values. The decoder will automatically allocate memory to hold parsed SEQUENCE
OF data values.

The default type may be altered through the use of command-line options. The -array option may be used to indicate
an array type should be used as the default instead of a linked list for al types. If the type does not contain a size
constraint, adynamic array will be used; otherwise a static array of the given size will be used. The -arraySze option
may be used to force use of a static array for al types. SEQUENCE OF types not having a size constraint will result
in a static array being generated of the size specified in the -arraySize option. The -dynamicArray option will result
in the use of adynamic array for all SEQUENCE OF types and the -linkedList option will result in the use of alinked
list for al of these types.

Thetype used for agiven SEQUENCE OF construct can be modified by the use of aconfiguration item. The <storage>
qualifier is used for this purpose. The dynamicArray keyword can be used at the global, module, or production level
to specify that dynamic memory (i.e., apointer) is used for the array. The syntax of this qualifier is as follows:

<st or age>dynani cArray</ st or age>

The array keyword is used to specify that a static array is to be generated to hold the data. In this case, if the
SEQUENCE OF production does not contain a size constraint, the maxSze attribute must be used to specify the
maximum size of the array. For example:

<st orage nmaxSi ze="100">array</ st orage>
If maxSzeisnot specified and the ASN.1 production contains no size constraint, then a dynamic array is used.

Thelist keyword can also be used inasimilar fashion to specify the use of alinked-linked structureto hold the elements:

75

ASN.1 To C/C++ Mappings

<st orage>l i st </ st or age>

See the section entitled Compiler Configuration File for further details on setting up a configuration file.

Dynamic SEQUENCE OF Type

ASN.1 production:
<nanme> ::= SEQUENCE OF <type>
Generated C code:

typedef struct {
OSUI NT32 n;
<type>* el em
} <name>;

Generated C++ code:

typedef struct [: public ASNITPDU]| {
OSUI NT32 n;
<type>* el em
ASNLT_<name>();
[~ASNLT_<name>() ;]
} ASNLIT_<nane>;

Note that parsed values can be accessed from the dynamic data variable just as they would be from a static array
variable; i.e., an array subscript can be used (ex: elem[Q], elem[1]...).

In the case of C++, aconstructor is generated to initialize the element count to zero. If the type represents a PDU type
(either by default by not referencing any other types or explicitly viathe -pdu command-line option), the ASN1TPDU
base class is extended and a destructor is added. This destructor ensures that memory allocated for elements is freed
upon destruction of the object.

Static (sized) SEQUENCE OF Type

ASN.1 production:
<nanme> ::= SEQUENCE (SIZE (<l en>)) OF <type>
Generated C code:

typedef struct {

OSUI NT32 n;

<type> el en<l en>];
} <name>;

Generated C++ code:

typedef struct {
OSUI NT32 n;
<type> el en<l en>];
} ASNLIT_<nane>;

If the -strict-size command-line option is used, the n component within this type definition may be of adifferent type
(OSUINT8 or OSUINT16) or eliminated completely if the typeis constrained to be a fixed-size.

76

ASN.1 To C/C++ Mappings

List-based SEQUENCE OF Type

A doubly-linked list header type (OSRTDLIist) is used for the type definition if the list storage configuration setting
is used (see above). This can be used for either a sized or unsized SEQUENCE OF construct. The generated C or C
++ codeisasfollows:

Generated C code:
t ypedef OSRTDLi st <name>;
Generated C++ code:
t ypedef ASNLITSeqOf Li st ASNLT <nane>;

The type definition of the OSRTDL st structure can be found in the 0sSysTypes.h header file. The common run-time
utility functions beginning with the prefix rtxDList are available for initializing and adding elements to the list. See
the C/C++ Common Run-time Reference Manual for afull description of these functions.

For C++, the ASN1TSeqOfList class is used, or, in the case of PDU types, the ASNITPDUSeqOfList class.
The ASN1TSeqOfList extends the C OSRTDList structure and adds constructors and other helper methods.
The ASNITPDUSeqOfList is similar except that it aso extends the ASNITPDU base class to add additional
memory management capabilities needed by PDU types to automatically release memory on destruction. See the
ASN1CSeqOfList sectioninthe C/C++ Common Run-time Reference Manual for detailson all of the methodsavailable
inthisclass.

Populating Linked-List Structures

Populating generated list-based SEQUENCE OF structures for the most part requires the use of dynamic memory to
allocate elements to be added to the list (note that it is possible to use static elements for this, but this is unusual).
The recommended method is to use the built in run-time memory management facilities available within the ASN1C
runtime library. Thisalows al list memory to be freed with one call after encoding is complete.

In the case of C, the rtxMemaAlloc or rtxMemAllocType function would first be used to allocate arecord of the element
type. This element would then be initialized and populated with data. The rtxDListAppend function would then be
called to append it to the given list.

For C++, the compiler generates the helper methods NewElement and Append in the generated control class for a
SEQUENCE OF type. An instance of this class can be created using the list element within a generated structure as
a parameter. The helper methods can then be used to allocate and initialize an element and then append it to the list
after it is populated.

Seethecpp/ sanpl e_ber/ enpl oyee/ wri t er. cpp filefor an example of how these methods are used. In this
program, the following logic is used to populate one of the elementsinthe chi | dr en list for encoding:

ASNLT_Chi | dI nfornmati on* pChildl nfo;
ASNLIC SeqOfChildlinformation |istHel per (encodeBuffer, nsgData.children);

pChildlnfo = |istHel per. NewEl enent () ;

fill _Name (&pChildl nfo->nanme, "Ral ph", "T", "Smth");
pChi |l dl nfo->dateO'Birth = "19571111";

I i st Hel per. Append (pChildlnfo);

In this example, nsgDat a is an instance of the main PDU class being encoded (Per sonnel Recor d). This object
contains an element called chi | dr en which is a linked-list of Chi | dI nf or mat i on records. The code snippet
illustrates how to use the generated control class for the list to alocate arecord, populate it, and append it to the list.

77

ASN.1 To C/C++ Mappings

ASNI1C aso generates helper methods in SEQUENCE, SET, and CHOICE control classes to assist in alocating
and adding elements to inline SEQUENCE OF lists. These methods are named new _<el en>_el enent and
append_t o_<el enr where <el ent would be replaced with the name of the element they apply to.

Generation of Temporary Types for SEQUENCE OF Elements

As with other constructed types, the <t ype> variable can reference any ASN.1 type, including other ASN.1
constructed types. Therefore, it is possible to have a SEQUENCE OF SEQUENCE, SEQUENCE OF CHOICE, etc.

When a constructed type or type that maps to a C structured type is referenced, atemporary type is generated for use
inthe final production. The format of this temporary type nameis as follows:

<pr odNane>_el enent
In this definition, <pr odNane> refers to the name of the production containing the SEQUENCE OF type.
For example, asimple (and very common) single level nested SEQUENCE OF construct might be as follows:
A ::= SEQUENCE OF SEQUENCE { a I NTEGER, b BOOLEAN }

In this case, a temporary type is generated for the element of the SEQUENCE OF production. This results in the
following two equivalent ASN.1 types:

A-element ::= SEQUENCE { a | NTEGER, b BOCOLEAN }

A ::= SEQUENCE OF A-el enent

Thesetypesarethen convertedintotheequivalent C or C++t ypedef susing the standard mapping that was previously
described.

SEQUENCE OF Type Elements in Other Constructed Types

Frequently, a SEQUENCE OF construct is used to define an array of some common typein an element in some other
constructed type (for example, a SEQUENCE). An example of thisis asfollows:

SonmePDU : : = SEQUENCE {
addresses SEQUENCE OF Al i asAddress,
}

Normally, thiswould result in the addr esses element being pulled out and used to create atemporary type with a
name egual to SomePDU- addr esses asfollows:

SonmePDU- addr esses ::= SEQUENCE OF Al i asAddress

SonmePDU : : = SEQUENCE {
addr esses SomePDU- addr esses,

}

However, when the SEQUENCE OF element references a simple defined type as above with no additiona tagging
or constraint information, an optimization is done to reduce the size of the generated code. This optimization is to
generate a common name for the new temporary type that can be used for other similar references. The form of this
common name is as follows:

_SeqOf <el enent Pr odNane>
So instead of this:;

78

ASN.1 To C/C++ Mappings

SomePDU- addr esses ::= SEQUENCE OF Al i asAddress
The following equivalent type would be generated:
_SeqOr Al i asAddress ::= SEQUENCE OF Al i asAddress

The advantage is that the new type can now be easily reused if SEQUENCE OF AliasAddress is used in any other
element declarations. Note the (illegal) use of an underscore in the first position. This is to ensure that no name
collisions occur with other ASN.1 productions defined within the specification.

Some SEQUENCE OF elementsin constructed types areinlined. In other words, no temporary typeis created; instead,
either the OSRTDLI st reference (for linked list) or the array definition is inserted directly into the generated C
structure. Thisis particularly true when X SD files are being compiled.

SET OF

The ASN.1 SET OF typeis converted into a C or C++ structured type that is identical to that for SEQUENCE OF
as described in the previous section.

CHOICE

The ASN.1 CHOICE typeis converted into a C or C++ structured type containing an integer for the choice tag value
(t) followed by aunion (u) of al of the equivaent types that make up the CHOICE elements.

Thetag valueissimply asequential number starting at one for each alternative in the CHOICE. A #def i ne constant
isgenerated for each of these values. Theformat of thisconstantisT_<name>_<el enment - nane> where<nane>
is the name of the ASN.1 production and <el enment - nane> is the name of the CHOICE alternative. If a CHOICE
alternativeisnot given an explicit name, then <el enent - nanme> isautomatically generated by taking the type name
and making the first letter lowercase (this is the same as was done for the ASN.1 SEQUENCE type with unnamed
elements). If the generated name is not unique, a sequential number is appended to make it unique.

The union of choice aternatives is made of the equivalent C or C++ type definition followed by the element name
for each of the elements. The rules for element generation are essentially the same as was described for SEQUENCE
above. Constructed types or elements that map to C structured types are pulled out and temporary types are created.
Unnamed elements names are automatically generated from the type name by making the first character of the name
lowercase.

One difference between temporary types used in a SEQUENCE and in a CHOICE is that a pointer variable will be
generated for use within the CHOICE union construct.

ASN.1 production:
<nane> ::= CHO CE {

<el ement 1- name> <el enment 1-t ype>,
<el ement 2- name> <el enent 2-t ype>,

}

Generated C code:

#define T _<nanme>_<el enent 1- nane> 1
#defi ne T_<nanme>_<el enent 2- nane> 2

typedef struct {
i nt t;

79

ASN.1 To C/C++ Mappings

uni on {
<typel> <el enent 1- nane>;
<type2> <el enent 2- nane>;

by
} <name>;

-or-
t ypedef struct {
} <tenpNamel>;
t ypedef struct {
} <tenpName2>;

t ypedef struct {
int t;
uni on {
<t emrpNanel>* <el enent 1- nane>;
<t empNane2>* <el enent 2- nane>;

}ous
} <nane>;

If the -use-enum-types command-line option is used, an enumerated typeis used instead of the #define statements and
integer t member variable as follows:

typedef struct {
enum T {
T <nanme>_<el erment 1- nanme>,
T _<nanme>_<el ement 2- nanme>,

Pt

uni on {
<typel> <el enent 1- nane>;
<type2> <el enent 2- nane>;

bou

} <name>;

If the -static command line option or <st or age> static </storage> configuration variable is set for the
given production, then pointers will not be used for the variable declarations.

Note

Thisis true for the C case only; for C++, pointers must be used due to the fact that the generated code will
not compileif constructors are used in a non-pointer variable within a union construct.

The C++ mapping is the same with the exception that the ASNLT _ prefix is added to the generated type name.
<typel> and <t ype2> are the equivalent C types representing the ASN.1 types <el enent 1-t ype> and

<el enent 2- t ype> respectively. <t enpNanme 1> and <t enpNane2> represent the names of temporary typesthat
may have been generated as the result of using nested constructed types within the definition.

80

ASN.1 To C/C++ Mappings

Choice alternatives may be unnamed, in which case <el enent - nanme> is derived from <el enent -t ype> by
making the first letter lowercase. One needs to be careful when nesting CHOICE structures at different levels within
other nested ASN.1 structures (SEQUENCES, SETSs, or other CHOICES). A problem arises when CHOICE element
names at different levels are not unique (thisislikely when elements are unnamed). The problem is that generated tag
constants are not guaranteed to be unique since only the production and end element names are used.

The compiler gets around this problem by checking for duplicates. If the generated name is not unique, a sequential
number is appended to make it unique. The compiler outputs an informational message when it does this.

An example of this can be found in the following production:

C:.:= CHOCE {
[0] | NTEGER,
[1] CHO CE {

[0] | NTEGER,
[1] BOCOLEAN

}

Thiswill produce the following C code:

#define T_C alnt
#defi ne T_C aChoice
#define T_C alnt_1
#define T_C aBool

NEFEDNPR

t ypedef struct {
int t;
uni on {
OSI NT32 al nt;
struct {
int t;
uni on {
OSI NT32 al nt;
OSBOOL aBool ;
by
} acChoi ce;
} G

Notethat 1 was appended to the second instance of T_C_al nt . Developers must take care to ensure they are using
the correct tag constant value when this happens.

Populating Generated Choice Structures

Populating generated CHOICE structures is more complex then for other generated types due to the use of pointers
within the union construct. As previously mentioned, the use of pointers with C can be prevented by using the -
static command line option. If this is done, the elements within the union construct will be standard inline variable
declarations and can be populated directly. Otherwise, the methods listed below can be used to populate the variabl es.

The recommended way to popul ate the pointer elementsis to declare variables of the embedded type to be used on the
stack prior to populating the CHOICE structure. The embedded variable would then be populated with the data to be
encoded and then the address of this variable would be plugged into the CHOICE union pointer field.

Consider the following definitions:

Ascii String ::= [PRI VATE 28] OCTET STRI NG

81

ASN.1 To C/C++ Mappings

EBCDI CString ::= [PRIVATE 29] OCTET STRI NG
String ::= CHOCE { AsciiString, EBCDI CString }

Thiswould result in the following type definitions:

typedef OSDynCctStr Ascii String;
t ypedef OSDynCct Str EBCDI CStri ng;

typedef struct String {
int t;

uni on {
[*t =1 %/
Ascii String *ascii String;
[*t =2 %]
EBCDI CString *eBCDI CString;
}ous
} String;

To set the AsciiString choice value, one would first declare an AsciiString variable, populate it, and then plug the
addressinto a variable of type Sring structure as follows:

Ascii String asciiString;
String string;

asciiString = "Hello!";
string.t = T_String_AsciiString;
string.u.asciiString = &ascii String;

It is also possible to allocate dynamic memory for the CHOICE union option variable; but one must be careful to
release this memory when done with the structure. If the built in memory-management functions/macros are used
(rtxMem), all memory used for the variablesis automatically released when rtxMemFree is called.

Open Type

Note

The X.680 Open Type replaces the X.208 ANY or ANY DEFINED BY constructs. An ANY or ANY
DEFINED BY encountered within an ASN.1 module will result in the generation of code corresponding to
the Open Type described below.

An Open Type as defined in the X.680 standard is specified as a reference to a Type Field in an Information Object
Class. The most common form of this is when the Type field in the built-in TYPE-IDENTIFIER class is referenced
asfollows:

TYPE- | DENTI FI ER. &Type
See the section in this document on Information Objects for a more detailed explanation.

The Open Typeis converted into a C or C++ structure used to model adynamic OCTET STRING type. This structure
contains apointer and length field. The pointer isassumed to point at astring of previously encoded ASN.1 data. When
amessage containing an open type is decoded, the address of the open type contentsfield is stored in the pointer field
and the length of the component is stored in the length field.

The general mapping of an Open Typeto C/C++ isasfollows:

ASN.1 production:

82

ASN.1 To C/C++ Mappings

<nanme> ::= ANY
Generated C code;

t ypedef ASN1OpenType <nane>;
Generated C++ code:

typedef ASN1TOpenType <namne>;

The difference between the two types is the C++ version contains constructors to initialize the value to zero or to a
given open type value.

If the -tables command line option is selected and the ASN.1 type definition references a table constraint, the code
generated is different. In this case, ASN1OpenType above is replaced with ASN1Object (or ASN1TObject for C++).
Thisis defined in asnltype.h asfollows:

typedef struct { /* generic table constraint value hol der */
ASN1OpenType encoded;

voi d* decoded;
OSI NT32 i ndex; /* table index */
} ASN1Obj ect ;

This allows a value of any ASN.1 type to be represented in both encoded and decoded forms. Encoded form is the
open type form shown above. It is simply a pointer to a byte buffer and a count of the number of byesin the encoded
message component. The decoded form is a pointer to a variable of a specific type. The pointer is void because there
could be a potentially large number of different types that can be represented in the table constraint used to constrain
atype field to a given set of values. The index member of the typeis for internal use by table constraint processing
functions to keep track of which row in atable is being referenced.

If the -table-unions command line option is used, amore specialized type of structureis generated. In this case, instead
of avoid pointer being used to hold an instance of atype containing datato be encoded, all entriesfrom the referenced
Information Object Set are used in a union structure in much the same way asis donein a CHOICE construct.

If codeisbeing generated from an XML schemafile and the file contains an <xsd:any> wildcard declaration, aspecial
type of any structure is inserted into the generated C/C++ code. This is the type OSXSDAny which is defined in the
0sSysTypes.h header file. This structure contains a union which contains alternatives for datain either binary or XML
text form. This makes it possible to transfer datain either binary form if working with binary encoding rules or XML
form if working with XML.

Character String Types

All 8-bit character character-string types are derived from the C character pointer (const char *) base type. This
pointer is used to hold a null-terminated C string for encoding/decoding. For encoding, the string can either be static
(i.e., astring literal or address of a static buffer) or dynamic. The decoder allocates dynamic memory from within its
context to hold the memory for the string. This memory is released when ther t xMentr ee functionis called.

The useful character string typesin ASN.1 are asfollows:

UTF8Stri ng
NunericString
Printabl eString

[UNI VERSAL 12] I MPLICIT OCTET STRI NG
[UNI VERSAL 18] IMPLICIT I ASString
[UNI VERSAL 19] IMPLICIT I ASString

T61String [UNI VERSAL 20] I MPLICIT OCTET STRI NG
Vi deot exString [UNI VERSAL 21] |IMPLICIT OCTET STRI NG
| A5String [UNI VERSAL 22] I MPLICIT OCTET STRI NG
UTCTi e [UNI VERSAL 23] |IMPLICIT GeneralizedTinme

83

ASN.1 To C/C++ Mappings

General i zedTi e
Graphi cString

Vi sibleString
CGeneral String
Uni versal String
BMPSt ri ng

nj ect Descri pt or

[UNI VERSAL 24] |IMPLICIT I A5String

[UNI VERSAL 25] | MPLICI T OCTET STRING
[UNI VERSAL 26] | MPLICI T OCTET STRING
[UNI VERSAL 27] | MPLICIT OCTET STRI NG
[UNI VERSAL 28] | MPLICIT OCTET STRING
[UNI VERSAL 30] | MPLICIT OCTET STRING
[UNIVERSAL 7] IMPLICIT GraphicString

Of these, all arerepresentedby const char * pointersexcept for the BMPSring, Universal Sring, and UTF8String
types.

The BMPString type is a 16-bit character string for which the following structure is used:

typedef struct {
OSUI NT32 nchars;
OSUNI CHAR* dat a;

} Asnll6Bit Char String;

The OSUNI CHAR type used in this definition represents a Unicode character (UTF-16) and is defined to be a C
unsi gned short type.

Seethert BMPTOCSt ri ng, rt BMPToNewCSt r i ng, and ther t CToBMPSt r i ng run-time function descriptions
for information on utilities that can convert standard C strings to and from BMP string format.

The Uni ver sal Stri ng typeisa32-bit character string for which the following structureis used:

typedef struct {
OSUI NT32 nchars;
0S32BI TCHAR* dat a;
} Asnl32Bit Char String;

The OS32BI TCHAR type used in this definition is defined to beaC unsi gned i nt type.

Seethert UCSToCSt ri ng, rt UCSToNewCSt r i ng, and ther t CTOUCSSt r i ng run-time function descriptions
for information on utilities that can convert standard C strings to and from Universal Character Set (UCS-4) string
format. See also ther t UCSTOWCSSt ri ng and r t WCSToOUCSSt r i ng for information on utilities that can convert
standard wide character string to and from Uni ver sal St ri ng type.

The UTF8St ri ng typeisrepresented as astring of unsigned characters using the OSUTF8 CHAR datatype. Thistype
is defined to be unsi gned char . This makes it possible to use the characters in the upper range of the UTF-8
space as positive numbers. The contents of this string type are assumed to contain the UTF-8 encoding of a character
string. For the most part, standard C character string functionssuch asst r cpy, st r cat , etc. can be used with these
strings with some type casting.

Utility functions are provided for working with UTF-8 string data. The UTF-8 encoding for astandard ASCI| string is
simply the string itself. For Unicode strings represented in C/C++ using the wide character type (wchar _t), therun-
time functions r t xUTF8TOWCS and r t xX\WCSTOUTF8 can be used for converting to and from UTF-8 format. The
functionr t xVal i dat eUTF8 can be used to ensure that a given UTF-8 encoding isvalid. Seethe C/C++ Run-Time
Library Reference Manual for a complete description of these functions.

Time String Types
The ASN.1 GeneralizedTimeand UTCTimetypesare mapped to standard C/C++ null-terminated character string types.

The C++ version of the product contains additional control classesfor parsing and formatting time string values. When
C++ codegeneration isspecified, acontrol classisgenerated for operating on thetarget timestring. Thisclassisderived

84

ASN.1 To C/C++ Mappings

from the ASN1CGeneralizedTime or ASN1ICUTCTime class for GeneralizedTime or UTCTime respectively. These
classes contain methods for formatting or parsing time components such as month, day, year, etc. from the strings.

Objectsof these classes can be declared inlineto makethetask of formatting or parsing timestrings easier. For example,
in a SEQUENCE containing atime string element the generated type will contain apublic member variable containing
the ASN1T typethat holds the message data. If one wanted to operate on the time string contained within that element,
they could do so by using one of the time string classes inline as follows:

ASN1CCeneral i zedTi me gti ne (nmsgbuf, <seqVar>.<el enent>);
gtime. set Mont h (ASNLCTi ne: : Novenber) ;

Inthisexample, <seqVar >would represent agenerated SEQUENCE variabletypeand <el enment >would represent
atime string element within this type.

See the ASNLCTi ne, ASN1CGener al i zedTi e, and ASNLCUTCTi ne subsections in the C/C++ Run-Time
Library Reference Manual for details on al of the methods available in these classes.

EXTERNAL

The ASN.1 EXTERNAL type is a useful type used to include non-ASN.1 or other data within an ASN.1 encoded
message. Thistypeis described using the following ASN.1 SEQUENCE:

EXTERNAL ::= [UNI VERSAL 8] | MPLICIT SEQUENCE ({

direct-reference OBIJECT | DENTI FI ER OPTI ONAL,

i ndirect-reference | NTEGER OPTI ONAL,

dat a- val ue-descri ptor Obj ectDescri ptor OPTI ONAL,

encodi ng CHO CE {
si ngl e- ASN1-type [0] ABSTRACT- SYNTAX. &Type,
octet-aligned [1] IMPLICI T OCTET STRI NG
arbitrary [2] IMPLICIT BIT STRING

}

The ASN1C compiler is used to create a meta-definition for this structure. This code will always be generated in the
AsnlExt er nal . hand Asnl1Ext er nal . ¢/ cpp files. The code will only be generated if the given ASN.1 source
specification requires this definition. The resulting C structure is populated just like any other compiler-generated
structure for working with ASN.1 data.

Note

NOTE: It is recommended that if a specification contains multiple ASN.1 source files that reference
EXTERNAL, al of these source files be compiled with a single ASN1C call in order to ensure that only a
single copy of the Asn1External source files are generated.

EMBEDDED PDV

The ASN.1 EMBEDDED PDV typeisauseful type used to include non-ASN.1 or other datawithin an ASN.1 encoded
message. Thistypeis described using the following ASN.1 SEQUENCE:

EnbeddedPDV :: = [UNI VERSAL 11] | MPLICI T SEQUENCE {
identification CHO CE {
synt axes SEQUENCE {
abstract OBJECT | DENTI FI ER,
transfer OBJECT | DENTI FI ER

b

85

ASN.1 To C/C++ Mappings

syntax OBJECT | DENTI FI ER,
presentation-context-id | NTEGER,
cont ext - negoti ati on SEQUENCE {
presentation-context-id | NTEGER,
transfer-syntax OBJECT | DENTI FI ER
b
transfer-syntax OBJECT | DENTI FI ER,
fixed NULL
}
dat a- val ue-descri ptor Obj ectDescri ptor OPTI ONAL,
dat a- val ue OCTET STRI NG
}(WTH COMPONENTS { ... , data-val ue-descriptor ABSENT})

The ASN1C compiler is used to create a meta-definition for this structure. This code will be aways generated in
the Asn1EnmbeddedPDV. h and Asn1EnbeddedPDV. ¢/ cpp files. The code will only be generated if the given
ASN.1 source specification requires this definition. The resulting C structureis populated just like any other compiler-
generated structure for working with ASN.1 data.

Note

NOTE: It is recommended that if a specification contains multiple ASN.1 source files that reference
EMBEDDEDPDV, all of these sourcefiles be compiled with asingle ASN1C call in order to ensurethat only
asingled copy of the Asn1EmbeddedPDV source files are generated.

Parameterized Types

The ASN1C compiler can parse parameterized type definitions and references as specified in the X.683 standard.
These types allow dummy parameters to be declared that will be replaced with actual parameters when the type is
referenced. Thisis similar to templatesin C++.

A simple and common example of the use of parameterized typesis for the declaration of an upper bound on a sized
type as follows:

Si zedQct et Stri ng{| NTEGER ub} ::= OCTET STRING (SIZE (1..ub))

In this definition, ub would be replaced with an actual value when the type is referenced. For example, a sized octet
string with an upper bound of 32 would be declared as follows:

CctetString32 ::= SizedCctet String{32}

The compiler would handle this in the same way asif the original type was declared to be an octet string of size 1 to
32. That is, it will generate a C structure containing a static byte array of size 32 asfollows:

typedef struct CctetString32 {
GSUI NT32 nunoct s;
OSCCTET dat a[32] ;

} CctetString32;

Another common example of parameterization is the substitution of a given type inside acommon container type. For
example, security specifications frequently contain a'signed' parameterized type that allows a digital signature to be
applied to other types. An example of thisis asfollows:

SI GNED { ToBeSigned } ::= SEQUENCE ({
t oBeSi gned ToBeSi gned,
algorithnmO D OBJECT | DENTI FI ER,
par antS Par ans,

86

ASN.1 To C/C++ Mappings

si gnature BI T STRI NG
}

An example of areference to this definition would be as follows:
Si gnedNane ::= SI GNED { Name }
where Nane would be another type defined el sewhere within the module.
The compiler performs the substitution to create the proper C typedef for Si gnedNane:

typedef struct SignedName {

Nane t oBeSi gned;
ASN1OBJI D al gori t hmQ D
Par ans par ant;

ASN1DynBit Str signature;
} Si gnedNane;

When processing parameterized type definitions, the compiler will first ook to seeif the parameters are actually used
in the final generated code. If not, they will smply be discarded and the parameterized type converted to a normal
type reference. For example, when used with information objects, parameterized types are frequently used to pass
information object set definitions to impose table constraints on the final type. Since table constraints do not affect
the code that is generated by the compiler when table constraint code generation is not enabled, the parameterized
type definition is reduced to anormal type definition and references to it are handled in the same way as defined type
references. This can lead to asignificant reduction in generated code in cases where a parameterized typeisreferenced
over and over again.

For example, consider the following often-repeated pattern from the UMTS 3GPP specs:

Prot ocol | E-Fi el d { RANAP- PROTOCCOL- | ES : | EsSet Paran} ::= SEQUENCE {
id RANAP- PROTOCOL- | ES. &i d ({!EsSet Parant),
criticality RANAP- PROTOCOL- | ES. &criticality ({lIEsSetParant{@d}),
val ue RANAP- PROTOCOL- | ES. &Val ue ({! EsSet Param} { @ d})
}

Inthiscase, | Es Set Par amrefersto an information object set specification that constrainsthe valuesthat are allowed
to be passed for any giveninstance of atypereferencingaPr ot ocol | E- Fi el d. Thecompiler doesnot add any extra
codeto check for these values, so the parameter can be discarded (note that thisis not trueif the -tables compiler option
is specified). After processing the Information Object Class references within the construct (refer to the section on
Information Objects for information on how thisis done), the reduced definition for Pr ot ocol | E- Fi el d becomes
the following:

Protocol I E-Field ::= SEQUENCE {
id Protocol | E-1D,
criticality Criticality,
val ue ASN. 1 OPEN TYPE

}

Referencesto thefield are simply replaced with areferenceto the Pr ot ocol | D- Fi el d typedef.

If -tablesis specified, the parameters are used and a new type instance is created in accordance with the rules above.

Value Mappings

ASNIC can parse any type of ASN.1 value specification, but it will only generate code for following value
specifications:

87

ASN.1 To C/C++ Mappings

« BOOLEAN

* INTEGER

* REAL

« ENUMERATED
 Binary String

» Hexadecimal String

» Character String

* OBJECT IDENTIFER

All valuetypesexcept INTEGER and REAL cause an "extern" statement to be generated in the header fileand aglobal
value assignment to be added to the C or C++ source file. INTEGER and REAL value specifications cause #define
statements to be generated.

BOOLEAN Value

A BOOLEAN value causes an extern statement to be generated in the header file and a global declaration of type
OSBOOL to be generated in the C or C++ source file. The mapping of ASN.1 declaration to global C or C++ value
declaration is asfollows:

ASN.1 production:
<nane> BOOLEAN :: = <val ue>
Gener ated code:

OSBOOL <nane> = <val ue>;

INTEGER Value

The INTEGER type causes a #define statement to be generated in the header file of the form
ASNL1V_<val ueName> where <val ueNane> would be replaced with the name in the ASN.1 source file. The
reason for doing this is the common use of INTEGER values for size and value range constraints in the ASN.1
specifications. By generating #def i ne statements, the symbolic names can be included in the source code making
it easier to adjust the boundary values.

This mapping is defined as follows:
ASN.1 production:
<nane> | NTEGER :: = <val ue>
Generated code:
#def i ne ASNLV_<nane> <val ue>;
For example, the following declaration:
ivalue INTEGER ::= 5

will cause the following statement to be added to the generated header file:

88

ASN.1 To C/C++ Mappings

#define ASNLV ivalue 5

The reason the ASNLV_ prefix is added is to prevent collisions with INTEGER value declarations and other
declarations such as enumeration items with the same name.

REAL Value

The REAL type causes a#def i ne statement to be generated in the header file of theform ASN1V_<val ueNane>
where<val ueNanme>would bereplaced withthenameinthe ASN.1 sourcefile. By generating#def i ne statements,
the symbolic names can be included in the source code making it easier to adjust the boundary values.

This mapping is defined as follows:
ASN.1 production:
<name> REAL ::= <val ue>
Generated code:
#def i ne ASNLV_<name> <val ue>;
For example, the following declaration:
rvalue REAL ::= 5.5
will cause the following statement to be added to the generated header file:
#defi ne ASNLV rvalue 5.5

The reason the ASN1V_ prefix is added is to prevent collisions with other declarations such as enumeration items
with the same name.

Enumerated Value Specification

The mapping of an ASN.1 enumerated value declaration to agloba C or C++ value declaration is as follows:
ASN.1 production:

<name> <Enumlype> ::= <val ue>
Generated code:

OSUI NT32 <nane> = <val ue>;

Binary and Hexadecimal String Value

Binary and hexadecimal string value specifications cause two global C variablesto be generated: anunoct s variable
describing the length of the string and adat a variable describing the string contents. The mapping for abinary string
isasfollows (note: BIT STRING can also be used as the type in this type of declaration):

ASN.1 production:
<name> OCTET STRING ::= '<bstring>'B

Generated code :

89

ASN.1 To C/C++ Mappings

OSUI NT32 <nane>_nunocts = <l engt h>;
OSOCTET <nane>_data[] = <data>;

A hexadecimal string would be the same except the ASN.1 constant would end ina'H'.

Character String Value

A character string declaration would cause aC or C++ const char * declaration to be generated:
ASN.1 production:

<nane> <string-type> ::= <val ue>
Generated code:

const char* <nanme> = <val ue>;

In this definition, <string-type> could be any of the standard 8-bit characters string types such as IA5String,
PrintableString, etc.

Note

Code generation is not currently supported for value declarations of larger character string types such as
BMPString.

Object Identifier Value Specification

Object identifier values result in a structure being populated in the C or C++ sourcefile.
ASN.1 production:
<nane> OBJECT | DENTI FI ER ::= <val ue>
Generated code:
ASN1OBJI D <nane> = <val ue>;
For example, consider the following declaration:
oid OBJECT IDENTIFIER ::= { ccitt b(5) 10 }
Thiswould result in the following definition in the C or C++ sourcefile:

ASN1IOBJID oid = {
3, { 0,5 10}
b
To populate avariable in agenerated structure with thisvalue, ther t Set A D utility function can be used (see the C/
C++ Run-Time Library Reference Manual for afull description of this function). In addition, the C++ base type for

this construct (ASNLTObj | d) contains constructors and assignment operators that allow direct assignment of values
in this form to the target variable.

Constructed Type Values

ASN1C will generate code for following remaining value definitions only when their use is required in legacy table
constraint validation code:

90

ASN.1 To C/C++ Mappings

SEQUENCE

« SET

SEQUENCE OF

SET OF

CHOICE

Note

SEQUENCE, SET , SEQUENCE OF, SET OF and CHOICE values are avail able only when the -tables option
is selected.

The values are initialized in a module value initialization function. The format of this function name is as
follows:

i nit_<Modul eNane>Val ue (OSCTXT*
pct xt)

Where <Mbdul eNane> would be replaced with the name of the module containing the val ue specifications.

The only required argument is an initialized context block structure used to hold dynamic memory allocated
in the creation of the value structures.

If the value definitions are used in table constraint definitions, then the generated table constraint processing
code will handle the initialization of these definitions; otherwise, the initialization function must be called
explicitly.

SEQUENCE or SET Value Specification
The mapping of an ASN.1 SEQUENCE or SET value declaration to agloba C or C++ value declaration isasfollows:
ASN.1 production:
<nanme> <SeqType> ::= <val ue>
Generated code :
<SeqType> <nane>;
The sequence value will beinitialized in the value initialization function.
For example, consider the following declaration:
SeqType ::= SEQUENCE {

id | NTEGER |,
name VisibleString

}

val ue SeqType ::={ id 12, nane "abc" }
Thiswould result in the following definition in the C or C++ sourcefile:

SeqType val ue;

Code generated in value initialization function would be as follows:

91

ASN.1 To C/C++ Mappings

value.id = 12;

val ue. nane = "abc";

SEQUENCE OF/SET OF Value

The mapping of an ASN.1 SEQUENCE OF or SET OF value declaration to a global C or C++ value declaration is
asfollows:

ASN.1 production:
<name> <SeqCf Type> ::= <val ue>
Generated code :
<Seq(Type> <nane>;
The sequence of value will beinitialized in the value initialization function.
For example, consider the following declaration:
SeqOr Type ::= SEQUENCE OF (SIZE(2)) | NTEGER
val ue SeqOf Type ::={ 1, 2}
Thiswould result in the following definition in the C or C++ sourcefile:
SeqOf Type val ue;
Code generated in the value initialization function would be as follows:

val ue.n = 2;
val ue. el enent [0]
val ue. el enent [1]

CHOICE Value

The mapping of an ASN.1 CHOICE value declaration to aglobal C or C++ value declaration is as follows:

=

ASN.1 production:
<nane> <Choi ceType> ::= <val ue>
Generated code :
<Choi ceType> <nane>;
The choice value will beinitialized in the value initialization function.
For example, consider the following declaration:
Choi ceType ::= CHO CE { oid OBJECT IDENTIFIER, id |NTEGER }
val ue ChoiceType ::=id: 1
Thiswould result in the following definition in the C or C++ sourcefile:

Choi ceType val ue;

92

ASN.1 To C/C++ Mappings

Code generated in the value initialization function would be as follows:

value.t = T_Choi ceType_i d;
value.u.id = 1;

Table Constraint Related Structures

The following sections describe changes to generated code that occur when the -tables or -table-unions option is
specified on the command-line or when Table Constraint Options are selected from the GUI. This option causes
additional code to be generated for items required to support table constraints as specified in the X.682 standard. This
includesthe generation of structures and classes for Information Object Classes, Information Objects, and Information
Object Sets as specified in the X.681 standard.

Most of the additional items that are generated are read-only tables for use by the run-time for data validation
purposes. However, generated structures for types that use table constraints are different than when table constraint
code generation is not enabled. These differences will be pointed out.

There are two models currently supported for table contraint generation: Unions and Legacy. These are documented
in the following sections:

Unions Table Constraint Model

The unions table constraint model originated from common patterns used in a series of ASN.1 specifications in-use
in 3rd Generation Partnership Project (3GPP) standards. These standards include Node Application Part B (NBAP),
Radio Access Network Application Part (RANAP), and Radio Network Subsystem Application Part (RNSAP) in the
current 3G network and in S1IAP and X2AP protocols in the newer 4G network (LTE) standards. This model was
later extended to generate these type of structures for other specifications that made use of table constraintsincluding
security and legacy telecom speifications.

Generated C Type Definitions for Message Types

The standard message type used by many specifications that employ table constraints is usualy a SEQUENCE type
with elementsthat use arelational table constraint that uses fixed-type and typefields. The general form isasfollows:

<Type> ::= SEQUENCE ({
<el enent 1> <O ass>. &fi xed-type-fiel d> ({<bject Set>}),
<el enent 2> <O ass>. &fi xed-type-fiel d> ({<hject Set>)){ @l enent 1}
<el enent 3> <C ass>. &type-fiel d> ({<Ohj ect Set >)){ @l erment 1}
}

In this definition, <Cl ass> would be replaced with a reference to an Information Object Class, <f i xed- t ype-
fi el d>would be afixed-type field wtihin that class, and <t ype-fi el d> would be atype field within the class.
<(bj ect Set > would be a reference to an Information Object Set which would define all of the possibilities for
content within the message. The first element (<element1>) would be used as the index element in the object set
relation.

An example of this pattern from the SIAP LTE specification is as follows:
Initiati ngMessage :: = SEQUENCE {

pr ocedur eCode S1AP- EL EMENTARY- PROCEDURE. &pr ocedur eCode
({ SLAP- ELEMENTARY- PROCEDURES}) ,

criticality S1AP- ELEMENTARY- PROCEDURE. &criticality
({ SLAP- ELEMENTARY- PROCEDURES} { @r ocedur eCode}),
val ue S1AP- ELEMENTARY- PROCEDURE. &l ni ti at i ngMessage

93

ASN.1 To C/C++ Mappings

({ SLAP- ELEMENTARY- PROCEDURES} { @r ocedur eCode})
}

In this definition, pr ocedur eCode andcri ti cal i t y aredefined to be aenumerated fixed types, and val ue is
defined to be an open type field to hold variable content as defined in the object set definition.

In the legacy model defined below, a loose coupling would be defined for the open type field using the built-in
ASN1Cbj ect structure. This structure uses a void pointer to hold a link to a variable of the typed data structure.
This is inconvenient for the developer because he would need to consult the object set definition within the ASN.1
specification in order to determine what type of datais to be used with each procedure code. It is also error pronein
that the void pointer provides for no type checking at compile time.

In the new model, the generated structure is designed to be similar as to what is used to represent a CHOICE type.
That isto say, the structure is a union with a choice selector value and all possible typeslisted out in aunion structure.
Thisisthe general form:

typedef struct <Type> {
<El enent 1Type> <el enment 1>;
<El enent 2Type> <el enent 2>;

/**
* informati on object selector
*/

<Sel ect or Enunilype> t;

/**
* <Cbj ectSet> infornmation objects
*/
uni on {
/**
* <el enent 1> : <object 1- el enent 1-val ue>
* <el enent 2> : <obj ect 1- el enent 2-val ue>
*/
<obj ect 1- el enent 3-type>* <obj ect 1- nanme>;

/**
* <el enent 1> : <obj ect 2- el enent 1-val ue>
* <el enent 2> : <obj ect 2- el enent 2-val ue>
*/

<obj ect 2- el enent 3-type>* <obj ect 2- nane>;

b
}

In this definition, the first two elements of the sequence would use the equivalent C or C++ type as defined in the
fixed-type field in the information object. This is the same as in the legacy model. The open type field (element3)
would be expanded into the union structure asis shown. The <SelectorEnumType> would be an enumerated type that
is generated to represent each of the choicesin the referenced information object set. The union then contains an entry
for each of the possible types as defined in the object set that can be used in the open type field. Comments are used
to list the fixed-type fields corresponding to each open type field.

An example of the code that is generated from the SIAP sample ASN.1 snippet above is as follows:

typedef enum {

94

ASN.1 To C/C++ Mappings

T_S1AP_PDU Descri ptions_S1AP_ELEMENTARY_ PROCEDURES handover Prepar ati on,
T_S1AP_PDU Descri ptions_S1AP_ELEMENTARY_ PROCEDURES handover Resour ceAl | ocati on,
T_S1AP_PDU Descri ptions_S1AP_ELEVMENTARY_PROCEDURES pat hSwi t chRequest ,
etc..

} S1AP_ELEMENTARY_PROCEDURE_TVALUE;

typedef struct InitiatingMessage {
Pr ocedur eCode procedur eCode;
Criticality criticality;

/**

* informati on object selector

*/
S1AP_ELEMENTARY_PROCEDURE_TVALUE t;

/**
* S1AP- ELEMENTARY- PROCEDURE i nf ormati on obj ects
*/
uni on {
/**

* procedur eCode: id-HandoverPreparation
* criticality: reject
*/

Handover Requi red* handover Preparati on;

/**
* procedur eCode: id-Handover ResourceAl | ocation
* criticality: reject
*/

Handover Request* handover Resour ceAl | ocati on;

/**

* procedur eCode: id-HandoverNotification
* criticality: ignore
*/

Handover Noti fy* handover Noti fi cati on;

etc..

by
} InitiatingMessage;

Note that the long names generated in the SIAP_EL EMENTARY _PROCEDURE_TVALUE type can be reduced by
using the <alias> configuration element.

Generated C Type Definitions for Information Element (IE) Types

In addition to message types, another common pattern in 3GPP specifications is protocol information element (IE)
types. The general form of these typesisalist of information elements as follows:

<Protocol | EsType> ::= <Protocol | E- Cont ai ner Type> { <Obj ect Set> }

<Pr ot ocol | E- Cont ai ner Type> { <C ass> : <CbjectSetParanr } ::=
SEQUENCE (Sl ZE (<si ze>)) OF <Protocol | E-Fiel dType> {{Obj ect Set Par an} }

95

ASN.1 To C/C++ Mappings

<Protocol | E-Fi el dType> { <C ass> : <Object Set Paranm> } ::= SEQUENCE ({
<el enent 1> <C ass>. &fi xed-type-fiel d> ({Obj ect Set Par an}),
<el enent 2> <C ass>. &fi xed-type-fiel d> ({Obj ect Set Par an}{ @l enent 1}),
<el enent 3> <Cl ass>. &Type-fi el d> ({bj ect Set Par an} { @| ement 1})

}

There are afew different variations of this, but the overall patternissimilar in all cases. A parameterized typeisused
as a shorthand notation to pass an information object set into a container type. The container type holds a list of the
|E fields. The structure of an |E field type is similar to a message type: the first element is used as an index element
to the remaining elements. That is followed by one or more fixed type or variable type elements. In the case defined
above, only asingle fixed-type and variable type element is shown, but there may be more.

An example of this pattern from the SIAP LTE specification follows:

Handover Requi red ::= SEQUENCE {
protocol | Es Pr ot ocol | E- Cont ai ner { { Handover Requi redl Es} },

}

Prot ocol | E- Cont ai ner {S1AP-PROTOCOL-IES : |EsSetParan} ::=
SEQUENCE (Sl ZE (0..maxProtocol | Es)) OF Protocol | E-Field {{I| EsSet Parant}

Protocol | E-Field { SLAP- PROTOCOL- | ES : | EsSet Paran} ::= SEQUENCE {
id S1AP- PROTOCOL- | ES. & d ({! EsSet Parant),
criticality S1AP- PROTOCOL- | ES. &criticality ({I EsSet Param}{ @ d}),
val ue S1AP- PROTOCCL- | ES. &Val ue ({! EsSet Param}{ @ d})
}

In this case, standard parameterized type instantiation is used to create a type definition for the protocoll Es element.
Thisresultsin alist type being generated:

/* List of Handover Required_protocol | Es_el ement */
t ypedef OSRTDLi st Handover Requi red_pr ot ocol | Es;

The type for the protocol IE list element is created in much the same way as the main message type was above:

typedef struct Handover Required_protocol | Es_el emrent {
Protocol IE ID id;
Criticality criticality;
struct {
/**
* informati on object selector
*/
Handover Requi redl Es_TVALUE t;

/**
* Handover Requi redl Es i nfornmati on objects
*/
uni on {
/**
* id: id-MVE-UE-S1AP-1D
* criticality: reject
* presence: nandatory
*/

96

ASN.1 To C/C++ Mappings

MVE_UE_S1AP_|I D *_Handover Requi redl Es_i d_MVE_UE_S1AP_| D
/**

* id: id-Handover Type

* criticality: reject

* presence: nandatory

*/

Handover Type *_Handover Requi r edl Es_i d_Handover Type;
/**

* jd: id-Cause

* criticality: ignore

* presence: nandatory

*/

Py
} val ue;
} Handover Requi red_protocol | Es_el enment ;

In this case, the protocol IE id field and criticality are generated as usua using the fixed-type field type definitions.
The open type field once again resultsin the generation of aunion structure of all possible type fieldsthat can be used.
Notein this case the field names are automatically generated (_HandoverRequiredlEs id_ MME_UE_S1AP _ID, etc.).
The reason for this was the use of inline information object definitions in the information object set as opposed to
defined object definitions. Thisis a sample from that set:

Handover Requi redl Es S1AP- PROTOCOL- | ES :: = {
{ 1D id-MVE-UE-S1AP-1D CRITI CALI TY rej ect TYPE MVE- UE- S1AP-I D PRESENCE n
{ 1D id-Handover Type CRITI CALI TY rej ect TYPE Handover Type PRESENCE 1

In this case, the nameisformed by combining the information object set name with the name of each key field within
the set.

Generated | E Append Function

A user would need to allocate objects of this structure, populate them, and add them to the protocol IE list. In order
to make this easier, helper functions are generated assist in adding information items to the list. The general format
of these append functionsis as follows:

i nt asnlAppend_<Prot ocol | EsType> <KeyVal ueNane>
(OSCTXT* pctxt, <Protocol | EsType>* plist, <ValueType> val ue);

In this definition, <Pr ot ocol | EsType> refers to the main list type (SEQUENCE OF) defining the information
element list. <KeyVal ueNane> is the name of the primary key field defined in the associated information object
set. <Val ueType> isthe type of the value for the indexed information object set item.

An example of this type of function from the SIAP definitionsis as follows:

/* Append E with value type MME_UE S1AP ID to list */
i nt asnlAppend_Handover Requi red_protocol | Es_id_MVE_UE S1AP | D (OSCTXT* pctxt,
Handover Requi red_protocol Es* plist, MVE UE S1AP_ID val ue);

Generated |E Get Function

In addition to the list append function, a second type of helper function is generated to make it easier to find an item
in the list based on the key field. The general format for this type of function is asfollows:

<Protocol | E-Fi el dType>* asnlGet <Protocol | EsType>

97

ASN.1 To C/C++ Mappings

(<KeyFi el dType> <key>, <Protocol | EsType>* plist);

In this definition, <Pr ot ocol | EsType> refers to the main list type (SEQUENCE OF) defining the information
element list. <Pr ot ocol | E- Fi el dType> isthetype of an element within thislist and <KeyFi el dType> isthe
type of index key field.

An example of thistype of function from the SLAP definitionsis as follows:

/* Get IE using id key value */
Handover Requi red_protocol | Es_el ement* asnlGet Handover Requi red_prot ocol | Es
(Protocol lE_ ID id, Handover Required protocol |l Es* plist);

Generated Set Table Constraint (SetTC) Function

The set table constraint hel per function sets the fixed type value fields, the table union tag (t) value, and sets a pointer
to the variable typed value field to be encoded. The general format for this type of function is as follows:

voi d asnlSet TC <Type> <I| nfoQbj ect >
(OSCTXT* pctxt, <Type>* pElem <Val ueType> val ue);

In this definition, <Type> refers to the container type in which the table-constrained items are defined and
<VaueType> isthe type of the value for the indexed information object set item.

An example of thistype of function from the SIAP definitionsis asfollows:

voi d asnlSet TC Handover Requi red_prot ocol | Es_el enent _Handover Requi redl Es_i d_MVE _UE_S1AP_
(OSCTXT* pctxt, Handover Required_protocol | Es_el ement* pElem MVE UE S1AP I D val ue);

Generated C++ Classes and Methods
This section discusses items that are generated idfferently for C++ for union table constraints.
Choice Selector TVALUE Type

For C, an enumerated type is generated for each of the options in a type field union. These correspond to each of
the items in the information object set associated with the union. For example, the TVALUE type generated for
S1AP_ELEMENTARY_PROCEDURES isasfollows:

t ypedef enum {
T_S1AP_PDU Descri pti ons_S1AP_ELEMENTARY PROCEDURES UNDEF
T_S1AP_PDU Descri pti ons_S1AP_ELEMENTARY_PROCEDURES_ handover Prepar ati on,
T _S1AP_PDU Descri ptions_S1AP _ELEMENTARY PROCEDURES handover Resour ceAl | ocati on,
T_S1AP_PDU Descri pti ons_S1AP_ELEMENTARY_PROCEDURES pat hSwi t chRequest,

} S1AP_ELEMENTARY_PROCEDURES TVALUE;

The generated names include the name of the module, object set, and object in order to ensure that no name clashes
occur between enumerations with common names. For C++, thistypeisgenerated asaclasswith TVALUE asapublic
member inside:

cl ass S1AP_ELEMENTARY_PROCEDURES {
publi c:
enum TVALUE {
T_UNDEF_,
T_handover Prepar ati on,
T _handover Resour ceAl | ocati on,
T_pat hSwi t chRequest ,

98

ASN.1 To C/C++ Mappings

}

In this case, the type module and object set names are not needed because the class name provides for unambiguous
enumerated item names.

Generated Helper Methods

For C, special asnl1Append_<name> and asnl1CGet | E_<nane> functions are generated to help a user append
information elements (IE's) to alist and get an indexed |E respectively. For C++, these are added as methods to the
generated control classfor the list type.

For example, for the Handover Requi r ed_pr ot ocol | Es type, the following methods are added to the control
class:

cl ass EXTERN ASN1C Handover Requi red_protocol | Es : public ASNLCSeqOf Li st
{

/* Append IE with value type ASNIT MVE UE SIAP ID to list */
int Append_i d_MVE_UE S1AP | D (ASNLT_MVE_UE_S1AP_I D val ue);

/* Append IE with value type ASNLT Handover Type to list */
int Appendi d_eNB_UE_S1AP_| D (ASNLT_Handover Type val ue);

/* Get IE using id key value */
ASNL1T_Handover Requi red_prot ocol | Es_el ement* Get| E (ASNLT_Protocol IE_ID id);
b

Legacy Table Constraint Model

The primary difference asto what a user sees and works with in the legacy model as opposed to the unions model lies
in the representation of open type elements that contain atable constraint. The standard form of an open type element
constrained with atable constraint within a SEQUENCE container is as follows:

<Type> ::= SEQUENCE ({
<el enent > <Cl ass>. &type-field> ({<Obj ect Set >)){ @ ndex- el enent }

}

If -tablesis not specified on the command line, a standard open type structure is used to hold the element value:

typedef struct <Type> {
ASN1QpenType <el enent >;

}

The ASN1OpenType built-in type holds the element data in encoded form. The only validation that is done on the
element isto verify that it isawell-formed tag-length-value (TLV) structureif BER encoding is used or avalid length
prefixed structure for PER.

If the -tables command line option is selected, the code generated is different. In this case, ASNLOQpenTy pe aboveis
replaced with ASN1Obj ect (or ASNLTObj ect for C++). Thisisdefined inasnit ype. h asfollows:

typedef struct { /* generic table constraint value hol der */
ASN1OpenType encoded;
voi d* decoded,;
OSI NT32 i ndex; /* table index */

99

ASN.1 To C/C++ Mappings

} ASN1Obj ect;

This allows a value of any ASN.1 type to be represented in both encoded and decoded forms. Encoded form is the
open type form shown above. It is simply a pointer to a byte buffer and a count of the number of byesin the encoded
message component. The decoded form is a pointer to a variable of a specific type. The pointer is void because there
could be a potentially large number of different types that can be represented in the table constraint used to constrain
atypefield to agiven set of values. Thei ndex member of the typeisfor interna use by table constraint processing
functions to keep track of which row in atable is being referenced.

In addition to this change in how open types are represented, alarge amount of supporting code is generated to support
the table constraint validation process. This additional code is described below. Note that it is not necessary for the
average user to understand this asit is not for use by users in accomplishing encoding and decoding of messages. It is
only described for completeness in order to know what that additional codeis used for.

CLASS specification
All of the Class code will be generated in amodule class header file with the following filename format:
<Mbdul eNanme>Cl ass. h

In this definition, <Mbdul eNane> would be replaced with the name of the ASN.1 module name for this class
definition.

C Code generation

The C structure definition generated to model an ASN.1 class contains member variables for each of the fields within
the class.

For each of the following class fields, the corresponding member variable is included in the generated C structure
asfollows:

For aVaueField:
<TypeNane> <Fi el dName>;

For TypeField definitions, an encode and decode function pointer and type size field is generated to hold the
information of the type for the OpenType. If the -print option is selected, a print function pointer is also added.

i nt <Fi el dNane>Si ze;

int (*encode<FieldNane>) (...);
int (*decode<Fiel dNane>) (...);
voi d (*print<FieldNane>) (...);

For an Object Field:
<Cd assName>* <Fi el dName>;

For an ObjectSetField definition, an array of class definitionsis generated to hold the list of information objects.
<Cd assName>* <Fi el dName>;

In each of these definitions:

<Fi el dName> would be replaced with the name of the field (without the leading '&").

<TypeNane> would be replaced with the C type name for the ASN.1 Type.

<Cl assNane> would be replaced with the C type name of the class for the Information Object.

100

ASN.1 To C/C++ Mappings

As an example, consider the following ASN.1 class definition :

ATTRI BUTE ::= CLASS {
&Type,
& d OBJECT | DENTI FI ER UNI QUE }
W TH SYNTAX { &Type ID & d }

Thiswould result in the following definition in the C sourcefile:
typedef struct ATTRI BUTE ({
int TypeSi ze;
int (*encodeType) (OSCTXT* , void *, ASNlTagType);
int (*decodeType) (OSCTXT* , void *, ASNlTagType, int);
ASNLOBJI D i d;
}

C++ Code generation

The C++ abstract class generated to model an ASN.1 CLASS contains member variables for each of the fields within
the class. Derived information object classes are required to populate these variables with the values defined in the
ASN.1 information object specification. The C++ class also contains virtual methods representing each of the type
fields within the ASN.1 class specification. If the field is not defined to be OPTIONAL in the ASN.1 specification,
then it is declared to be abstract in the generated class definition. A class generated for an ASN.1 information object
that references this base class is required to implement these abstract virtual methods.

For each of the following CLASS fields, a corresponding member variable is generated in the C++ class definition
asfollows:

For a Vaue Field definition, the following member variable will be added. Also, an Equals() method will be added
if required for table constraint processing.

<TypeNane> <Fi el dNanme>;
inline OSBOOL i dEqual s (<TypeNane>* pval ue)

For a Type Field definition, avirtual method is added for each encoding rules typeto call the generated C encode and
decode functions. If -print is specified, a print method is also generated.

virtual int encode<ER><Fi el dNanme>
(OSCTXT* pctxt, ASNLITObject& object) { return O; }

virtual int decode<ER><Fi el dNanme>
(OSCTXT* pctxt, ASNLITObject& object) { return O; }

virtual void print<Fiel dName>
(ASN1Const Char Ptr nane, ASN1TObj ect & object) {}

For an Object Field:
cl ass <C assNane>* <Fi el dNane>;
In each of these definitions:
<Fi el dNane> would be replaced with the name of the field (without the leading '&").

<TypeNane> would be replaced with the C type name for the ASN.1 Type.

101

ASN.1 To C/C++ Mappings

< assNane> would be replaced with the C type name of the class for the Information Object.
<ER> would be replaced by an encoding rules type (BER, PER, or XER).

As an example, consider the following ASN.1 class definition :

ATTRI BUTE ::= CLASS {
&Type,
&Par amet er Type OPTI ONAL,
& d OBJECT | DENTI FI ER UNI QUE }

W TH SYNTAX { &Type ID & d }
Thiswould result in the following definition in the C++ sourcefile:

cl ass EXTERN ATTRI BUTE {
pr ot ect ed:
ASNLTOnj I d id;

ATTRI BUTE ();
publi c:
virtual int encodeBERType

(OSCTXT* pctxt, ASNLITObj ect & object) = O;
virtual int decodeBERType
(OSCTXT* pctxt, ASNLITObj ect & object) = O;

OSBOOL i sPar amet er TypePresent () {
i f(m Paranet er TypePresent) {return TRUE;} else {return FALSE;}
}

virtual int encodeBERParamneter Type
(OSCTXT* pctxt, ASNLTObject& object) { return O; }

virtual int decodeBERParaneter Type
(OSCTXT* pctxt, ASNLTObj ect& object) { return O; }

inline OSBOOL idEqual s (ASN1TOoj I d* pval ue)
{

}

return (0 == rtCpTCAO D (& d, pvalue));

.
This assumes that only BER or DER was specified as the encoding rules type.

First notice that member variables have been generated for the fixed-typefieldsin the definition. Theseincludethei d
field. Information object classes derived from this definition are expected to popul ate these fieldsin their constructors.

Also, virtual methods have been generated for each of the type fields in the class. Theseinclude the Ty pe fields. The
method generated for Ty pe is abstract and must be implemented in a derived information object class. The method
generated for the Par anet er Type field has a default implementations that does nothing. That is because it is a
optional field.

Also generated are Equal s methods for the fixed-type fields. These are used by the generated code to verify that data
in a generated structure to be encoded (or data that has just been decoded) matches the table constraint values. This
method will be generated only if it isrequired to check atable constraint.

OPTIONAL keyword

102

ASN.1 To C/C++ Mappings

Fields within a CLASS can be declared to be optional using the OPTIONAL keyword. This indicates that the field
is not required in the information object. An additional construct is added to the generated code to indicate whether
an optional field is present in the information object or not. This construct is a bit structure placed at the beginning
of the generated structure. This structure always has variable name 'm' and contains single-bit elements of the form
<fi el dname>Pr esent asfollows:

struct {
unsi gned <fi el d-nanmel>Present : 1,
unsi gned <fi el d-name2>Present : 1,

bomo

In this case, the fields included in this construct correspond to only those fields marked as OPTIONAL within the
CLASS. If aCLASS contains no optional fields, the entire construct is omitted.

For example, we will change the CLASS in the previous example to make one field optional:

ATTRI BUTE ::= CLASS {
&Type OPTI ONAL,
& d OBJECT | DENTI FI ER UNI QUE

}
In this case, the following C typedef is generated in C struct or C++ class definition:
struct {
unsi gned TypePresent : 1;
}m

When this structure is populated for encoding, the information object processing code will set TypePresent flag
accordingly to indicate whether the field is present or not.

In C++ code generation, an additional method is generated for an optional field as follows:

OSBOOL i s<Fi el dNanme>Present () {
if (m<Fiel dNanme>Present) {return TRUE;} else {return FALSE;}
}

Thisfunction is used to check if the field value is present in an information object definition.
Generation of New ASN.1 Assignmentsfrom CLASS Assignments:
During CLASS definition code generation, the following new assignments are created for C or C++ code generation:
1. A new Type Assignment is created for a TypeField's type definition, as follows:
<d assNanme><Fi el dName> :: = <Type>

Here O assNane isreplaced with name of the Class Assignment and Fi el dNarre is replaced with name of this
field. Typeisthe type definition in CLASSs TypeField.

Thistype is used as a defined type in the information object definition for an absent value of the TypeField. It is
also useful for generation of avalue for arelated Open Type definition in atable constraint.

2. A new Type Assignment is created for a Value Field or Value Set Field type definition as follows (if the type
definition is one of the following: ConstraintedType/ ENUMERATED / NamedList BIT STRING / SEQUENCE/
SET / CHOICE / SEQUENCE OF / SET OF):

<C assName><Fi el dName> ::= <Type>

103

ASN.1 To C/C++ Mappings

Here O assNane is replaced with the name of the CLASS assignment and Fi el dNane is replaced with name
of the ValueField or ValueSetField. Ty pe isthetype definitioninthe CLASS's ValueField or ValueSetField. This
type will appear as a defined type in the CLASS's ValueField or ValueSetField.

This new type assignment is used for compiler internal code generation purpose. It is not required for a user to
understand this logic.

3. A new Vaue Assignment is created for a VaueField's default value definition as follows:
<C assNane><Fi el dNane>_default <Type> ::= <Val ue>

Here O assNane isreplaced with name of the Class Assignment and Fi el dNane is replaced with name of this
VaueField. Val ue isthe default value in the Class's ValueField and Ty pe isthetypein Class's VaueField.

Thisvalueis used as a defined value in the information object definition for an absent value of the field. This new
value assignment is used for compiler internal code generation purpose. It is not required for user to understand
thislogic.

ABSTRACT-SYNTAX and TYPE-IDENTIFIER

The ASN.1 ABTRACT-SYNTAX and TYPE-IDENTIFIER classes are useful ASN.1 definitions. These classes are
described using the following ASN.1 definitions:

TYPE- | DENTI FI ER :: = CLASS {
& d OBJECT | DENTI FI ER UNI QUE,
&Type
}
W TH SYNTAX { &Type | DENTIFIED BY & d }
ABSTRACT- SYNTAX ::= CLASS {
& d OBJECT | DENTI FI ER UNI QUE,
&Type,

&roperty BI T STRING { handl es-invalid-encodi ng(0)} DEFAULT {}

}
W TH SYNTAX {

&Type | DENTI FI ED BY & d [HAS PROPERTY &property]
}

The ASN1C compiler generates code for these constructs when they are referenced in the ASN.1 source file that is
being compiled. The generated code for these constructsiswrittentothe Rt Cl ass. hand. ¢/ . cpp sourcefiles.

I nfor mation Object

Information Object code will be generated in a header and source file with a C struct / C++ class to hold the values.
The name of the header and source file are of the following format:

<Modul eNanme>Tabl e. h
<Mbdul eNane>Tabl e. c/ cpp

In this definition, <Modul eNane> would be replaced with the name of the ASN.1 module in which the information
object is defined.

C Code Generation

For C, aglobal variableisgenerated to hold the information object definition. Thisisvery similar to the code generated
for avalue definition.

104

ASN.1 To C/C++ Mappings

An example of aninformation object definition that isderived fromthe ASN.1 ATTRIBUTE classaboveisasfollows:

name ATTRIBUTE :: = {
WTH SYNTAX Visible String
I D {011}}

This results in the generation of the following C constant:
ATTRI BUTE nane,

Code generated in information object initialization function:
nane. TypeSi ze = si zeof (_nane_Type);
nane. encodeType &asnlE__nane_Type,

nane. decodeType &asnlD_name_Type;
nane. i d. num ds =

3;
nane. i d.subid[0] = O;
nane. i d.subid[1] = 1;
nane.id.subid[2] = 1;

C++ Code Generation

The C++ classes generated for ASN.1 information objects are derived from the ASN. 1 class abjects. The constructors
in these classes popul ate the fixed-type field member variables with the values specified in the information object. The
classes also implement the virtual methods generated for the information object type fields. All non-optional methods
are required to be implemented. The optional methods are only implemented if they are defined in the information
object definition.

An example of an information object definition that is derived from the ASN.1 class above is as follows:

nane ATTRIBUTE :: = {
W TH SYNTAX Vi si bl Stri ng
ID {011} }

This results in the generation of the following C++ class:

cl ass EXTERN nane : public ATTRI BUTE {
public:
nane() ;

virtual int encodeBERType
(OSCTXT* pctxt, ASNLTObj ect & object);

virtual int decodeBERType
(OSCTXT* pctxt, ASNLTObj ect & object);

} o

The constructor implementation for this class (not shown) setsthe fixed typefields (i d) to the assigned values({ 0 1
1}). The class also implements the virtual methods for the type field virtual methods defined in the base class. These
methods simply call the BER encode or decode method for the assigned type (this exampl e assumes -ber was specified
for code generation - other encode rules could have been used as well).

Generated Type Assignments

If the information object contains an embedded type definition, it is extracted from the definition to form a new type
to be added to the generated C or C++ code. The format of the new type nameis asfollows:

105

ASN.1 To C/C++ Mappings

<Onj ect Nanme><Fi el dNanme>

where <Cbj ect Nane> isreplaced with the information object name and <Fi el dNane> isreplaced with the name
of the field from within the object.

Information Object Set

Table constraint processing code to support Information Object Setsis generated in a header and source filewitha C
struct / C++ class to hold the values. The name of the header and source file are of the following format:

<Mbdul eNane >Tabl e. h
<Mbdul eNane >Tabl e. ¢/ cpp

In this definition, <Mbdul eNane> would be replaced with the name of the ASN.1 module in which the information
object is defined.

C Code Generation

A C global variable is generated containing a static array of values for the ASN.1 CLASS definition. Each structure
inthe array isthe equivalent C structure representing the corresponding ASN.1 information object

An example of an Information Object Set definition that is derived from the ASN.1 ATTRIBUTE class above is as
follows:

SupportedAttri butes ATTRIBUTE ::= { nane | comobnNane }
Thisresultsin the generation of the following C constant:

ATTRI BUTE SupportedAttributes[2];
i nt SupportedAttributes_Size = 2;

Code generated in the Information Object Set initialization function:

SupportedAttri butes[0]. TypeSi ze = sizeof (_nane_Type);

SupportedAttri butes[0].encodeType = &snlE_nane_Type;
SupportedAttri butes[0].decodeType = &snlD_nane_Type;
SupportedAttributes[0].id.nunids = 3;

31
SupportedAttri butes[0].id.subid[0] = O;
SupportedAttributes[0].id.subid[1] = 1;
SupportedAttributes[0].id.subid[2] = 1;

SupportedAttributes[1l]. TypeSi ze = sizeof (_conmonNane_Type);

SupportedAttri butes[1l].encodeType = &snlE__conmonName_Type;
SupportedAttri butes[1l].decodeType = &snlD__conmonName_Type;
SupportedAttributes[1].id.nunids = 3;
SupportedAttributes[1].id.subid[O0]
SupportedAttributes[1].id.subid[1]
SupportedAttributes[1].id.subid[?2]
SupportedAttributes[1].id.subid[3]

i w
PR PO

C++ Code Generation

In C++, ASN.1 information object sets are mapped to C++ classes. In this case, a C++ singleton class is generated.
This class contains a container to hold an instance of each of the ASN.1 information object C++ objects in a static
array. The class also contains an object lookup method for each of the key fields. Key fields are identified in the class
as either a) fields that are marked unique, or b) fields that are referenced in table constraints with the '@' notation.

106

ASN.1 To C/C++ Mappings

The generated constructor initializes all required values and information objects.

An example of an information object set that uses the information object class defined above is as follows:
SupportedAttri butes ATTRIBUTE ::= { nane | comobnNane }

Thisresultsin the generation of the following C++ class:

cl ass EXTERN SupportedAttributes {
pr ot ect ed:
ATTRI BUTE* ntbj ect Set [2] ;
const size_ t mNunObj ects;
static SupportedAttributes* nplnstance;
SupportedAttri butes (OSCTXT* pctxt);

public:
ATTRI BUTE* | ookupOhj ect (ASNITOojld _id);
static SupportedAttributes* instance(OSCTXT* pctxt);

}

The mCbj ect Set array is the container for the information object classes. These objects are created and this array
populated in the class constructor. Note that this is a singleton class (as evidenced by the protected constructor and
i nst ance methods). Therefore, the object set array is only initialized once the first time the i nst ance method

isinvoked.

The other method of interest is the | ookupQbj ect method. This was generated for the id field because it was
identified as akey field. This determination was made becausei d was declared to be UNIQUE in the class definition
above. A field can also be determined to be akey field if it is referenced via the @notation in atable constraint in a

standard type definition. For example, in the following element assignment:
argunent OPERATI ON. &Type ({SupportedAttri butes}{ @pcode})

theopcode element's ATTRIBUTE classfield isidentified as a key field.

107

Chapter 4. XSD TO C/C++ TYPE MAPPINGS

ASN1C can accept as input XML schema definition (XSD) specifications in addition to ASN.1 specifications. If an
XSD specification is compiled, the compiler does internal translations of the XSD typesinto equivalent ASN.1 types
as specified in ITU-T standard X.694. The following sections provide information on the tranglations and the C/C++
type definitions generated for the different XSD types.

XSD Simple Types

The trandation of XSD simple typesinto ASN.1 typesis straightforward; in most cases, a one-to-one mapping from
XSD simple type to ASN.1 primitive type exists. The following table summarizes these mappings:

XSD Simple Type ASN.1 Type

anyURI UTF8String

base64Binary OCTET STRING

boolean BOOLEAN

byte INTEGER (-128..127)

date UTF8String

datetime UTF8String

decimal UTF8String

double REAL

duration UTF8String

ENTITIES SEQUENCE OF UTF8String

ENTITY UTR8String

float REAL

gDay UTF8String

gMonth UTF8String

gMonthDay UTF8String

gYear UTF8String

gYearMonth UTF8String

hexBinary OCTET STRING

ID UTF8String

IDREF UTF8String

IDREFS SEQUENCE OF UTF8String

integer INTEGER

int INTEGER (-2147483648..2147483647)

language UTF8String

long INTEGER
(-9223372036854775808..9223372036854775807)

Name UTF8String

NCName UTF8String

negativel nteger INTEGER (MIN..-1)

108

XSD TO C/C++ TYPE MAPPINGS

XSD Simple Type ASN.1 Type

NMTOKEN UTRF8String

NMTOKENS SEQUENCE OF UTF8String
nonNegativel nteger INTEGER (0..MAX)
nonPositivel nteger INTEGER (MIN..0)
normalizedString UTF8String

positivel nteger INTEGER (1..MAX)

short INTEGER (-32768..32767)
string UTF8String

time UTF8String

token UTF8String

unsignedByte INTEGER (0..255)
unsignedShort INTEGER (0..65535)
unsignedint INTEGER (0..4294967295)
unsignedLong INTEGER (0..18446744073709551615)

The C/C++ mappings for these types can be found in the section above on ASN.1 type mappings.

XSD Complex Types

XSD complex types and selected simple types are mapped to equivalent ASN.1 constructed types. In some cases,
simplifications are done to make the generated code easier to work with. The following are mappings for specific
XSD complex types.

xsd:sequence

The XSD sequence type is normally mapped to an ASN.1 SEQUENCE type. The following items describe special
processing that may occur when processing a sequence definition:

« If the resulting SEQUENCE type contains only a single repeating element, it is converted into a SEQUENCE OF
type. This can occur if either the sequence declaration has a maxOccurs attribute with a value greater than one or
if the single element inside has a similar maxOccurs attribute.

« If the sequence contains an element that has a‘ minOccurs="0"" attribute declaration, the element is mapped to be
an OPTIONAL element in the resulting ASN.1 SEQUENCE assignment.

« If the sequence contains a repeating element (denoted by having a‘ maxOccurs’ attribute with a value greater than
one), then a SEQUENCE OF type for this element is used in the ASN.1 SEQUENCE for the element.

« If attributes are defined within the complex type container containing the sequence group, attributes are defined,
these attribute declarations are added to the resulting ASN.1 as element declarations as per the X.694 standard. In
XML encodings, these appear as attributes in the markup; in binary encodings, they are elements.

Example

<xsd: conpl exType nanme="Nane">
<xsd: sequence>
<xsd: el ement nanme="gi venName" type="xsd:string "/>
<xsd: el ement nane="initial" type="xsd:string" m nCccurs="0"/>
<xsd: el ement nanme="fam | yNane" type="xsd:string"/>

109

XSD TO C/C++ TYPE MAPPINGS

</ xsd: sequence>
</ xsd: conpl exType>

would result in the creation of the following C type definition:

t ypedef struct EXTERN Nane {

struct {
unsigned initial Present : 1;

}om
const OSUTF8CHAR* gi venNane;
const OSUTF8CHAR* initial;
const OSUTF8CHAR* fani | yNane;

} Name;

xsd:all

The xsd:all type is similar to an ASN.1 SET in that it alows for a series of elements to be specified that can be
transmitted in any order. However, due to sometechnicalitieswith thetype, it ismodeled in X.694 to bea SEQUENCE
type with a special embedded array called order. This array specifiesthe order in which XML elements were received
if XML decoding of an XML instance was done. If this information were then retransmitted in binary using BER or
PER, the order information would be encoded and transmitted followed by the SEQUENCE elements in the declared
order. If the data were then serialized back into XML, the order information would be used to put the elements back
in the same order in which they were originally received.

The mapping to C type would be the same as for xsd: sequence above with the addition of the special order array. An
example of thisisasfollows:

<xsd: conpl exType nanme="Nane">
<xsd:al | >
<xsd: el ement nane="gi venNane" type="xsd:string "/>
<xsd: el ement nane="initial" type="xsd:string"/>
<xsd: el ement nane="fani | yNane" type="xsd:string"/>
</xsd:all >
</ xsd: conpl exType>

would result in the creation of the following C type definition:

typedef struct EXTERN Nanme {

struct {

OSUI NT32 n;

OSUI NT8 el enf 3];
} _order;

const OSUTF8CHAR* gi venNane;

const OSUTF8CHAR* initial;

const OSUTF8CHAR* fani | yNane;
} Nane;

In this case, the _order element is for the order element described earlier. Normally, the user does not need to deal
with this item. When the generated initialization is called for the type (or C++ constructor), the array will be set to
indicate elements should be transmitted in the declared order. If XML decoding is done, the contents of the array will
be adjusted to indicate the order the elements were received in.

xsd:choice and xsd:union

The xsd: choice typeis converted to an ASN.1 CHOICE type. ASN1C generates exactly the same code. For example:

110

XSD TO C/C++ TYPE MAPPINGS

<xsd: conpl exType nanme="NanePart">
<xsd: choi ce>
<xsd: el ement nanme="gi venName" type="xsd:string "/>
<xsd: el ement nane="initial" type="xsd:string"/>
<xsd: el ement nanme="fam | yNane" type="xsd:string"/>
</ xsd: choi ce>
</ xsd: conpl exType>

in this case, the generated code is the same asfor ASN.1 CHOICE:

#define T_NanePart_ gi venNane 1
#define T _NanePart _initial 2
#define T _NanePart fam | yNane 3

typedef struct EXTERN NanePart {
int t;

uni on {
[*t =1 %/
const OSUTF8CHAR* gi venNang;
[*t =2 %/
const OSUTF8CHAR* initial;
[*t =3 %/
const OSUTF8CHAR* fani | yNane;

}ous

} NanmePart;

Similar to xsd:choice is xsd:union. The main difference is that xsd:union alternatives are unnamed. As specified in
X.694, special names are generated in this case using the base name “alt”. The generated name for the first member
is“at”; names for successive members are “alt-n” where n is a sequential number starting at 1. An example of this
naming is as follows:

<xsd: si npl eType nanme="M/Type" >
<xsd: uni on nmenber Types="xsd: i nt xsd: | anguage"/ >
</ xsd: si npl eType>
This generates the following C type definition:

#define T_MyType_alt 1
#define T_MyType_ alt 1 2

typedef struct EXTERN MyType {
int t;

uni on {
[*t =1 %
OSINT32 alt;
[*t =2 %]
const OSUTF8CHAR* alt 1;
}ous
} M Type;

Repeating Groups

Repeating groups are specified in XML schema definitions using the minOccurs and maxOccurs facets on sequence
or choice definitions. These items are converted to ASN.1 SEQUENCE OF types.

111

XSD TO C/C++ TYPE MAPPINGS

An example of arepeating group is asfollows:

<xsd: conpl exType nanme="Nanes" >
<xsd: sequence maxQCccur s="unbounded" >
<xsd: el ement nane="gi venNane" type="xsd:string "/>
<xsd: el ement nane="initial" type="xsd:string"/>
<xsd: el ement nane="fanil yNane" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>

in this case, ASN1C pulls the group out to form a type of form <name>-element where <name> would be replaced
with the complex type name. In this case, the name would be Names-element. A SEQUENCE OF type isthen formed

based on this newly formed type (SEQUENCE OF Names-element). The generated C code corresponding to thisis
asfollows:

typedef struct EXTERN Nanes_el ement {
const OSUTF8CHAR* gi venNane;
const OSUTF8CHAR* initial;
const OSUTF8CHAR* fani | yNane;

} Nanmes_el enent;

/* List of Nanes_el ement */
t ypedef OSRTDLi st Names;

Thisgenerated codeis not identical to the code generated by performing an X.694 translation to ASN.1 and compiling
the resulting specification with ASN1C; it is much simpler. The generated encoder and decoder make the necessary
adjustments to ensure that the encodings are the same regardless of the process used.

Repeating Elements

It is common in XSD to specify that elements within a composite group can occur a multiple number of times. For
example:

<xsd: conpl exType name="Nanme" >
<xsd: sequence>
<xsd: el emrent name="gi venNane" type="xsd:string "/>
<xsd: el emrent name="initial" type="xsd:string"/>
<xsd: el emrent name="fam | yName" type="xsd:string" nmaxCccurs="2"/>
</ xsd: sequence>
</ xsd: conpl exType>

In this case, the f ami | yNane element may occur one or two times. (If mi nQccur s is absent, its default value
is 1.) X.694 specifies that a SEQUENCE OF type be formed for this element and then the element renamed to
fam | yName- | i st to reference this element. The C code produced by this transformation is as follows:

t ypedef struct EXTERN Nane {
const OSUTF8CHAR* gi venNane;
const OSUTF8CHAR* initial;
struct {

OSUI NT32 n;
const OSUTF8CHAR* el enf 2];
} fam | yNane_|ist;
} Name;

In this case, an array was used to represent f ani | yNanme_| i st . In others, alinked list might be used to represent
the repeating item.

112

XSD TO C/C++ TYPE MAPPINGS

xsd:list

Another way to represent repeating items in XSD is by using xsd:list. Thisis asimple type in XSD that refersto a
space-separated list of repeating items. When the list is converted to ASN.1, it is modeled as a SEQUENCE OF type.

For example:
<xsd: si npl eType nanme="M/Type" >
<xsd:list itemlype="xsd:int"/>
</ xsd: si npl eType>

results in the generation of the following C type:

typedef struct EXTERN MyType {

OSUI NT32 n;
OSI NT32 *el em
} W Type;

Specia codeisadded tothe generated XML encode and decode function to ensure the datais encoded in spaceseparated
list form instead of as XML elements.

xsd:any

Thexsd: any elementisawildcard placeholder that all ows an occurence of any element definition to occur at agiven
location. It is similar to the ASN.1 open type and can be modeled as such; however, ASN1C uses a special type for
these items (OSXSDANY) that allows for either binary or xml textual datato be stored. This allows items to be stored
in binary form if binary encoding rules are being used and XML text form if XML text encoding is used.

The definition of the OSXSDANny typeisasfollows:

typedef enum { OSXSDAny_ bi nary, OSXSDAny_ xm Text } OSXSDAnyAlt;
typedef struct OSXSDAny {
OSXSDAnyAl t t;
uni on {
OSOpenType* bi nary;
const OSUTF8CHAR* xm Text;
Pou
} OSXSDAny;

The t value is set to either OSXSDANny _bi nary or OSXSDAny _xm Text to identify the content type. If binary
decoding is being done (BER, DER, CER, or PER), the decoder will populate the bi nar y alternative element; if
XML decoding is being done, the xm Text field is populated. It is possible to perform XML-to-binary transcoding
of amulti-part message (for example, a SOAP message) by decoding each part and then reencoding in binary form
and switching the content type within this structure.

An example of a sequence with asingle wildcard element is as follows:

<xsd: conpl exType name="M/Type" >
<xsd: sequence>
<xsd: el ement nanme="El enent One" type="xsd:string"/>
<xsd: el ement nane="El enent Two" type="xsd:int"/>
<xsd: any processContents="1ax"/>
</ xsd: sequence>
</ xsd: conpl exType>

113

XSD TO C/C++ TYPE MAPPINGS

The generated C type definition is as follows:

t ypedef struct EXTERN MyType {
const OSUTF8CHAR* el enent One;
OSI NT32 el enent Two;

OSXSDAny el em

} MyType;

As per the X.694 standard, the element was given the standard element name el em

XML Attribute Declarations

XML attribute declarationsin XSD are translated into ASN.1 elementsthat are added to a SEQUENCE type. In binary
encodings, there is no way to tell encoded attributes apart from encoded elements. They just represent data fieldsin
ASN.1. For XML, special logic isadded to the generated XML encoders and decoders to encode and decode the items
as attributes.

An example of an attribute being added to an xsd:sequence declaration is as follows:

<xsd: conpl exType nane="Nane" >
<xsd: sequence>
<xsd: el ement nane="gi venNane" type="xsd:string "/>
<xsd: el ement nane="initial" type="xsd:string"/>
<xsd: el ement nane="fani | yNane" type="xsd:string"/>
</ xsd: sequence>
<xsd:attribute name ="occupation" type="xsd:string"/>
</ xsd: conpl exType>

Thisresultsin the following C type definition being generated:

t ypedef struct EXTERN Nane {
struct {
unsi gned occupati onPresent : 1;
}m
const OSUTF8CHAR* occupati on;
const OSUTF8CHAR* gi venNarre;
const OSUTF8CHAR* initial;
const OSUTF8CHAR* f ami | yNane;
} Name;

The attribute is marked as optional (hencetheoccupat i onPr esent flagin thebit mask) since XML attributes are
optional by default. The attribute declarations also occur before the element declarations in the generated structure.

Attributes can also be added to a choice group. Inthiscase, an ASN.1 SEQUENCE isformed consisting of the attribute
elements and an embedded element, choi ce, for the choice group. An example of thisisasfollows:

<xsd: conpl exType name="NanePart">
<xsd: choi ce>
<xsd: el ement nane="gi venNane" type="xsd:string "/>
<xsd: el ement nane="initial" type="xsd:string"/>
<xsd: el ement nane="fani | yNane" type="xsd:string"/>
</ xsd: choi ce>
<xsd:attribute name ="occupation" type="xsd:string"/>
</ xsd: conpl exType>

Thisresultsin the following C type definitions being generated:

114

XSD TO C/C++ TYPE MAPPINGS

#defi ne T_NanmePart _choi ce_gi venNamne 1
#define T_NanmePart choice_initial 2
#defi ne T_NamePart_choi ce_fam | yNane 3

typedef struct EXTERN NanePart_choice {
int t;

uni on {
[*t =1 %
const OSUTF8CHAR* gi venNane;
[*t =2 %
const OSUTF8CHAR* initial;
[*t =3 %/
const OSUTF8CHAR* fami | yName;
Py

} NanePart _choi ce;

typedef struct EXTERN NanePart {
struct {
unsi gned occupati onPresent : 1;
}m
const OSUTF8CHAR* occupati on;
NanmePart choi ce choi ce;
} NanePart;

In this case, occupat i on attribute declaration was added as before. But the choi ce group became a separate
embedded element called choi ce which the ASN1C compiler pulled out to create the NanmePart _choi ce
temporary type. Thistypewasthen referenced by thechoi ce elementinthegenerated typedefinitionfor NarmrePar t .

xsd:anyAttribute

An xsd:anyAttribute declaration is the attribute equivalent to the xsd:any wildcard element declaration described
earlier. The main difference is that a single xsd:anyAttribute declaration indicates that any number of undeclared
attributes may occur whereas xsd:any without a maxOccurs facet indicates that only a single wildcard element may

occur at that position.

X.694 model s xsd: anyAttribute asa SEQUENCE OF UTF83ring in ASN. 1. Each string in the sequence is expected to
beinanane=' val ue’ format. Thegenerated C typefor thisissimply alinked list of character strings. For example:

<xsd: conpl exType name="M/Type" >
<xsd: anyAttribute processContents="Iax"/>
</ xsd: conpl exType>

resultsin the following C type:

typedef struct EXTERN MyType {
/* List of const OSUTF8CHAR* */
OSRTDLi st attr;

} MyType;

To populate avariable of thistype for encoding, onewould add name="' val ue’ stringsto thelist for each attribute.

For example:

MyType nyVar,
rtxDListlnit (&wyVar.attr);

rt xDLi st Append (&ctxt, &mryVar.attr, OSUTF8(“attr1='valuel ”));

115

XSD TO C/C++ TYPE MAPPINGS

rt xDLi st Append (&ctxt, &mryVar.attr, OSUTF8(“attr2="value2' ”));

and so on.

xsd:simpleContent

The xsd:simpleContent type is used to either extend or restrict an existing simple type definition. In the case of
extension, the common use is to add attributes to a simple type. ASN1C will generate a C structure in this case with
an element called base that is of the simple type being extended. An example of thisis asfollows:

<xsd: conpl exType name="Si zeType">
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd:integer">
<xsd: attribute name="systeni type ="xsd:token"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

thisresultsin the following generated C type definition:

typedef struct EXTERN SizeType {
struct {
unsi gned system Present : 1;
}m
const OSUTF8CHAR* system ;
OSI NT32 base;
} SizeType;

Inthiscase, theattribute sy st emwasadded first (notethe name changetosyst em_ whichwastheresult of syst em
being determined to be a C reserved word). The base element is then added and is of type OSI NT32, the default

type used for xsd: i nt eger .

In the case of a simple content restriction, the processing issimilar. A complete new separate typeis generated even if
theresult of therestriction leavesthe original type unaltered (i.e. therestriction is handled by code within the generated
encode and/or decode function). This proves to be a cleaner solution in most cases than trying to reuse the type being
restricted. For example:

<xsd: conpl exType name="Smal | Si zeType" >
<xsd: si npl eCont ent >
<xsd:restriction base="Si zeType" >
<xsd: m nl ncl usi ve val ue="2"/>
<xsd: max| ncl usi ve val ue="6"/>
<xsd:attribute nane="systent type ="xsd:token" use="required"/>
</ xsd:restriction>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

This applies arestriction to the SizeType that was previously derived. In this case, the generated C type is asfollows:

typedef struct EXTERN Smal | Si zeType {
const OSUTF8CHAR* system ;
CSI NT32 base;

} Smal | Si zeType;

In this case, the type definition is almost identical to the original Si zeType. The only exception is that the bit mask
field for optional elements is removed—a consequence of the use="r equi r ed” attribute that was added to the

116

XSD TO C/C++ TYPE MAPPINGS

syst emattributedeclaration. Thehandling of them nl ncl usi ve andmax| ncl usi ve attributesishandledinside
the generated encode and decode function in the form of constraint checks.

xsd:complexContent

The xsd: complexContent type is used to extend or restrict complex types in different ways. It is similar to deriving
types from base types in higher level programming languages such as C++ or Java. A common usage pattern in the
case of extension is to add additional elements to an existing sequence or choice group. In this case, a new type is
formed that contains all elements—those declared in the base definition and those in the derived type. Also generated
is a new type with the name <baseType>_deri vati ons which isachoice of all of the different derivations of
the base type. Thisis used wherever the complex content base type is referenced to allow any derivation of the type
to be used in a message.

An example of thisisasfollows:

<xsd: conpl exType name="MType">
<xsd: sequence>
<xsd: el ement nanme="El enent One" type="xsd:string"/>
<xsd: el ement nane="El enent Two" type="xsd:int"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nanme="M/Ext endedType">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="M/Type" >
<xsd: sequence>
<xsd: el ement nane="El enent Three" type="xsd:string"/>
<xsd: el ement nane="El enment Four" type="xsd:int"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: compl exCont ent >
</ xsd: conpl exType>

The base typein thiscaseis My Type and it is extended to contain two additional elementsin MyExt endedType.
The resulting C type definitionsfor My Type, MyExt endedType, and the special derivations type are as follows:

typedef struct EXTERN MyType {
const OSUTF8CHAR* el enent One;
OSI NT32 el enent Two;

} MyType;

typedef struct EXTERN MyExt endedType {
const OSUTF8CHAR* el erment One;
OSI NT32 el enent Two;
const OSUTF8CHAR* el ement Thr ee;
OSI NT32 el enent Four ;
} MyExt endedType;

#define T_MyType_derivations_nyType 1
#define T_MyType_derivati ons_nyExt endedType 2

typedef struct EXTERN MyType_derivations ({
int t;
uni on {

117

XSD TO C/C++ TYPE MAPPINGS

[* t =1 %/
M/ Type *nyType;
/[*t =2 */
M/Ext endedType *nyExt endedType;
Py
} MyType_derivati ons;

The derivations type is a choice between the base type and al derivations of that base type. It will be used wherever
the base type is referenced. This makes it possible to use an instance of the extended type in these places.

The case of restriction is handled in a similar fashion. In this case, instead of creating a new type with additional
elements, anew typeiscreated with all restrictionsimplemented. Thistype may beidentical to the base type definition.

Substitution Groups

A substitution group is similar to a complex content type in that it allows derivations from a common base. In this
case, however, the baseis an XSD element and the substitution group allows any of a set of elements defined to bein
the group to be used in the place of the base element. A simple example of thisis asfollows:

<xsd: el ement nane="MEl ement" type="MType"/>
<xsd: conpl exType name="M/Type" >
<xsd: sequence>
<xsd: el ement ref="M/BaseEl emrent"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el ement nane="MBaseEl ement" type="xsd:string"/>

<xsd: el ement nane="M/Ext endedEl emrent" type="xsd:string" substitutionG oup="MBaseEl enen

Inthiscase, the global element MyEl enrent references My Ty pe which isdefined as a sequence with asingle element
reference to MyBaseEl enent . MyBaseEl enent is the head element in a substitution group that also includes
MyExt endedEl enent . Thismeans My Ty pe can either reference MyBaseEl enent or MyExt endedEl enent .

As per X.694, ASN1C generates a special type that acts as a container for al the different possible elements in the
substitution group. Thisis a choice type with the name <BaseEl enment >_gr oup where<BaseEl enent > would
be replaced with the name of the subsitution group head element (MyBaseEl enent in this case).

The generated C type definitions for the above XSD definitions follow:
typedef const OSUTF8CHAR* MyBaseEl enent;

typedef const OSUTF8CHAR* MyExt endedEl enent;

#defi ne T_MyBaseEl ement _group_mnyBaseEl enent 1
#def i ne T_MyBaseEl enent _gr oup_mnyExt endedEl ement 2

typedef struct EXTERN MyBaseEl ement _group {

int t;
uni on {

[*t =1 %

MyBaseEl ement mnmyBaseEl enent ;

[*t =2 %

MyExt endedEl enent nyExt endedEl enent ;
P

} MyBaseEl enent _gr oup;

118

XSD TO C/C++ TYPE MAPPINGS

typedef struct EXTERN MyType {
MyBaseEl ement _gr oup nyBaseEl enment ;

} MType;
typedef MyType M/El ement;

Inthiscase, if MVEl enent or My Type isused, it can be populated with either base element or extended element data.

119

Chapter 5. Generated C/C++ Source Code
Header (.h) File

The generated C or C++ include file contains a section for each ASN.1 production defined in the ASN.1 source file.
Different items will be generated depending on whether the selected output code is C or C++. In general, C++ will
add some additional items (such as a control class definition) onto what is generated for C.

The following items are generated for each ASN.1 production:

» Tag value constant

« Choice tag constants (CHOICE type only)

» Named hit number constants (BIT STRING type only)

» Enumerated type option values (ENUMERATED or INTEGER type only)

» Ctypedefinition

» Encode function prototype

 Decode function prototype

 Other function prototypes depending on selected options (for example, print)
o C++ control class definition (C++ only)

A sample section from a C header fileis asfollows:

/**/

/* */
/* Enpl oyeeNunber */
/* */

/**/

#def i ne TV_Enpl oyeeNunber (TM APPL| TM PRI M 2)
typedef OSI NT32 Enpl oyeeNumnber ;

EXTERN i nt asnlE_Enpl oyeeNunber (OSCTXT* pctxt,
Enpl oyeeNunber *pval ue, ASN1TagType taggi ng);

EXTERN i nt asnlD _Enpl oyeeNunber (OSCTXT* pctxt,
Enpl oyeeNunber *pval ue, ASNl1TagType taggi ng, int |ength);

This corresponds to the following ASN.1 production specification:

Enpl oyeeNunber ::= [APPLI CATION 2] | MPLICI T | NTEGER

In thisdefinition, TV_EmployeeNumber isthe tag constant. Doing alogical OR on the class, form, and identifier fields
forms this constant. This constant can be used in a comparison operation with atag parsed from a message.

Thefollowing line;

120

Generated C/C++ Source Code

typedef OSI NT32 Enpl oyeeNumnber ;

declares EmployeeNumber to be of an integer type (note: OSINT32 and other primitive type definitions can be found
in the 0sSysTypes.h header file).

asnlE_EmployeeNumber and asn1D_EmployeeNumber are function prototypes for the encode and decode functions
respectively. These are BER function prototypes. If the -per switch is used, PER function prototypes are generated.
The PER prototypes begin with the prefix asn1PE_and asn1PD _for encoder and decoder respectively. XER function
prototypes begin with asn1XE_and asn1XD _.

A sample section from a C++ header file for the same production is as follows:

/**/

/* */
/* Enpl oyeeNunber */
/* */

/**/

#def i ne TV_Enpl oyeeNunber (TM_APPL| TM PRI M 2)
typedef OSI NT32 ASNLT_Enpl oyeeNunber;

cl ass EXTERN ASNL1C_Enpl oyeeNunber
publ i c ASN1CType
{
pr ot ect ed:
ASNLT_Enpl oyeeNunber & nsgDat a;
publi c:
ASN1C _Enpl oyeeNunber (ASNLT_Enpl oyeeNunber & dat a) ;
ASN1C Enpl oyeeNunber (
ASN1MessageBuf f er| F& nsgBuf, ASNLT_Enpl oyeeNunber & dat a) ;

/1 standard encode/ decode nethods (defined in ASN1CType base cl ass):
/1 int Encode ();
/1 int Decode ();

/'l stream encode/ decode net hods:
i nt EncodeTo (ASNlMessageBufferl| F& nsgBuf);
i nt DecodeFrom (ASN1MessageBuffer| F& nmsgBuf);

bl

EXTERN i nt asnlE_Enpl oyeeNunber (OSCTXT* pct xt,
ASNLT_Enpl oyeeNunber *pval ue, ASN1TagType taggi ng);

EXTERN i nt asnlD Enpl oyeeNunber (OSCTXT* pct xt,
ASNLT_Enpl oyeeNunber *pval ue, ASN1TagType taggi ng, int |ength);

Note the two main differences between this and the C version:

1. Theuse of the ASNIT _ prefix on the type definition. The C++ version uses the ASN1T _ prefix for the typedef and
the ASN1C prefix for the control class definition.

2. Theinclusion of the ASN1C_EmployeeNumber control class.

As of ASN1C version 5.6, control classes are not automatically generated for all ASN.1 types. The only types they
are generated for are those determined to be Protocol Data Units (or PDU’ s for short). A PDU is atop-level message

121

Generated C/C++ Source Code

type in a specification. These are the only types control classes are required for because the only purpose of a control
classisto provide the user with asimplified calling interface for encoding and decoding a message. They are not used
in any of the ASN1C internally generated logic (the exception to this rule is the XER / XML encoding rules where
they are used internally and still must be generated for all types).

A typeisdetermined to be aPDU in two different ways:
1. If itisexplicitly declared to be PDU viathe <isPDU/> configuration setting or -pdu command-line option.
2. If no explicit declarations exist, atype is determined to be a PDU if it is not referenced by any other types.

In the employee sample program, EmployeeNumber would not be considered to be a PDU because it is referenced as
an element within the Employee production. For the purpose of this discussion, we will assume EmployeeNumber was
explicitly declared to be a PDU via a configuration setting or command-line specification.

ASN1C_EmployeeNumber is the control class declaration. The purpose of the control class is to provide a linkage
between the message buffer object and the ASN.1 typed object containing the message data. The class provides
methods such as EncodeTo and DecodeFrom for encoding and decoding the contents to the linked objects. It also
provides other utility methods to make populating the typed variable object easier.

ASNI1C aways adds an ASN1C _prefix to the production name to form the class name. Most generated classes are
derived from the standard ASN1CType base class defined in asn1Message.h. The following ASN.1 types cause code
to be generated from different base classes:

» BIT STRING — The generated control classis derived from the ASN1CBItSr class

« SEQUENCE OF or SET OF with linked list storage — The generated control class is derived from the
ASN1CSeqOfList base class.

» Defined Type — The generated control class for defined types is derived from the generated base class for the
reference type. For example, if we have A ::= INTEGER and B ::= A, then B is a defined type and would inherit
from the base class generated for A (classASN1C B : public ASNIC A { ...).

These intermediate classes are also derived from the ASN1CType base class. Their purpose is the addition of
functionality specific to the given ASN.1 type. For example, the ASN1CBItSr control class provides methods for
setting, clearing and testing bits in the referenced bit string variable.

In the generated control class, the msgData member variable is a reference to a variable of the generated type. The
constructor takestwo arguments—an Asn1MessageBuffer | F (message buffer interface) object referenceand areference
to avariable of the datatype to be encoded or decoded. The message buffer object isawork buffer object for encoding
or decoding. The interface reference can also be used to specify a stream. Stream classes are derived from this same
base class. The data type reference is areference to the ASNIT_ variable that was generated for the data type.

EncodeFrom and DecodeTo methods are declared that wrap the respective compiler generated C encode and decode
stream functions. Standard Encode and Decode methods exist in the ASN1CType base class for direct encoding and
decoding to a memory buffer. Command-line options may cause additional methods to be generated. For example,
if the —print command line argument was specified; a Print method is generated to wrap the corresponding C print
function.

Specification of the XML encoding rules option (-xer) causes a number of additional methods to be generated
for constructed types. These additional methods are implementations of the standard Simple API for XML (SAX)
content handling interface used to parse content from XML messages. The startElement, characters, and endElement
methods are implemented as well as additional support methods. The control classis also defined to inherit from the
ASNIXERSAXHandler base class as well as ASN1CType (or one of its descendents).

The equivalent C and C++ type definitions for each of the various ASN.1 types follow.

122

Generated C/C++ Source Code

Generated C Source Files

By default, the ASN1C compiler generates the following set of .c source files for a given ASN.1 module (note: the
name of the module would be substituted for <moduleName>):

<nodul eNane>. ¢ common definitions and functions (for example,
asnlFree <type>) and/or global vaue constant
definitions.

<nodul eNanme>Enc. ¢ encode functions (asnlE_<type>)

<nodul eNane>Dec. ¢ decode functions (asnlD_<type>)

If additional options are used (such as—genPrint, -genCopy, etc), additional files will be generated:

<nodul eNane>Copy. ¢ copy functions, generated if —genCopy is specified

<nmodul eName>Print.c print functions, generated if —genPrint is specified

<nodul eNane>Conpare. c comparison functions, generated if —genCompare is
specified

<nodul eNanme>Prt ToStr. c print-to-string functions, generated if —genPrtToStr is
specified

<nodul eNane>Prt ToStrm ¢ print-to-stream functions, generated if —genPrtToStrm is
specified

<nmodul eName>Tabl e. c table constraint functions, generated if —genTable option
is specified

<nodul eNane>Test . c test functions, generated if —genTest is specified

If —genCopy, -genPrint, etc have a filename parameter then the code will be written to the given file instead of the
default one. If the —file <filename> option is used and —genCopy, -genPrint, etc options do not have parameters then
all code will be placed in one source file with name <filename>.

Maximum Lines per File

In each of the cases above, it is possible to specify an approximate maximum number of lines that each of the
generated .c files may contain. Thisis done using the -maxlines option. If -maxlines is specified with no parameter, a
default maximum number of lines (50,000) will be set; otherwise, the given value will be used.

If the given maximum lines limit is surpassed in afile, anew file will be started with an “_1" appended, for example
<moduleName>Enc_1.c. Additional fileswill be numbered sequentially if necessary (_2, _3, etc.). Note that thislimit
is alower threshold and not exact. A complete compilation unit (for example, a function) will not be split because
of this threshold. The way it works is the threshold is checked before the output of a compilation unit. If it is found
to be exceeded, a new file is started at that time. Therefore, a user should plan for a reserve to be in place above the
[imit to compensate for this overflow.

Thereason for having thislimit is because some C/C++ compilers have problemswith very large .c files. For example,
one product will not alow the debugger to work on linesin afile over the 64k threshold.

Use of the -maxcfiles Option

The -maxcfiles option allows generation of more compact code by putting each encode, decode, copy, compare, etc
function into a separate file. This allows the linker to link in only the required functions as opposed to all functions
in a compiled object module. This option might be useful for applications that have minimal space requirements (for
example, embedded systems).

123

Generated C/C++ Source Code

Note

Some sophisticated linkers have the capability to pull individual functions out of an object module directly

for final inclusion in the target executable or shared object file. In this case, the -maxcfiles option does not

provide any advantage in reducing the size of the application program.
To achieve the best results it is necessary to put all compiled object files into an object library (.a or .lib file) and
includethislibrary inthelink command. The—genMake option when used in conjunction with —maxcfileswill generate
a makefile that will compile each of the generated files and add them to alibrary with a name based on the name of
the ASN.1 module being compiled (< moduleName>.lib for Windows or lib<moduleName>.a for *NIX).

The format of each generated .c file nameis asfollows:
asnl<suffi x>_<prodname>. c

where <suf f i x> depends on encoding rules and the function type (encode, decode, free, etc.) and <pr odnane>
isthe ASN.1 production name.

For example, consider one type definition within the enpl oyee. asn ASN.1 specification:

Enpl oyee DEFINITIONS ::= BEG N

[...]

Nanme ::= [APPLI CATION 1] | MPLICI T SEQUENCE {
gi venNane | A5Stri ng,
initial 1A5String,
fam | yName | A5String

}
[...]
END

By default, the following .c files would be generated (note: this assumes no additional code generation options were
selected):

Enpl oyee. c
Enpl oyeeEnc. c
Enpl oyeeDec. c
If -maxcfiles was selected as in the following command line:
asnlc enpl oyee.asn -c -ber -trace —naxcfiles

Running ASN1C with the -maxcfiles option, the following .c files for this type would be generated for the Name type:

asnlD Nane. c
asnlE Nane. c

These contain the functions to decode Name and encode Name respectively. Similar files would be generated for the
other productions in the module as well.

Generated C++ files

In general, the generation logic for C++ is similar to the logic for C. Instead of the .c file extension, .cpp is used:

124

Generated C/C++ Source Code

<nmodul eNane>. cpp Common definitions and functions (for example,
asnlFree <type>) and/or global vaue constant
definitions. This file aso contains constructors,
destructors and al methods for ASN1C <Type> and
ASNIT_<Type> control classes.

<nodul eNane>Enc. cpp C encode functions and C++ encode methods.

<nodul eNane>Dec. cpp C decode functions and C++ decode methods.

If additional options are used (such as —genPrint, -genCopy, etc), additional fileswill be generated:

Filename Description

<nodul eNane>Copy. cpp copy functions, generated if —genCopy is specified

<nodul eNane>Print. cpp print functions, generated if —genPrint is specified

<nodul eNane>Conpar e. cpp comparison functions, generated if —genCompare is
specified

<nodul eNane>Prt ToStr. cpp print-to-string functions, generated if —genPrtToStr is
specified

<nodul eNane>Prt ToStrm cpp print-to-stream functions, generated if —genPrtToStrm is
specified

<nmodul eName>Tabl e. cpp table constraint functions, generated if —genTable option
is specified

<nodul eNane>Test . cpp test functions, generated if —genTest is specified

The -maxcfiles option for C++ works very similar to how it works for C. The only differences are a few additional
files are generated and the .cpp extension is used instead of .c. Additional files are generated to hold ASN1C_<Type>
and ASN1T_<Type> control classes. The format of the filenames of thesefilesis asfollows:

asnl<suffi x>_<prodnane>. cpp
ASN1C <prodnane>. cpp
ASNLT_<pr odnane>. cpp

where <suf fi x> depends on the encoding rules and function type selected (encode, decode, free, etc.) and
<pr odnane> isthe ASN.1 production nhame.

For the example presented previously in the C Files section, the following files would be generated for the Name
productioninthe enpl oyee. asn file:

asnlD Name. cpp
asnlE_Name. cpp
ASNL1T_Name. cpp
ASN1C_Name. cpp

These contain the functions to decode Name and encode Name respectively. The ASNLIT Name.cpp file contains the
type class methods, and the ASN1C_Name.cpp files contains the control class methods. Note that not all productions
have a control class (only PDU typesdo for BER or PER) thereforethe ASN1C_<type>.cpp file may not be generated.

Similar fileswould be generated for the other productions in the module as well.

Note that for C++, the code reduction effect islessthan that for pure C. Thisis because most of the linkers cannot omit
virtual methods even if they are not being used by the application. These virtual methods refer to separate C functions
and these functions are being linked into the application even if they are not actually used. But, still, the size of thefinal
application created with —maxcfiles option should be less than the size of the application created without this option.

125

Generated C/C++ Source Code

Generated C/C++ files and the -compat Option

ASNIC 5.6 and below did not generate separate files for common definitions, encode and decode functions
(<moduleName>.c/.cpp, <moduleName> Enc.c/.cpp, <moduleName>Dec.c/.cpp). All code was generated in asingle
file with the name <moduleName> .c/.cpp. If it is necessary to maintain this behavior then use the —compat 5.6 option.

Also, the behavior of the -cfile option is slightly changed in ASN1C 5.7 and above. In 5.6 and below, the —file option
did not have any effect for files containing copy, print, compare, etc functions. For ASN1C 5.7 and above, —cfile causes
everything to be output to one file unless specific filename parameters are specified with —genPrint, -genCopy, etc.
Once again, to maintain the previous behavior the —.compat 5.6 option can be used.

Generated C++ files and the -symbian Option

ASNI1C version 6.1 introduced the -symbian option to generate code that targets the Symbian platform. While an
exhaustive discussion of the differences between Symbian C++ and standard C++ isimpractical for this User's Guide,
the differencesin generated code are relatively minimal. Two principle areas of concern are writabl e static data (WSD)
and extern linkage.

Writable Static Data

Writable static data are per-process data that exist throughout the lifetime of the process. The use of WSD complicates
memory management in many cases, especialy in shared libraries. A minimum of four kilobytesis allocated for WSD
every singletime a DLL isloaded, even if less space is required. If 50 bytes were needed, for example, 4046 bytes
would be wasted every time the DLL was loaded. For this reason, the use of WSD is highly discouraged.

In practice, WSD are globally scoped: variables declared outside of a function, struct, or class, and static variables
declared in functions. WSD may be eliminated by modifying primitive types with const. Complex types (i.e., classes
or structs) with non-trivial constructors will be marked as WSD whether marked const or not.

Itiscommon in generated code to uselookup tablesfor sometypes (e.g., ENUMERATED). These tables are composed
of simple types and marked as const to avoid being marked as WSD by Symbian compilers.

Extern Linkage

Most common compilers support applying external linkage to an entire class, but Symbian’s does not. Symbian also
requires that both prototype and implementation be marked with the appropriate linkage. When the -symbian option
is specified, generated code is modified to accommodate these requirements.

The following specification will demonstrate the differences between code generated with Symbian and without:

Test DEFINITIONS ::= BEG N
A ::= NULL
END

The usual class definition for this specification looks like this:

cl ass EXTERN ASNIC A :
publ i ¢ ASN1CType

{

prot ect ed:

126

Generated C/C++ Source Code

publi c:

ASNLIC A ();

ASN1C A (OSRTMessageBufferl| F& nmsgBuf);

ASNLIC A (OSRTCont ext &context);

/1 standard encode/ decode nethods (defined in ASN1CType base cl ass):
/1 int Encode ();

/1 int Decode ();

/1 stream encode/ decode net hods:
i nt EncodeTo (OSRTMessageBufferl| F& nsgBuf);
i nt DecodeFrom (OSRTMessageBuf fer| F& nmsgBuf) ;

.
Itisvery similar to the Symbian class definition:

class ASNIC A :

publ i c ASN1CType

{

pr ot ect ed:

publi c:
EXTERN ASN1C A ();
EXTERN ASN1C A (OSRTMessageBufferl| F& nmsgBuf);
EXTERN ASN1C A (OSRTCont ext &context);

/1 standard encode/ decode nethods (defined in ASN1CType base cl ass):
/1 int Encode ();
/1 int Decode ();

/1 stream encode/ decode net hods:
EXTERN i nt EncodeTo (OSRTMessageBufferl F& nsgBuf);
EXTERN i nt DecodeFrom (OSRTMessageBuf f er | F& nsgBuf) ;

bl

Note the use of EXTERN in the generated code: it prefixes the constructors and the encoding and decoding functions,
but not the class declaration. These prefixes are repeated in the implementation:;

EXTERN ASNIC A:: ASNIC A () : ASNLCType()

{
}

Users should not have to modify generated code for use on the Symbian platform, but should be aware of these
particular differences when writing Symbian applications.

Generated Build Files

Generated Makefile

The -genmake option causes a portable makefile to be generated to assist in the C or C++ compilation of all of the
generated C or C++ sourcefiles. This makefile contains arule to invoke ASN1C to regenerate the .c and .h filesif any
of the dependent ASN.1 source files are modified. It also contains rules to compile al of the C or C++ source files.
Header file dependencies are generated for all the C or C++ sourcefiles.

Two basic types of makefiles are generated:

127

Generated C/C++ Source Code

1. A GNU compatible makefile. Thismakefileiscompatiblewith the GNU make utility whichissuitablefor compiling
code on Linux and many UNIX operating systems, and

2. A Microsoft Visual Studio compatible makefile. This makefile is compatible with the Microsoft Visual Studio
nmake utility.

A GNU compatible makefile is produced by default, the Microsoft compatible file is produced when the —w32
command line option is specified in addition to —genmake.

Both of these makefile types rely on definitions in the platform.mk make include file. This file contains parameters
specific to different compiler and linker utilities available on different platforms. Typically, al the needs to be done
to port to a different platform isto adjust the parametersin thisfile.

When a makefile is generated, it is assumed that the ASN1C project exists within the ASN1C installation directory
tree. The generation logic triesto determine the root directory of the installation by traversing upward from the project
directory in an attempt to locate the rtsrc subdirectory which is assumed to be the installation root directory. The
makefile variable OSROOTDIR is then set to this value. A similar traversal is done to locate the platform.mk and
xmlparser.mk files. These paths are then set in the makefile. If the project directory is located outside of the ASN1C
directory tree, the user must set the OSROOTDIR environment variable to point at the ASN1C root directory in order
for the makefile generation to be successful. If thisis done, it is assumed that the platform.mk and xmlparser.mk files
arelocated in this directory aswell. If the compiler is unable to determine the root directory using any of the methods
described above, an error will be generated and the user will need to manually edit the makefile to set the required
root directory parameters and makefile include file paths.

Generated VC++ Project Files

The-vcproj option causes Microsoft Visual Studio project and workspacefilesto be generated that can be used to build
the generated code. The files are compatible with Visual Studio version 6.0; but higher versions of Visula Studio can
convert these files to the newer formats. This option can be used with the -dil option that will generate project filesto
compile all generated codeinto aDLL and -mt that will add multi-threaded compilation options to generated projects.

Becausethere are several different versionsof Visual Studio, the -vcproj option takes an optional argument: the release
year of the version of Visua Studio used. This modifies the resulting project to link against the appropriate set of
librariesdistributed with ASN1C. If no year is specified, the project will link against the usual ¢ and cpp directories. If
2003 is specified, the project will usthec_vs2003 and cpp_vs2003 directories. If 2005 is specified, c_vs2005
and cpp_vs2005 will be used. Likewise, if 2008 is specified, c_vs2008 and cpp_vs2008 will be used.

128

Chapter 6. Generated Encode/Decode
Function and Methods

Encode/Decode Function Prototypes

If BER or DER encoding is specified, a BER encode and decode function prototype is generated for each production
(DER uses the same form — there are only minor differences between the two types of generated functions). These
prototypes are of the following general form:

i nt asnlE <ProdName> (OSCTXT* pct xt,
<Pr odNane>* pval ue, ASNlTagType taggi ng);

i nt asnlD <ProdName> (OSCTXT* pct xt,
<Pr odNane>* pval ue, ASNlTagType tagging, int |ength);

The prototype with the asnlE_ prefix is for encoding and the one with asnlD_isfor decoding. The first parameter
is a context variable used for reentrancy. This allows the encoder/decoder to keep track of what it is doing between
function invocations.

The second parameter is for passing the actual data variable to be encoded or decoded. Thisis a pointer to avariable
of the generated type.

The third parameter specifies whether implicit or explicit tagging should be used. In practically all cases, users of the
generated function should set this parameter to ASN1EXPL (explicit). This tells the encoder to include an explicit tag
around the encoded result. The only time this would not be used is when the encoder or decoder is making internal
callsto handle implicit tagging of elements.

Thefinal parameter (decode case only) islength. Thisisignored when tagging is set to ASN1EXPL (explicit), so users
canignoreit for the most part and set it to zero. In the implicit case, this specifies the number of octetsto be extracted
from the byte stream. Thisis necessary because implicit indicates no tag/length pair precedes the data; thereforeiit is
up to the user to indicate how many bytes of data are present.

If PER encoding is specified, the format of the generated prototypes is different. The PER prototypes are of the
following general form:

i nt asnlPE_<ProdNane> (OSCTXT* pctxt, <ProdNanme>[*] val ue);

i nt asnlPD _<ProdNane> (OSCTXT* pctxt, <ProdName>* pval ue);

In these prototypes, the prefixes are different (a‘P' character is added to indicate they are PER encoders/decoders),
and the tagging argument variables are omitted. In the encode case, the value of the production to be encoded may be
passed by valueif it isa simple type (for example, BOOLEAN or INTEGER). Structured values will still be passed
using a pointer argument.

If XER encoding is specified, function prototypes are generated with the following format:

i nt asnlXE _<ProdNane> (OSCTXT* pctxt, <ProdName>[*] val ue,
const char* el emNane,
const char* attributes);

i nt asnlXD <ProdNane> (OSCTXT* pctxt, <ProdName>* pval ue);

The encode function signature includes argumentsfor the context and value asin the other cases. It also has an element
name argument (elemName) that containsthe name of the element to be encoded and an attributes argument (attributes)

129

Generated Encode/Decode Function and Methods

that can be used to encode an attributes string. The decode function is generated for PDU-types only - decoding of
internally referenced types is accomplished through generated SAX handler callback functions which are invoked by
an XML parser.

If XML functions are generated using the -xml switch, the function prototypes are as follows:

i nt Xm Enc_<ProdNane> (OSCTXT* pctxt, <ProdName> val ue,
const OSUTF8CHAR* el emNane, const OSUTF8CHAR* nsPrefi x);

i nt Xm Dec_<ProdNane> (OSCTXT* pctxt, <ProdName>* pval ue);

In this case, the encode function contains an argument for XML element name (elemName) and al so namespace prefix
(nsPrefix).

Generated C++ Control Class Definition

A control class definition is generated for each defined production in the ASN.1 sourcefile that is determined to be a
Protocol Data Unit (PDU). By default, any type definedin an ASN.1 sourcefilethat isnot referenced by any other type
isaPDU. This default behavior can be overridden by using a configuration file setting (<isPDU/>) or a command-
line option (-pdu) to explicitly declare that certain types are PDU’s.

The generated control classis derived from the ASN1CType base class. This class provides a set of common attributes
and methods for encoding/decoding ASN.1 messages. It hides most of the complexity of calling the encode/decode
functions directly.

BER/DER or PER Class Definition

The general form of the class definition for BER, DER, or PER encoding rulesis as follows:

cl ass ASNLC <nane> : public ASNLCType {
pr ot ect ed:
ASNLIT_<nane>& nsgDat a;
public:
ASN1C <nane> (ASNLT_<nanme>& dat a) ;
ASN1C <nanme> (
ASN1MessageBuf f er | F& nsgBuf, ASNLT_<name>& dat a);

/1 standard encode/ decode met hods (defined in ASNLCType base cl ass):
/1 int Encode ();
/1 int Decode ();

/1 stream encode/ decode net hods:
i nt EncodeTo (ASNlMessageBufferl F& nsgBuf);
i nt DecodeFrom (ASN1MessageBufferl| F& nmsgBuf) ;

}

The name of the generated class is ASN1C_<name> where <name> is the name of the production. The only defined
attribute is a protected variable reference named msgData of the generated type.

Two constructors are generated. Thefirst isfor stream operations and allows the control classto be created using only
areference to avariable of the generated type.

The EncodeTo and DecodeFrom methods can then be used to encode or decode directly to and from a stream. The
<< and >> stream operators can be used as well.

130

Generated Encode/Decode Function and Methods

The second constructor isthe legacy form that allows amessage buffer to be associated with adatavariable at thetime
of creation. The Encode and Decode methods defined in the ASN1CType base class can be used with this construction
form to encode and decode to the associated buffer.

The constructor arguments are areferenceto an ASN1MessageBuffer | F (message buffer interface) type and areference
to an ASN1T_<name> type. The message buffer interface argument is a reference to an abstract message buffer or
stream class. Implementations of the interface class are available for BER/DER, PER, or XER encode or decode
message buffers or for aBER or XER encode or decode stream.

The ASN1T _<name> argument is used to specify the data variable containing datato be encoded or to receive dataon
adecode call. The procedure for encoding isto declare avariable of thistype, populate it with data, and then instantiate
the ASN1C <name> object to associate a message buffer object with the data to be encoded. The Encode or Encode
To method can then be called to encode the data. On the decode side, a variable must be declared and passed to the
constructor to receive the decoded data.

Note that the ASN1C _ class declarations are only required in the application code as an entry point for encoding or
decoding a top-level message (or Protocol Data Unit — PDU). As of ASN1C version 5.6, control classes are only
generated for ASN.1 types that are determined to be PDU’s. A type is determined to be a PDU if it is referenced by
no other types. Thisdiffersfrom previous versions of ASN1C where control classeswere generated for all types. This
default behavior can be overridden by using a configuration file entry or the -pdu command-line switch to explicitly
declare the PDU types. The <isPDU/> flag is used to declare atype to be a PDU in a configuration file. An example
of thisisasfollows:

<asnlconfi g>
<nodul e>
<nane>H323- MESSAGES</ nane>
<producti on>
<nane>H323- User | nf or mat i on</ nane>
<i sPDU >
</ producti on>
</ nodul e>
</ asnlconfig>

This will cause only a single ASN1C_ control class definition to be added to the generated code for the H323-
UserInformation production.

If the module contains no PDUS (i.e,. contains support types only), the <noPDU/> empty element can be specified at
the module level to indicate that no control classes should be generated for the module.

XER Class Definition

For the XML encoding rules (XER), the generated class definition is as follows:

cl ass ASNLIC <name> :
public ASN1CType, ASNLXERSAXHandl er

{
pr ot ect ed:
ASN1T_<nanme>& msgDat a;
addi ti onal control variables
publi c:

ASN1C <name> (ASNLT_<nanme>& dat a);
ASN1C <name> (
ASN1MessageBuf f er I F& nsgBuf, ASNLT_<name>& dat a);

131

Generated Encode/Decode Function and Methods

/1 standard encode/ decode nethods (defined in ASN1CType base cl ass):
/1 int Encode ();
/1 int Decode ();

/1 stream encode/ decode net hods:
i nt EncodeTo (ASNlMessageBufferl| F& nmsgBuf);
i nt DecodeFrom (ASN1MessageBuffer| F& nmsgBuf) ;

/1l SAX Content Handler Interface

virtual void startEl enent
(const XM_Ch* const wuri,
const XM_Ch* const | ocal nane,
const XM_Ch* const gnane,
const Attributes& attrs);

virtual void characters
(const XM.Ch* const chars, const unsigned int |ength);

virtual void endEl ement
(const XM_Ch* const wuri,
const XM.Ch* const | ocal nane,
const XMLCh* const gnane);

b
The main differences between the BER/DER/PER control class definition and this are:
1. Theclass generated for XER inherits from the ASNIXERSAXHandler base class, and
2. The classimplements the standard SAX content handler methods.

This allows an object of this class to be registered as a SAX content handler with any SAX-compliant XML parser.
The parser would be used to read and parse XML documents. The methods generated by ASN1C would then receive
the parsed data viathe SAX interface and use the results to popul ate the data variables with the decoded data.

Note that for XML code generation (-xml command-line option), the SAX handler interface is not generated. That is
because XML decoders use a pull-parser instead of SAX code to parse the XML input stream.

Generated Methods

For each production, an EncodeFFrom and DecodeTo method is generated within the generated class structure. These
are standard methods that initialize context information and then call the generated C-like encode or decode function.
If the generation of print functions was specified (by including —print on the compiler command line), a Print method
is also generated that callsthe C print function.

For XER, additional methods are generated to implement a SAX content handler interface to an XML parser. This
includes a startElement, characters, and endElement method. An init and finalize method may also be generated to
initialize avariable prior to parsing and to complete population of a variable with decoded data.

Generated Information Object Table Structures

Information Objects and Classes are used to define multi-layer protocolsin which “holes’ are defined within ASN.1
types for passing message components to different layers for processing. These items are also used to define the

132

Generated Encode/Decode Function and Methods

contents of various messages that are allowed in a particular exchange of messages. The ASN1C compiler extractsthe
types involved in these message exchanges and generates encoders/decoders for them. The “holes” in the types are
accounted for by adding open type holders to the generated structures. These open type holders consist of abyte count
and pointer for storing information on an encoded message fragment for processing at the next level.

The ASN1C compiler is capable of generating code in one of two forms for information in an object specification:

1. Simpleform: in thisform, references to variabl e type fields within standard types are simply treated as open types
and an open type placeholder isinserted.

2. Table unions form: in this form, all of the classes, objects, and object sets within a specification result in the
generation of code for parsing and formatting the information field references within standard type structures. Open
types with relational constraints result in the generation of C union structures that enumerate all of allowed fields
as defined by the constraint. Thisform is selected by using the -table-unions command-line option.

3. Legacy tableform: thisissimilar to 2 in that al information object related itemsresult in the generation of additional
code. Inthis case, however, instead of aunion structure being generated for open typeswith relational constraints, a
void pointer isused to hold an object in decoded form. Thisform is selected using the -tables command-line option.

To better understand the support in this area, the individual components of Information Object specifications are
examined. We begin with the “CLASS’ specification that provides a schema for Information Object definitions. A
sample class specification is as follows:

OPERATI ON : : = CLASS {
&oper at i onCode CHO CE { Il ocal | NTEGER,
gl obal OBJECT | DENTI FI ER 1},
&Ar gunrent Type,
&Resul t Type,
&Errors ERROR OPTI ONAL

}

Users familiar with ASN.1 will recognize this as a simplified definition of the ROSE OPERATION MACRO using
the Information Object format. When a class specification such asthisis parsed, information on itsfieldsis maintained
in memory for later reference. In the simple form of code generation, the class definition itself does not result in the
generation of any corresponding C or C++ code. It is only an abstract template that will be used to define new items
later on in the specification. Inthetable form, if C++ is specified, an abstract base classis generated off of which other
classes are derived for information object specifications.

Fieldsfrom within the class can be referenced in standard ASN. 1 types. It isthese types of references that the compiler
ismainly concerned with. These aretypically “header” typesthat are used to add acommon header to avariety of other
message body types. An example would be the following ASN.1 type definition for a ROSE invoke message header:

I nvoke ::= SEQUENCE ({
i nvokel D | NTEGER,
opcode OPERATI ON. &oper at i onCode,
argument OPERATI ON. &Ar gunent Type

}

Thisisavery simplecasethat purposely omitsalot of additional information such asInformation Object Set constraints
that are typically a part of definitions such as this. The reason this information is not present is because we are just
interested in showing the items that the compiler is concerned with. We will use this type to demonstrate the simple
form of code generation. We will then add table constraints and discuss what changes when the —tables command
line optionsis used.

The opcode field within this definition is an example of afixed typefield reference. It is known asthis because if you
go back to the original class specification, you will see that operationCode is defined to be of a specific type (namely

133

Generated Encode/Decode Function and Methods

a choice between alocal and global value). The generated typedef for this field will contain a reference to the type
from the class definition.

Theargument field isan example of avariabletypefield.. Inthiscase, if you refer back to the class definition, you will
see that no typeis provided. This means that this field can contain an instance of any encoded type (note: in practice,
table constraints can be used with Information Object Sets to limit the message types that can be placed in this field).
The generated typedef for thisfield contains an “open type” (ASN1OpenType) reference to hold a previously encoded
component to be specified in the final message.

Simple Form Code Generation

In the smple form of information object code generation, the Invoke type above would result in the following C or
C++ typedefs being generated:

typedef struct |nvoke ::= SEQUENCE ({
OSI NT32 i nvokel D
OPERATI ON _oper at i onCode opcode;
ASN1OpenType ar gunent ;

}
The following would be the procedure to add the Invoke header type to an ASN.1 message body:
1. Encode the body type
2. Get the message pointer and length of the encoded body

3. Plug the pointer and length into the numocts and data items of the argument open type field in the Invoke type
variable.

4. Populate the remaining Invoke type fields.
5. Encode the Invoke type to produce the final message.

In this case, the amount of code generated to support the information object references is minimal. The amount of
coding required by a user to encode or decode the variable type field elements, however, can be rather large. This
is a tradeoff that exists between using the compiler generated table constraints solution (as we will see below) and
using the simple form.

Unions Table Form Code Generation

If we now add table constraints to our original type definition, it might look as follows:

I nvoke ::= SEQUENCE {
i nvokel D | NTEGER,
opcode OPERATI ON. &oper ati onCode ({My/-ops}),
argunent OPERATI ON. &Ar gurrent Type ({ My- ops}{ @pcode})

}

The*{My-ops}” constraint on the opcode element specifies an information object set that constrainsthe element value
to one of the valuesin the object set. The { My-ops}{ @opcode} constraint on the argument element goes a step further
—ittiesthe type of thefield to the type specified in the row that matches the given opcode value.

An example of the information object set and corresponding information objects would be as follows:

My-ops OPERATION ::= { nmakeCall | fwdCall, ... }

134

Generated Encode/Decode Function and Methods

makeCal | OPERATION :: = {
&Ar gunrent Type MakeCal | Argurnent ,
&oper ati onCode | ocal : 10

}

fwdCal | OPERATION :: = {
&Ar gurent Type FwdCal | Ar gunent ,
&oper ati onCode | ocal : 11

}

The C or C++ type generated for the SEQUENCE above when —table-unions is specified would be as follows:

t ypedef struct EXTERN I nvoke {
OSI NT32 i nvokel D
__OPERATI ON_oper ati onCode opcode;
struct {
/**
* informati on object selector
*/
My_ops_TVALUE t;

/**
* My_ops infornation objects
*/
uni on {
/**
* operationCode: local : 10
*/
MakeCal | Argunent *nakeCal | ;
/**
* operationCode: local : 11
*/
FwdCal | Argunent *fwdCal | ;

ASN1QpenType* ext El eml;
}ous
} argunent;
} I nvoke;

Each of the options from the information object set are enumerated in the union structure. All a user needs to do to
encode a variable of thistype isto set the "t" value in the structure to the selected information object field and then
populate the type field. Thisis very similar to populating a CHOICE construct. The comments in the elements show
what the value of the key element(s) must beif that alternative is selected. The open typefield at the end (extEleml) is
added because the object set is extensible and it therefore may contain avalue that is currently not included in the set.

Legacy Table Form Code Generation

In the legacy form of table constraint code generation, the following structure would be generated for the Invoke type
above:

typedef struct EXTERN I nvoke {
OSI NT32 i nvokel D

135

Generated Encode/Decode Function and Methods

_OPERATI ON_oper ati onCode opcode;
ASN1Chj ect argument;

}

Thisisalmost identical tothetype generatedin the simplecase. Thedifferenceisthe ASN10bject type (or ASN1TObject
for C++) that is used instead of ASN1OpenType. Thistypeis defined in the asnltype.h run-time header file asfollows:

typedef struct ASN1Obj ect {
ASN1OpenType encoded;
voi d* decoded,;
OSI NT32 i ndex;

}

This holds the value to be encoded or decoded in both encoded or decoded form. The way a user uses this to encode
avalue of thistypeisasfollows:

1. Populate avariable of the type to be used as the argument to the invoke type.

2. Plug the address of this variable into the decoded void pointer in the structure above.
3. Populate the remaining Invoke type fields.

4. Encode the Invoke type to produce the final message.

Note that in this case, the intermediate type does not need to be manually encoded by the user. The generated encoder
has logic built-in to encode the complete message using the information in the generated tables.

Additional Code Generated with the -tables option

When the —tables command line option is used, additional code is generated to support the additional processing
required to verify table constraints. This code varies depending on whether C or C++ code generation is selected. The
C++ code is designed to take advantage of the object-oriented capabilities of C++. These capabilities are well suited
for modeling the behavior of information objects in practice. The following subsections describe the code generated
for each of these languages.

The code generated to support these constraints is intended for use only in compiler-generated code. Therefore, it is
not necessary for the average user to understand the mappings in order to use the product. The information presented
here isinformative only to provide a better understanding of how the compiler handles table constraints.

C Code Generation

For C, code is generated for the Information Object Sets defined within a specification in the form of aglobal array of
structures. Each structure in the array is an equivalent C structure representing the corresponding ASN.1 information
object.

Additional encode and decodefunctionsare also generated for each typethat containstable constraints. Thesefunctions
have the following prototypes :

BER/DER

i nt asnlETC <ProdName> (OSCTXT* pctxt, <ProdNane>* pval ue);

i nt asnlDTC _<ProdName> (OSCTXT* pctxt, <ProdNane>* pval ue);
PER

i nt asnlPETC <ProdNane> (OSCTXT* pctxt, <ProdName>* pval ue);

136

Generated Encode/Decode Function and Methods

i nt asnlPDTC <ProdNane> (OSCTXT* pctxt, <ProdName>* pval ue);

The purpose of these functions is to verify the fixed values within the table constraints are what they should be and
to encode or decode the open type fields using the encoder or decoder assigned to the given table row. Calls to these
functions are automatically built into the standard encode or decode functions for the given type. They should be
considered hidden functions not for use within an application that uses the API.

C++ Code Generation

For C++, code is generated for ASN.1 classes, information objects, and information object sets. This code is then
referenced when table constraint processing must be performed.

Each of the generated C++ classes builds on each other. First, the classes generated that correspond to ASN.1 CLASS
definitions form the base class foundation. Then C++ classes derived from these base classes corresponding to the
information objects are generated. Finally, C++ singleton classes corresponding to the information object sets are
generated. Each of these classes provides a container for a collection of C++ objects that make up the object set.

Additional encode and decode functions are also generated as they were in the C code generation case for interfacing
with the object definitions above. These functions have the following prototypes:

BER/DER

i nt asnlETC <ProdName> (OSCTXT* pctxt,
<Pr odNane>* pval ue,
<O assName>* pobject);

i nt asnlDTC _<ProdName> (OSCTXT* pctxt,
<Pr odNane>* pval ue,
<O assName>* pobject);

PER

i nt asnlPETC <ProdNane> (OSCTXT* pct xt,
<Pr odNane>* pval ue,
<C assNanme>* pobject);

i nt asnlPDTC <ProdNane> (OSCTXT* pct xt,
<Pr odNane>* pval ue,
<C assNanme>* pobject);

These prototypes are identical to the prototypes generated in C code generation case except for the addition of the
pobject argument. This argument is for a pointer to the information object that matches the key field value for a
given encoding. These functions have different logic for processing Relative and Simple table constraints. The logic
associated with each case is asfollows:

On the encode side:
Relative Table Constraint:

1. ThelookupObject method isinvoked on the object set instance to find the class object for the data in the popul ated
type variable to be encoded.

2. If amatch isfound, the table constraint encode function as defined above is invoked. This function will verify all
fixed type values match what is defined in the information object definition and will encode all typefieldsand store
the resulting encoded data in the ASN1TObject.encoded fields.

137

Generated Encode/Decode Function and Methods

3. If amatch is not found and the information object set is not extensible, then a table constraint error status will be
returned. If the information object set is extensible, anormal status is returned.

Smple Table Constraint:

1. Thisfunction will verify al the fixed type values match what is defined in the table constraint information object
set. If an element value does not exist in thetable (i.e. theinformation object set) and the object set isnot extensible,
then atable constraint violation exception will be thrown.

The normal encode logic is then performed to encode all of the standard and open type fields in the message.
On the decode side, the logic isreversed:

The normal decode logic is performed to popul ate the standard and open type fields in the generated structure.
Relative Table Constraint:

1. The lookupObject method is invoked on the decoded key field value to find an object match.

2. If amatch isfound, the table constraint decode function as defined above is invoked. This function will verify all
fixed type values match what is defined in the information object definition and will fully decode all type fields
and store pointers to the decoded type variables in the ASN1TObject.decoded fields.

3. If amatch is not found and the information object set is not extensible, then a table constraint error status will be
returned. If the information object set is extensible, a normal statusis returned.

Smple Table Constraint:
1. This function will verify al the fixed type values match what is defined in the table constraint object set. If an

element value does not exist in the table (i.e. the information object set) and the object set is not extensible, then
atable constraint violation exception will be thrown.

General Procedure for Table Constraint Encoding

The general procedure to encode an ASN.1 message with table constraints is the same as without table constraints.
The only difference isin the open type data population procedure.

The -table-unions option will cause union structure to be generated for open type field containing relationsal table
constraints. These are populated for encoding in much the same way CHOICE onstructs are handled.

The -tables option will cause ASN1TODbject fields to be inserted in the generated code instead of Asn1OpenType
declarations.

The procedure to popul ate the value for an ASN1TObject item is as follows:

1. Check the ASN.1 specification or generated C code for the type of the type field value in the information object
set that corresponds to the selected key field value.

2. Create avariable of that type and assign a pointer to it to the Asn1Object.decoded member variable as void*.
3. Follow the common BER/PER/DER encode procedure.
A complete example showing how to assign an open type value in the legacy tables case is as follows:

Test DEFINITIONS ::= BEG N

138

Generated Encode/Decode Function and Methods

ATTRI BUTE :: = CLASS {

&Type,

& d OBJECT | DENTI FI ER UNI QUE }
W TH SYNTAX {

W TH SYNTAX &Type ID & d }

name ATTRI BUTE :: = {
W TH SYNTAX Vi sibleString
I D {o0o111}}
name ATTRI BUTE :: = {
W TH SYNTAX | NTEGER
I D {o0o121}}

SupportedAttri butes ATTRIBUTE ::= { nane | comobnNane }

I nvoke ::= SEQUENCE {
opcode ATTRI BUTE. & d ({SupportedAttributes}),
argunent ATTRI BUTE. &Type ({SupportedAttri butes}{@pcode})

}
END

In the above example, the Invoke type contains a table constraint. Its element opcode refers to the ATTRIBUTE id
field and argument element refers to the ATTRIBUTE Type field. The opcode element is an index element for the
Invoke type's table constraint. The argument element is an open type whose type is determined by the opcode value.
In this example, opcode is the key field.

The opcode element can have only two possible values: { 011} or { 01 2}. If the opcode valueis{ 0 1 1} then
argument will have a VisibleSring value and if the opcode valueis{ 012} then argument will have an INTEGER
value. Any other value of the opcode element will be violation of the Table Constraint.

If the SupportedAttributesinformation object set was extensible (indicated by a“,...” at the end of the definition), then
the argument element may have avalue of atype that is not in the defined set. In this case, if the index element value
is outside the information object set, then the argument element will be assumed to be an Asn1OpenType. The Invoke
type encode function call will use the value from argument.encoded.data field (i.e. it will have to be pre-encoded
because the encode function will not be able to determine from the table constraint how to encode it).

A C++ program fragment that could be used to encode an instance of the Invoke type is as follows:;

#i nclude TestTable.h // include file generated by ASNLC

main ()

{
const OSOCTET* nsgptr;

OSOCTET msgbuf [1024] ;
int msgl en;

/1 step 1: construct ASNLC C++ generated cl ass.
/1 this specifies a static encode nessage buffer

ASN1BEREncodeBuf f er encodeBuf fer (nsgbuf, sizeof (nmsgbuf));

/1 step 2: popul ate nsgbData structure with data to be encoded

139

Generated Encode/Decode Function and Methods

ASNLT_I nvoke nsgDat a;
ASN1C | nvoke invoke (encodeBuffer, nsgData);

nmsgDat a. opcode. num ds = 3;

nmsgDat a. opcode. subi d[0] = O;
nmsgDat a. opcode. subi d[1] = 1;
nmsgDat a. opcode. subi d[2] = 1;

ASNL1Vi si bl eStri ng argument = “objsys”;

nmsgDat a. ar gunent . decoded = (voi d*) &argunent;

/1 note: opcode value is {0 1 1}, so argunent nust be
/1 ASNLVi si bl eString type

/1 step 3: invoke Encode nethod

if ((msglen = invoke.Encode ()) > 0) {
/1 encoding successful, get pointer to start of nessage
msgptr = encodeBuffer.get MsgPtr();

}

el se
error processing...

}

The encoding procedure for C requires one extra step. Thisisacall to the moduleinitialization functions after context
initialization is complete. All module initialization functions for all modules in the project must be invoked. The
module initialization function definitions can be found in the <ModuleName>Table.h file.

The format of each module initialization function name is as follows:
voi d <Modul eName>_init (OSCTXT* pctxt)
Here ModuleName would be replaced with name of the module.
A C program fragment that could be used to encode the Invoke record defined above is as follows:

#i ncl ude TestTable.h /* include file generated by ASNLIC */

int min ()
{
OSOCTET msgbuf [1024], *nsgptr;
i nt nmsgl en;
OSCTXT ctxt;
I nvoke invoke; /* typedef generated by ASNIC */

/* Step 1: Initialize the context and set the buffer pointer */

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1,

}
xe_setp (&ctxt, msgbuf, sizeof (nmsgbuf));

/* step 2: call nodule initialization functions */

140

Generated Encode/Decode Function and Methods

Test _init (&ctxt);
/* Step 3: Populate the structure to be encoded */

nmsgDat a. opcode. num ds =

3;
nmsgDat a. opcode. subi d[0] = O;
nmsgDat a. opcode. subi d[1] = 1;
nmsgDat a. opcode. subi d[2] = 1;

/I note: opcode value is {0 1 1}, so argunment nust be
/1 ASN1Vi si bl eString type

ASNL1Vi si bl eStri ng argument = “objsys”;

nmsgDat a. ar gunent . decoded = (voi d*) &argunent;

/* Step 4: Call the generated encode function */
msgl en = asnlE I nvoke (&ctxt, & nvoke, ASNLEXPL);

/* Step 5: Check the return status (note: the test is */
/* > 0 because the returned value is the length of the */
/* encoded nessage conponent)..*/

if (msglen > 0) {

/* Step 6: If encoding is successful, call xe_getp to */
/* fetch a pointer to the start of the encoded nessage. */
megptr = xe_getp (&ctxt);

}

el se
error processing...

}
General Procedure for Table Constraint Decoding

The general procedureto decode an ASN.1 message with table constraintsis the same as without table constraints. The
only difference will exist in the decoded data for open type fields within the message. In this case, the Asn1Object /
Asn1TObject’ s decoded member variable will contain the original decoded type and the encoded member variable will
contain the original datain encoded form.

Refer to the BER/DER/PER decoding procedure for further information.

The procedure to retrieve the value for open type fieldsis as follow:

1. Check the possible Typein the Information Object Set from index element value.

2. Assign or cast the Asn1Object.decoded member variable (void*) to the result type.
3. The Asn1Object.encoded field will hold the datain encoded form.

For the above complete example, the Invoke type's argument element will be decoded as one of the types in the
SupportedAttributes information object set (i.e. either asaVisibleSring or INTEGER type). If the SupportedAttributes
information object set is extensible, then the argument el ement may be of atype not defined in the set. In this case, the
decoder will set the Asn1Object.encoded field as before but the Asn1Object.decoded field will be NULL indicating
the valueis of an unknown type.

141

Generated Encode/Decode Function and Methods

A C++ program fragment that could be used to decode the Invoke example is as follows:

#i nclude Test.h // include file generated by ASNLIC
main ()
{

OSOCTET msgbuf [1024];
ASN1TAG nsgt ag;
i nt msegl en, status;

/* step 1. logic to read nessage i nto nsgbuf */

/* step 2: create decode buffer and nmsg data type */
ASN1BERDecodeBuf f er decodeBuffer (nsgbuf, |en);

ASN1T_I nvoke nsgDat a;
ASNLC | nvoke invoke (decodeBuffer, nsgData);

/* step 3: call decode function */

if ((status = invoke. Decode ()) == 0)

{
/1 decoding successful, data in nsgData
/1 use key field value to set type of nessage data
ASNIOBJID oidl[] ={ 3, { 0, 1, 1 }};
ASNIOBJID oid2[] ={ 3, { 0, 1, 2 }};
i f (msgData. opcode == o0idl) {
/1 argunment is a VisibleString
ASN1Vi si bl eString* pArg =
(ASNLVi si bl eString*) msgDat a. ar gunment . decoded;
}
el se if (nmsgData. opcode == 0id2) {
/1 argurment is an | NTEGER
OSINT32 arg = (OSINT32) *nsgDat a. ar gunent . decoded,;
}
}
el se {
/1 error processing
}

Inthiscase, thetype of the decoded argument can be determined by testing the key field value. In the example as shown,
the SupportedAttributes information object set is not extensible, therefore, the type of the argument must be one of the
two shown. If the set were extensible (indicated by a“,...” inthe definition), then it is possible that an unknown opcode
could be received which would mean the type can not be determined. In this case, the original encoded message data
would be present in msgData.argument.encoded field and it would be up to the user to determine how to processiit.

The decoding procedure for C requires one additional step. Thisis a call to the module initialization functions after
context initialization is complete. All module initialization functions for all modules in the project must be invoked.
The module initialization function definitions can be found in the <ModuleName>Table.h file.

A C program fragment that could be used to decode the Invoke example is as follows:

142

Generated Encode/Decode Function and Methods

#i ncl ude TestTable.h /1 include file generated by ASNLC
main ()
{

OSCCTET nsgbuf [1024];
ASNITAG nsgt ag;

i nt nmsgl en;
OSCTXT ct xt ;
| nvoke i nvoke;

ASNLOBJI D oi d1[]
ASNLOBJI D oi d2[]

{3 {0 1 1}}
{3 {0 1, 2}};

logic to read nessage into nmsgbuf
/* Step 1: Initialize a context variable for decoding */
if (rtlnitContext (&ctxt) !'= 0) {

/* initialization failed, could be a Iicense problem*/

printf (“context initialization failed (check license)\n”);
return -1,

}

xd_setp (&ctxt, msgbuf, 0, &mrsgtag, &nsglen);

/* step 2: call nodule initialization functions */
Test _init (&ctxt);

/* Step 3: Call decode function */

status = asnlD I nvoke (&ctxt, & nvoke, ASNLEXPL, 0);

/[* Step 4: Check return status */

if (status == 0)
{
/* process received data in ‘invoke variable */
if (rtCnpTCO D (& nvoke. opcode, &oidl) == 0) {
/[* argument is a VisibleString */
ASNLVi si bl eStri ng* pArg =
(ASNL1Vi si bl eString*) nsgDat a. ar gunent . decoded;
}
else if (rtChpTCA D (& nvoke. opcode, &oid2) == 0) {
/* argument is an | NTEGER */
OSINT32 arg = (OSINT32) *nsgDat a. ar gunent . decoded,;
}
/* Renmenber to rel ease dynam c nenory when done! */
ASNLMEMFREE (&ct xt);
}
el se

error processing...

143

Generated Encode/Decode Function and Methods

}
}

General Procedures for Encoding and
Decoding

Encoding functionsand methods generated by the ASN1C compiler aredesigned to besimilar in use acrossthe different
encoding rule types. In other words, if you have written an application to use the Basic Encoding Rules (BER) and
then later decide to use the Packed Encoding Rules (PER), it should only be asimple matter of changing afew function
calls to accomplish the change. Procedures for such things as populating data for encoding, accessing decoded data,
and dynamic memory management are the same for all of the different encoding rules.

This section describes common procedures for encoding or decoding data that are applicable to any of the different
encoding rules. Subsequent sections will then describe what will change for the different rules.

Dynamic Memory Management

The ASN1C run-time uses specialized dynamic memory functionsto improve the performance of the encoder/decoder.
It isimperative to understand how these functions work in order to avoid memory problemsin compiled applications.
ASN1C also providesthe capahility to plug-in adifferent memory management scheme at two different levels: the high
level API called by the generated code and the low level API that provides the core memory managment functionality.

The ASN1C Default Memory Manager

The default ASN1C run-time memory manager uses an agorithm called the nibble-all ocation algorithm. Large blocks
of memory are allocated up front and then split up to provide memory for smaller alocation requests. This reduces
the number of calls required to the C malloc and free functions. These functions are very expensive in terms of
performance.

Thelarge blocks of memory are tracked through the ASN.1 context block (OSCTXT) structure. For C, this means that
aninitialized context block isrequired for all memory allocations and deallocations. All allocations are done using this
block as an argument to routines such as rtxMemAlloc. All memory can be released at once when a user is done with
a structure containing dynamic memory items by calling rtxMemFree. Other functions are available for doing other
dynamic memory operations as well. See the C/C++ Run-time Reference Manual for details on these.

High Level Memory Management API

The high-level memory management API consists of C macros and functions called in gemerated code and/or in
application programs to allocate and free memory within the ASN1C run-time.

At thetop level are a set of macro definitions that begin with the prefix rixMem. These are mapped to a set of similar
functions that begin with the prefix rixMemHeap. A table showing this basic mapping is as follows:

Macro Function Description

rtxmvemAl | oc rt xMenHeapAl | oc Allocate memory

rtxMemAl | oczZ rt xMentHeapAl | ocZ Allocate and zero memory
rtxMenReal | oc rt xMenmHeapReal | oc Reallocate memory

rt xMenfr ee rt xMenHeapFr eeAl | Free all memory in context
rtxMenfreePtr rt xMentHeapFr eePt r Free a specific memory block

144

Generated Encode/Decode Function and Methods

See the ASN1C C/C++ Common Runtime Reference Manual for further details on these functions and macros.

It is possible to replace the high-level memory allocation functions with functions that implement a custom memory
management scheme. This is done by implementing some (or al) of the C rtxMemHeap functions defined in the
following interface (note: a default implementation is shown that replaces the ASN1C memory manager with direct
callsto the standard C run-time memory management functions):

#i nclude <stdlib. h>
#i nclude "rtxMenory. h"

/* Create a menory heap */
int rtxMenHeapCreate (voi d** ppvMenHeap) ({
return O;

}

/* Allocate nmenmory */
voi d* rtxMenHeapAl |l oc (voi d** ppvMenHeap, int nbytes) {
return mall oc (nbytes);

}

/* Allocate and zero nenory */

voi d* rtxMenHeapAl |l ocZ (voi d** ppvMenHeap, int nbytes) {
voi d* ptr = malloc (nbytes);
if (O !=ptr) menset (ptr, O, nbytes);
return ptr;

}

/* Free nenory pointer */
void rtxMenHeapFreePtr (voi d** ppvMenHeap, void* nmemp) ({
free (nemp);

}

/* Reallocate menory */
voi d* rtxMenHeapReal | oc (voi d** ppvMenHeap, void* memp, int nbytes_) {
return realloc (memp, nbytes);

}

/* Clears heap nmenory (frees all nmenmory, reset all heap's variables) */
voi d rtxMenHeapFreeAl |l (void** ppvMenHeap) ({
/* should renove all allocated nmenory. there is no analog in standard nmenory
management. */

}

/* Frees all nenory and heap structure as well (if was allocated) */
voi d rtxMenmHeapRel ease (voi d** ppvMenHeap) ({
/* should free all nenory allocated + free menory heap object if exists */

}

In most cases it is only necessary to implement the following functions: rtxMemHeapAlloc, rtxMemHeapAllocZ,
rtxMemHeapFreePtr and rtxMemHeapRealloc. Note that there is no analog in standard memory management for
ASN1C' srtxMemFree macro (i.e. the rtxMemHeapFreeAll function). A user would beresponsiblefor freeing all items
in agenerated ASN1C structureindividually if standard memory management is used.

The rtxMemHeapCreate and rtxMemHeapRel ease functions are specialized functions used when a special heap isto
be used for allocation (for example, astatic block within an embedded system). In this case, rtxMemHeapCreate must

145

Generated Encode/Decode Function and Methods

set the ppvMemHeap argument to point at the block of memory to be used. This will then be passed in to al of the
other memory management functions for their use through the OSCTXT structure. The rtxMemHeapRel ease function
can then be used to dispose of this memory when it is no longer needed.

To add these definitions to an application program, compile the C source file (it can have any name) and link the
resulting object file (.OBJ or .O) in with the application.

Built-in Compact Memory M anagement

A built-in version of the simple memory management API described above (i.e with direct calls to malloc, free, etc.)
isavailable for users who have the source code version of the run-time. The only difference in this APl with what is
described above isthat tracking of allocated memory is done through the context. This makesit possible to provide an
implementation of the rtixMemHeapFreeAll function as described above. This memory management schemeis slower
than the default manager (i.e. nibble-based), but has a smaller code footprint.

This form of memory management is enabled by defining the _ MEMCOMPACT C compile time setting. This can
be done by either adding -D_MEMCOMPACT to the C compiler command-line arguments, or by uncommenting this
item at the beginning of the rtxMemory.h header file:

/
Unconment this definition before building the C or C++ run-tinme
libraries to enable conmpact nenory managenent. This will have a
snal | er code footprint than the standard nmenory nanagenent; however,
* the performance may not be as good.
*/
[*#defi ne _MEMCOWPACT*/

* X * X

Low Level Memory Management API

Itis possible to replace the core memory management functions used by the ASN1C run-time memory manager. This
has the advantage of preserving the existing management scheme but with the use of different core functions. Using
different core functions may be necessary on some systemsthat do not have the standard C run-time functions malloc,
free, and realloc, or when extra functionality is desired.

To replace the core functions, the following run-time library function would be used:

void rtxMentet Al | ocFuncs (OsSMal | ocFunc nal | oc_func,
CSReal | ocFunc real |l oc_func, OSFreeFunc free_func);

Themalloc, realloc, and free functions must have the same prototype as the standard C functions. Some systems do not
have arealloc-likefunction. In thiscase, realloc_func may be set to NULL. Thiswill cause the malloc_func/free func
pair to be used to do reallocations.

This function must be called before the context initialization function (rtinitContext) because context initialization
requires low level memory management facilities be in place in order to do its work.

Note that this function makes use of static global memory to hold the function definitions. This type of memory isnot
available in al run-time environments (most notably Symbian). In this case, an alternative function is provided for
setting the memory functions. This function is rtxInitContextExt which must be called in place of the standard context
initialization function (rtinitContext). In this case, thereis a bit more work required to initialize a context because the
ASN.1 subcontext must be manually initialized. Thisis an example of the code required to do this:

int stat = rtxlnitContextExt (pctxt, malloc_func, realloc_func, free_func);
if (0 == stat) {

/* Add ASN. 1 error codes to global table */

rtErrASNLInit ();

146

Generated Encode/Decode Function and Methods

/* Init ASN.1 info block */
stat = rtCxtlnitASNLInfo (pctxt);

}

Memory management can also be tuned by setting the default memory heap block size. The way memory management
worksisthat alarge block of memory is allocated up front on the first memory management call. This block is then
subdivided on subsequent calls until the memory is used up. A new block is then started. The default value is 4K
(4096) bytes. The value can be set lower for space constrained systems and higher to improve performancein systems
that have sufficient memory resources. To set the block size, the following run-time function should be used:

voi d rtxMentet Def Bl kSi ze (OSUI NT32 bl kSi ze) ;
This function must be called prior to context initialization.
C++ Memory Management

In the case of C++, the ownership of memory ishandled by the control class and message buffer objects. These classes
share a context structure and use reference counting to manage the allocation and release of the context block. When
a message buffer object is created, a context block structure is created as well. When this object is then passed into
acontrol class constructor, its reference count is incremented. Then when either the control class object or message
buffer object are deleted or go out of scope, the count is decremented. When the count goesto zero (i.e. when both the
message buffer object and control class object go away) the context structure is released.

What this means to the user is that a control class or message buffer object must be kept in scope when using a data
structure associated with that class. A common mistake is to try and pass a data variable out of a method and use it
after the control and message buffer objects go out of scope. For example, consider the following code fragment:

ASNLT_<type>* func2 () {
ASNLT_<type>* p = new ASNIT_<type> ();
ASN1BERDecodeBuf f er decbuf;
ASNLC <type> cc (decbuf, *p);

cc. Decode();

/1 After return, cc and decbuf go out of scope; therefore
/1 all menmory allocated within struct p is rel eased..

return p;

}

void funcl () {
ASNLT_<type>* pType = func2 ();

/1 pType is not usable at this point because dynam c nmenory
/1 has been rel eased. .

}

As can be seen from this example, once func2 exits, al memory that was allocated by the decode function will be
released. Therefore, any items that require dynamic memory within the data variable will bein an undefined state.

An exception to this rule occurs when the type of the message being decoded is a Protocol Data Unit (PDU). These
are the main message types in a specification. The ASN1C compiler designates types that are not referenced by any
other types as PDU types. This behavior can be overridden by using the -pdu command line argument or <isPDU>
configuration file element.

147

Generated Encode/Decode Function and Methods

The significance of PDU types is that generated classes for these types are derived from the ASN1TPDU base class.
This class holds a reference to a context object. The context object is set by Decode and copy methods. Thus, even
if control class and message buffer objects go out of scope, the memory will not be freed until the destructor of an
ASNLITPDU inherited class is called. The example above will work correctly without any modifications in this case.

Another way to keep dataisto make acopy of the decoded object beforeit goes out of scope. A method called newCopy
is also generated in the control class for these types which can be used to create a copy of the decoded object. This
copy of the object will persist after the control class and message buffer objects are deleted. The returned object can
be deleted using the standard C++ delete operator when it is no longer needed.

Returning to the example above, it can be madeto work if thetype being decoded isaPDU type by doing thefollowing:

ASNLIT_<type>* func2 () {
ASNLIT_<type> nsgdat a;
ASN1BERDecodeBuf f er decbuf;

ASN1C <type> cc (decbuf, nsgdata);

cc. Decode();
/1 Use newCopy to return a copy of the decoded item.

return cc. newCopy();
}

Populating Generated Structure Variables for Encoding

Prior to calling a compiler generated encode function, a variable of the type generated by the compiler must be
populated. Thisis normally astraightforward procedure —just plug in the values to be encoded into the defined fields.
However, things get more complicated when more complex, constructed structures are involved. These structures
frequently contain pointer types which means memory management issues must be dealt with.

There are three alternatives for managing memory for these types:
1. Allocate the variables on the stack and plug the address of the variables into the pointer fields,

2. Use the standard malloc and free C functions or new and delete C++ operators to allocate memory to hold the
data, and

3. Usethe rxtMemAlloc and rtxMemFree run-time library functions or their associated macros.

Allocating the variables on the stack is an easy way to get temporary memory and have it released when it is no longer
being used. But one has to be careful when using additional functions to populate these types of variables. A common
mistake isthe storage of the addresses of automatic variablesin the pointer fields of a passed-in structure. An example
of thiserror isas follows (assume A, B, and C are other structured types):

typedef struct {
A* a,
B* Db;
C c;

} Parent;

void fill Parent (Parent* parent)

{

A aa;
B bb;

148

Generated Encode/Decode Function and Methods

C cc;

/* logic to popul ate aa, bb, and cc */

parent->a = &aa;
parent->b = &bb;
parent->c = &cc;
}
main ()
{
Parent parent;
fillParent (&parent);
encodeParent (&parent); /* error! pointers in parent
reference nenory that is
out of scope */
}

In this example, the automatic variables aa, bb, and cc go out of scope when the fillParent function exits. Yet the
parent structure is still holding pointers to the now out of scope variables (this type of error is commonly known as
“dangling pointers”).

Using the second technique (i.e., using C malloc and free) can solve this problem. In this case, the memory for each
of the elements can be safely freed after the encode function is called. But the downside is that a free call must be
made for each corresponding malloc call. For complex structures, remembering to do this can be difficult thus leading
to problems with memory leaks.

Thethird technique uses the compiler run-timelibrary memory management functionsto allocate and freethe memory.
The main advantage of this technique as opposed to using C malloc and free isthat all allocated memory can be freed
with a single rtxMemFree call. The rtxMemAlloc macro can be used to allocate memory in much the same way as
the C malloc function with the only difference being that a pointer to an initialized OSCTXT structure is passed in
addition to the number of bytesto allocate. All allocated memory is tracked within the context structure so that when
the rtxMemFree function is called, all memory isreleased at once.

Accessing Encoded Message Components

After a message has been encoded, the user must obtain the start address and length of the message in order to do
further operations with it. Before a message can be encoded, the user must describe the buffer the message is to be
encoded into by specifying a message buffer start address and size. There are three different types of message buffers
that can be described:

1. satic: thisisafixed-size byte array into which the message is encoded
2. dynamic: in this case, the encoder manages the allocation of memory to hold the encoded message
3. stream: in this case, the encoder writes the encoded data directly to an output stream

The static buffer case is generally the better performing case because no dynamic memory alocations are required.
However, the user must know in advance the amount of memory that will be required to hold an encoded message.
Thereisno fixed formulato determinethis number. ASN.1 encoding involvesthe possible additions of tagsand lengths
and other decorations to the provided data that will increase the size beyond the initia size of the populated data

149

Generated Encode/Decode Function and Methods

structures. The way to find out is either by trial-and-error (an error will be signaled if the provided buffer is not large
enough) or by using avery large buffer in comparison to the size of the data.

In the dynamic case, the buffer description passed into the encoder is a null buffer pointer and zero size. This tells
the encoder that it is to alocate memory for the message. It does this by allocating an initial amount of memory and
when thisisused up, it expandsthe buffer by reallocating. This can be an expensive operation in terms of performance
— especialy if alarge number of reallocations are required. For this reason, run-time helper functions are provided
that allow the user to control the size increment of buffer expansions. See the C/C++ Run-Time Library Reference
Manual for a description of these functions.

In either case, after amessage is encoded, it is necessary to get the start address and length of the message. Eveninthe
static buffer case, the message start address may be different then the buffer start address (see the section on encoding
BER messages). For this reason, each set of encoding rules has a run-time C function for getting the message start
address and length. See the C/C++ Run-Time Library Reference Manual for a description of these functions. The C+
+ message buffer classes contain the getMsgPtr, getMsgCopy , and getMsgLength methods for this purpose.

A stream message buffer can be used for BER encoding. Thistype of buffer is used when the -stream option was used
to generate the encode functions. See the section on BER stream encoding for a complete description on how to set
up an output stream to receive encoded data.

150

Chapter 7. Generated BER Functions

Generated BER Encode Functions

Note

This section assumes standard memory-buffer based encoding isto be done. If stream-based encoding isto be
done (specified by adding -stream to the ASN1C command-line), see the Generated BER Streaming Encode
Functions section for correct procedures on using the stream-based encode functions.

For each ASN.1 production defined in the ASN.1 source file, a C encode function is generated. This function will
convert apopulated C variable of the given type into an encoded ASN.1 message.

If C++ code generationisspecified, acontrol classisgenerated that containsan Encode method that wrapsthisfunction.
Thisfunction isinvoked through the class interface to convert a popul ated msgData attribute variable into an encoded
ASN.1 message.

Generated C Function Format and Calling Parameters

The format of the name of each generated encode function is as follows:
asnlE [<prefix>] <pr odNane>

where <pr odNamne> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function is as follows:

l en = asnlE_<nane> (OSCTXT* pctxt,
<name>* pval ue,
ASN1TagType taggi ng);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The variable
should be initialized using the rtinitContext run-time library function (see the C/C++ Common Run-Time Library
Reference Manual for a complete description of this function).

The pval ue argument holds a pointer to the data to be encoded and is of the type generated from the ASN.1
production.

The t aggi ng argument is for internal use when calls to encode functions are nested to accomplish encoding of
complex variables. It indicates whether the tag associated with the production should be applied or not (implicit versus
explicit tagging). At the top level, the tag should always be applied so this parameter should aways be set to the
constant ASN1EXPL (for EXPLICIT).

The function result variable | en returns the length of the data actually encoded or an error status code if encoding
fails. Error status codes are negative to tell them apart from length values. Return status values are defined in the
asnlt ype. hincludefile.

151

Generated BER Functions

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C BER or DER encode function. This method must be
used if C code generation was done. This method can also be used as an dternative to using the control classinterface
if C++ code generation was done. Note that the procedures described here cannot be used if stream-based encoding is
to be done (specified by the use of the -stream ASN1C command-line option). In this case, the procedures described
in the Generated BER Streaming Encode Functions section.

Before any encode function can be called; the user must first initialize an encoding context. Thisis avariable of type
OSCTXT. Thisvariable holds all of the working data used during the encoding of a message. The context variableis
declared as a normal automatic variable within the top-level calling function. It must beinitialized before use. This
can be accomplished by using the rtinitContext function as follows:

OSCTXT ct xt;

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem */
printf (“context initialization failed (check license)\n");
return -1,

}

The next step is to specify an encode buffer into which the message will be encoded. Thisis accomplished by calling
the xe_setp run-time function. The user can either pass the address of a buffer and size allocated in his or her program
(referred to as a static buffer), or set these parametersto zero and let the encode function manage the buffer memory
allocation (referred to as a dynamic buffer). Better performance can normally be attained by using a static buffer
because this eliminates the high-overhead operation of allocating and reallocating memory.

After initializing the context and populating a variable of the structure to be encoded, an encode function can be
called to encode the message. If the return statusindicates success (positive length value), the run-timelibrary function
xe_get p can be called to obtain the start address of the encoded message. Note that the returned address is not the
start address of the target buffer. BER encoded messages are constructed from back to front (i.e., starting at the end
of the buffer and working backwards) so the start point will fall somewhere in the middle of the buffer after encoding
iscomplete. Thisisillustrated in the following diagram:

Encode bulfer (size 1K):

Buffer start Start of _ Encode this way End of Buflfer
address Message [Ope 500
(0x100) (0 200)

Inthisexample, a 1K encode buffer is declared which happensto start at address 0x100. When the context isinitialized
with a pointer to this buffer and size equa to 1K, it positions the internal encode pointer to the end of the buffer
(address 0x500). Encoding then proceeds from back-to-front until encoding of the message is complete. In this case,
the encoded message turned out to be 0x300 (768) bytes in length and the start address fell at 0x200. Thisisthe value
that would be returned by the xe_get p function.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */

int min ()

{
OSOCTET nsgbuf[1024], *nsgptr;

152

Generated BER Functions

i nt nmsgl en;

OSCTXT ctxt;

Enpl oyee enpl oyee; /* typedef generated by ASNLIC */

/* Step 1: Initialize the context and set the buffer pointer */

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1,

}
xe_setp (&ctxt, msgbuf, sizeof (nmsgbuf));
/* Step 2: Populate the structure to be encoded */

enpl oyee. nane. gi venNane = "SM TH';

/* Step 3: Call the generated encode function */
nmsgl en = asnlE Enpl oyee (&ctxt, &enployee, ASNLIEXPL);
/* Step 4: Check the return status (note: the test is
* > 0 because the returned value is the length of the
* encoded nessage component).. */
if (msglen > 0) {
/* Step 5: If encoding is successful, call xe_getp to

* fetch a pointer to the start of the encoded nessage. */
megptr = xe_getp (&ctxt);

}

el se {
rtxErrPrint (&ctxt);
return nsgl en;

}

}

In general, static buffers should be used for encoding messages where possible as they offer a substantia performance
benefit over dynamic buffer allocation. The problem with static buffers, however, isthat you are required to estimate
in advance the approximate size of the messages you will be encoding. There is no built-in formulato do this; the size
of an ASN.1 message can vary widely based on data types and the number of tags required.

If performanceis not asignificant issue, then dynamic buffer allocation isagood alternative. Setting the buffer pointer
argument to NULL in the call to xe_setp specifies dynamic alocation. This tells the encoding functions to allocate
a buffer dynamically. The address of the start of the message is obtained as before by calling xe_getp. Note that this
is not the start of the allocated memory; that is maintained within the context structure. To free the memory, either
the rixMemFree function may be used to free all memory held by the context or the xe_free function used to free the
encode buffer only.

The following code fragment illustrates encoding using a dynamic buffer:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */

153

Generated BER Functions

main ()

{
OSCCTET* nmsgptr;
i nt nmsgl en;
OSCTXT ctxt;

Enpl oyee enpl oyee; /* typedef generated by ASNLIC */

if (rtlnitContext (&ctxt) !'= 0) {

/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);

return -1;

}
xe_setp (&ctxt, NULL, 0);

enpl oyee. nane. gi venNane = "SM TH';

nmsgl en = asnlE Enpl oyee (&ctxt, &enployee, ASNLIEXPL);

if (msglen > 0) {
megptr = xe_getp (&ctxt);

rtxMenfFree (&ctxt); /* don’t call free (msgptr); !!!
}

el se
error processing...

}

Encoding a Series of Messages Using the C Encode Functions

A common application of BER encoding is the repetitive encoding of a series of the same type of message over and
over again. For example, a TAP3 batch application might read billing data out of a database table and encode each

of the records for a batch transmission.

If auser was to repeatedly allocate/free memory and reinitialize the C objects involved in the encoding of a message,
performance would suffer. Thisis not necessary however, because the C objects and memory heap can be reused to

allow multiple messages to be encoded. As example showing how to do thisisasfollows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

const OSOCTET* nsgptr;

OSCCTET nmsgbuf [1024] ;

i nt nmsgl en;

OSCTXT ct xt;

Per sonnel Record dat a;
/* Init context structure */

if ((stat = rtlnitContext (&ctxt)) !'= 0) {

154

Generated BER Functions

printf ("rtlnitContext failed; stat = %\n", stat);
return -1,

}

/* Encode |l oop starts here, this will repeatedly use the
* objects decl ared above to encode the nessages */

for (;;) {
xe_setp (&ctxt, msgbuf, sizeof (nmsgbuf));

/* logic here to read record from sone source (database,
* flat file, socket, etc.).. */

/* popul ate structure with data to be encoded */

data.nane = “SM TH’;

/* call encode function */

if ((msglen = asnlE Personnel Record (&ctxt, &data, ASNLIEXPL)) > 0) {
/* encodi ng successful, get pointer to start of message */
megptr = xe_getp (&ctxt);

/* do sonething with the encoded nessage */

}

el se
error processing...

/[* Call rtxMenReset to reset the nmenory heap for the next
* iteration. Note, all data allocated by rtxMemAll oc will
* pecone invalid after this call. */

rtxMenReset (&ctxt);
}

rt FreeCont ext (&ctxt);
}

The rtixMemReset call does not free memory; instead, it marksit as empty so that it may be reused in the next iteration.
Thus, all memory allocated by rtxMemAlloc will be overwritten and data will be lost.

Generated C++ Encode Method Format and Calling
Parameters

When C++ code generation is specified, the ASN1C compiler generates an Encode method in the generated control
class that wraps the C function call. This method provides a more simplified calling interface because it hides things
such as the context structure and the tag type parameters.

155

Generated BER Functions

The calling sequence for the generated C++ class method is as follows:
| en = <obj ect>. Encode ();

In this definition, <object> is an instance of the control class (i.e., ASN1C_<prodName>) generated for the given
production. The function result variable len returns the length of the data actually encoded or an error status code if
encoding fails. Error status codes are negative to tell them apart from length values. Return status values are defined
in the asnltype.h includefile.

Procedure for Using the C++ Control Class Encode Method
The procedure to encode a message using the C++ class interface is as follows:

1. Create avariable of the ASN1T_ <name> type and populate it with the data to be encoded.

2. Create an ASN1BERENncodeBuffer object.

3. Create avariable of the generated ASN1C_<name> class specifying the items created in 1 and 2 as arguments to
the constructor.

4. Invoke the Encode method.

The constructor of the ASN1C <type> class takes a message buffer object argument. This makesit possible to specify
a static encode message buffer when the class variable is declared. A static buffer can improve encoding performance
greatly asit relieves the internal software from having to repeatedly resize the buffer to hold the encoded message. If
you know the general size of the messages you will be sending, or have a fixed size maximum message length, then
a static buffer should be used. The message buffer argument can also be used to specify the start address and length
of areceived message to be decoded.

After the datato be encoded is set, the Encode method is called. This method returnsthe length of the encoded message
or anegative value indicating that an error occurred. The error codes can be found in the asnltype.h run-time header
fileor in Appendix A of the C/C++ Common Functions Reference Manual.

If encoding is successful, a pointer to the encoded message can be obtained by using the getMsgPtr or getMsgCopy
methods available in the ASN1BERENncodeBuffer class. The getMsgPtr method is faster as it simply returns a pointer
to the actual start-of-message that is maintained within the message buffer object. The getMsgCopy method will return
acopy of the message. Memory for this copy will be allocated using the standard new operator, so it is up to the user
to free this memory using delete when finished with the copy.

A program fragment that could be used to encode an employee record is asfollows. This example uses a static encode
buffer:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

const OSOCTET* nsgptr;
OSOCTET nsgbuf [1024] ;
i nt megl en;

/1l step 1l: construct ASNLC C++ generated cl ass.
/1 this specifies a static encode nessage buffer

ASN1BEREncodeBuf f er encodeBuf fer (nsgbuf, sizeof(msgbuf));

156

Generated BER Functions

ASNLT_Per sonnel Record nsgDat a;
ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);

/1 step 2: popul ate nsgbData structure with data to be encoded

msgDat a. name = “SM TH’;

/1 step 3: invoke Encode nethod

if ((msglen = enpl oyee. Encode ()) > 0) {
/1 encoding successful, get pointer to start of nessage
msgptr = encodeBuffer.get MsgPtr();

}

el se
error processing...

}

The following code fragment illustrates encoding using a dynamic buffer. This also illustrates using the getMsgCopy
method to fetch a copy of the encoded message:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

OSCCTET* msgptr;
i nt nmsgl en;

/1 construct encodeBuffer class with no argunents
ASN1BEREncodeBuf f er encodeBuf fer;

ASNLT_Per sonnel Record nsgDat a;

ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);

/1 popul ate nmsgbData structure

msgDat a. name = "SM TH';

/1 call Encode nethod

if ((msglen = enpl oyee. Encode ()) > 0) {
/1 encodi ng successful, get copy of nessage
msgptr = encodeBuf fer. get MsgCopy();

delete [] msgptr; // free the dynam c nenory!

}

el se
error processing...

157

Generated BER Functions

Encoding a Series of Messages Using the C++ Control Class

Interface

A common application of BER encoding is the repetitive encoding of a series of the same type of message over and
over again. For example, a TAP3 batch application might read billing data out of a database table and encode each

of the records for a batch transmission.

If auser wasto repeatedly instantiate and destroy the C++ objectsinvolved in the encoding of amessage, performance
would suffer. Thisis not necessary however, because the C++ objects can be reused to allow multiple messages to be

encoded. As example showing how to do thisis asfollows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

const OSOCTET* msgptr;

OSCCTET nsgbuf [1024];

i nt nmsgl en;

ASN1BEREncodeBuf f er encodeBuf fer (nsgbuf, sizeof (msgbuf));
ASNLT_Per sonnel Record nsgDat a;

ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);

/1 Encode |oop starts here, this will repeatedly use the
/1 objects decl ared above to encode the messages

for (;;) {

/1 logic here to read record from sone source (database,
/1 flat file, socket, etc.)..

/1 popul ate structure with data to sbe encoded

megDat a. name = “SM TH’;

/1 invoke Encode net hod

if ((msglen = enpl oyee. Encode ()) > 0) {
/1 encoding successful, get pointer to start of nessage
snmegptr = encodeBuffer.get MsgPtr();
/1 do sonething with the encoded nessage

}

el se
error processing...

/1 Call the init method on the encodeBuffer object to
/1 prepare the buffer for encodi ng anot her message..

158

Generated BER Functions

encodeBuffer.init();

}
Generated BER Streaming Encode Functions

BER messages can be encoded directly to an output stream such as afile, network or memory stream. The ASN1C
compiler has the -stream option to generate encode functions of this type. For each ASN.1 production defined in the
ASN.1 source file, a C stream encode function is generated. This function will encode a populated C variable of the
given type into an encoded ASN.1 message and write it to a stream.

If the return status indicates success (0), the message will have been encoded to the given stream. Streaming BER
encoding starts from the beginning of the message until the message is complete. This is sometimes referred to as
“forward encoding”. This differs from regular BER where encoding is done from back-to-front. Indefinite lengths are
used for all constructed elementsin the message. Also, thereis no permanent buffer for streaming encoding, all octets
are written to the stream. The buffer in the context structure is used only as a cache.

If C++ code generation is specified, a control class is generated that contains an EncodeTo method that wraps the
stream encode C function. Thisfunction isinvoked through the classinterface to convert apopul ated msgData attribute
variableinto an encoded ASN.1 message.

Generated Streaming C Function Format and Calling
Parameters

The format of the name of each generated streaming encode function is as follows:
asnlBSE [<prefi x>] <pr odNane>

where <pr odNane> is the name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function is as follows:

stat = asnlBSE <nanme> (OSCTXT* pct xt,
<nane>* pval ue,
ASN1TagType tagging);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application.
The user is required to supply a pointer to a variable of this type declared somewhere in his or her program. This
variable must be initialized using both the rtinitContext and rtStreamBufInit run-time library functions (see the C/C+
+ Common Run-Time Library Reference Manual for a description of these functions).

The pval ue argument holds a pointer to the data to be encoded and is of the type generated from the ASN.1
production.

The t aggi ng argument is for internal use when calls to encode functions are nested to accomplish encoding of
complex variables. It indicates whether the tag associated with the production should be applied or not (implicit versus
explicit tagging). At the top level, the tag should always be applied so this parameter should aways be set to the
constant ASN1EXPL (for EXPLICIT).

The function result variable st at returns the completion status of the operation. 0 (0) means the success.

159

Generated BER Functions

Procedure for Calling Streaming C Encode Functions

This section describes the step-by-step procedure for calling astreaming C BER encode function. This method must be
used if C code generation was done. This method can also be used as an alternative to using the control classinterface
if C++ code generation was done.

Before any encode function can be called; the user must first initialize an encoding context. Thisis avariable of type
OSCTXT. This variable holds al of the working data used during the encoding of a message. The context variable
is within the top-level calling function. It must be initialized before use. This can be accomplished by using the
ber SrminitContext function:

OSCTXT ct xt;

if (berStrmnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n");
return -1;

}

The next step isto create a stream object within the context. This object isan abstraction of the output device to which
the datais to be encoded and isiinitialized by calling one of the following functions:

* rtxStreamFileOpen
» rtxSreamFileAttach

* rtxStreamSocketAttach

rixStreamMemoryCreate
* rtxSreamMemoryAttach

The flags parameter of these functions should be set to the OSRTSTRMF_OUTPUT constant value to indicate an
output stream is being created (see the C/C++ Common Run-Time Library Reference Manual for a full description
of these functions).

It is aso possible to use a simplified form of these function calls to create a writer interface to a file, memory, or
socket stream:

o rtxSreamFileCreateWriter
* rtxStreamMemoryCreateWriter
» rtxStreamSocketCreateWriter

After initializing the context and populating a variable of the structure to be encoded, an encode function can be called
to encode the message to the stream. The stream must then be closed by calling the rtxStreamClose function.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
int min ()
{

i nt st at;

OSCTXT ctxt;
Enpl oyee enpl oyee;/* typedef generated by ASNIC */
const char* filename = “nmessage. dat”;

160

Generated BER Functions

/[* Step 1: Initialize the context and stream */

if (berStrmnitContext (&ctxt) = 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n");
return -1,

}

/* Step 2: create a file streamobject within the context */

stat = rtxStreanfFileCreateWiter (&ctxt, filenane);
if (stat '=0) {

rtxErrPrint (&ctxt);

return stat;

}

/* Step 3: Populate the structure to be encoded */

enpl oyee. nane = "SM TH";

/* Step 4: Call the generated encode function */

stat = asnlBSE_Enpl oyee (&ctxt, &enployee, ASNLEXPL);

/* Step 5: Check the return status and cl ose the stream */
if (stat '=0) {

...error processing...

}

rtxStreantl ose (&ctxt);
}

In general, streaming encoding is slower than memory buffer based encoding. However, in the case of streaming
encoding, it is not necessary to implement code to write or send the encoded data to an output device. The streaming
functions also use less memory because there is no need for a large destination memory buffer. For this reason, the
final performance of the streaming functions may be the same or better than buffer-oriented functions.

Encoding a Series of Messages Using the Streaming C Encode
Functions
A common application of BER encoding is the repetitive encoding of a series of the same type of message over and

over again. For example, a TAP3 batch application might read billing data out of a database table and encode each
of the records for a batch transmission.

Encoding a series of messages using the streaming C encode functionsis very similar to encoding of one message. All
that is necessary isto set up aloop in which the asn1BSE_<name> functions will be called. It is also possible to call
different asn1BSE_<name> functions one after another. An example showing how to do thisis as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC

161

Generated BER Functions

int min ()
{
i nt st at;
OSCTXT ctxt;
Enpl oyee enpl oyee;/* typedef generated by ASNIC */
const char* filename = “nmessage. dat”;
/[* Step 1: Initialize the context and stream */
if (berStrmnitContext (&ctxt) = 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1,
}
stat = rtxStreanfFileCreateWiter (&ctxt, filenane);
if (stat '=0) {
rtxErrPrint (&ctxt);
return stat;
}
for (;;) {
/* Step 2: Populate the structure to be encoded */
enpl oyee. nane = "SM TH";
/* Step 3: Call the generated encode function */
stat = asnlBSE_Enpl oyee (&ctxt, &enployee, ASNLEXPL);
/* Step 4: Check the return status and break the | oop
if error occurs */
if (stat '=0) {
...error processing...
br eak;
}
}
/[* Step 5: Close the stream */
rtxStreantl ose (&ctxt);
}

Generated Streaming C++ Encode Method Format and
Calling Parameters

C++ code generation of stream-based encoders is selected by using the —c++ and —stream compiler command line
options. In this case, ASN1C generates an EncodeTo method that wraps the C function call. This method provides a
more simplified calling interface because it hides things such as the context structure and tag type parameters.

162

Generated BER Functions

The calling sequence for the generated C++ class method is as follows:
stat = <object>. EncodeTo (<output Strean®p);

In this definition, <object> is an instance of the control class (i.e., ASN1C_<prodName>) generated for the given
production.

The <outputStream> placeholder represents an output stream object type. This is an object derived from an
ASN1EncodeStream class.

The function result variable st at returns the completion status. Error status codes are negative. Return status values
are defined in the rtxErrCodes.h include file.

Another way to encode a message using the C++ classes is to use the << streaming operator:
<out put St reant << <obj ect >;

Exceptions are not used in ASN1C C++, therefore, the user must fetch the status value following acall such asthisin
order to determineif it was successful. The getSatus method in the ASN1EncodeStream classis used for this purpose.

Also, the method Encode without parameters is supported for backward compatibility. In this case it is necessary to

create control class (i.e., ASN1C <prodName>) using an output stream reference as the first parameter and msgdata
reference as the second parameter of the constructor.

Procedure for Using the Streaming C++ Control Class Encode
Method

The procedure to encode a message directly to an output stream using the C++ classinterfaceis asfollows:

1. Create an OSRTOutputStream object for the type of output stream. Choices are OSRTFileOutputSream for afile,
OSRTMemoryOutputSream for amemory buffer, or OSRTSocketOutputSream for an IP socket connection.

2. Create an ASN1BERENcodeStream object using the stream object created in 1) as an argument.
3. Create avariable of the ASN1T_<name> type and populate it with the data to be encoded.

4. Create a variable of the generated ASN1C_<name> class specifying the item created in 2 as an argument to the
constructor.

5. Invoke the EncodeTo method or << operator.

A program fragment that could be used to encode an employee record is as follows. This example uses a file output
Stream:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
#i ncl ude "rtbersrc/ ASNLBEREncodeSt r eam h"
#i ncl ude "rtxsrc/ OSRTFi | eQut put Stream h"

main ()
{
i nt megl en;
const char* filenane = “nessage. dat”

/1l step 1l: construct output stream object.

163

Generated BER Functions

}

ASN1BEREncodeSt r eam out (new OSRTFi | eQut put Stream (fil enane));
if (out.getStatus () !'= 0) {

out.printErrorinfo ();

return -1,

}

/1 step 2: construct ASNLIC C++ generated cl ass.

ASNLT_Per sonnel Record nsgDat a;
ASN1C Per sonnel Record enpl oyee (nsgData);

/1 step 3: popul ate nsgData structure with data to be
/1 encoded. (note: this uses the generated assi gnment
/1 operator to assign a string).

msgDat a. name = “SM TH’;

/1 step 4: invoke << operator or EncodeTo net hod

out << enpl oyee;
/1 or enpl oyee. EncodeTo (out); can be used here.

/1 step 5: check status of the operation
if (out.getStatus () !'= 0) {

printf ("Encoding failed. Status = %\n", out.getStatus());
out.printErrorinfo ();

return -1,
}
if (trace) {

printf ("Encodi ng was successful\n");
}

Encoding a Series of Messages Using the Streaming C++ Control
Class Interface

Encoding a series of messages using the streaming C++ control classis similar to the C method of encoding. All that
is necessary isto create aloop in which EncodeTo or Encode methods will be called (or the overloaded << streaming
operator). It is also possible to call different EncodeTo methods (or Encode or operator <<) one after another. An
exampl e showing how to do thisisasfollows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
#i ncl ude "rtbersrc/ ASNLBEREncodeSt r eam h"
#i nclude "rtxsrc/ OSRTFi | eCut put St r eam h"

i nt

{

main ()

const OSCCTET* nsgptr;

OSCCTET nsgbuf [1024];

i nt nmsgl en;

const char* filenane = “nmessage. dat”

164

Generated BER Functions

/1 step 1: construct stream object.

ASN1BEREncodeSt r eam out (new OSRTFi | eQut put Stream (fil enane));
if (out.getStatus () !'= 0) {

out.printErrorinfo ();

return -1,

}
/1 step 2: construct ASNLC C++ generated cl ass.

ASNLT_Per sonnel Record nsgDat a;
ASN1C Per sonnel Record enpl oyee (nsgData);

for (;;) {
/1 step 3: popul ate nsgData structure with data to be
/1 encoded. (note: this uses the generated assi gnment
/1 operator to assign a string).

msgDat a. name = “SM TH’;

/1 step 4: invoke << operator or EncodeTo net hod

out << enpl oyee;
/1 or enpl oyee. EncodeTo (out); can be used here.

/1 step 5: fetch and check status
if (out.getStatus () !'= 0) {

printf ("Encoding failed. Status = %\n", out.getStatus());
out.printErrorinfo ();

return -1,
}
if (trace) {

printf ("Encodi ng was successful\n");
}

}
Generated BER Decode Functions

NOTE: This section assumes standard memory-buffer based decoding is to be done. If stream-based decoding is to
be done (specified by adding -stream to the ASN1C command-line), see the Generated BER Streaming Decode
Functions section for correct procedures on using the stream-based functions.

For each ASN.1 production defined in an ASN.1 source file, a C decode function is generated. This function will
decode an ASN.1 message into a C variable of the given type.

If C++ code generation isspecified, acontrol classisgenerated that contains a Decode method that wrapsthisfunction.
This function is invoked through the class interface to decode an ASN.1 message into the variable referenced in the
msgData component of the class.

165

Generated BER Functions

Generated C Function Format and Calling Parameters

The format of the name of each decode function generated is as follows:
asnlD [<prefi x>] <pr odNanme>

where <pr odName> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:

status = asnlD <name> (OSCTXT* pct xt,
<nane> *pval ue,
ASN1TagType taggi ng,
int [ength);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The variable
must be initialized using the rtInitContext run-time function before use.

The pval ue argument isapointer to avariable of the generated type that will receive the decoded data.

Thet aggi ng and | engt h arguments are for internal use when calls to decode functions are nested to accomplish
decoding of complex variables. At the top level, these parameters should always be set to the constants ASN1EXPL
and zero respectively.

The function result variable st at us returns the status of the decode operation. The return status will be zero if
decoding is successful or negative if an error occurs. Return status values are defined in the "asnltype.h” includefile.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C BER or DER decode function. This method must be
used if C code generation was done. This method can also be used as an aternative to using the control classinterface
if C++ code generation was done.

Before any decode function can be called; the user must first initialize a context variable. Thisis a variable of type
OSCTXT. This variable holds all of the working data used during the decoding of a message. The context variable
is declared as a normal automatic variable within the top-level calling function. It must be initialized before use.
This can be accomplished as follows:

OSCTXT ct xt;

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem */
printf (“context initialization failed (check license)\n");
return -1,

}

The next step is the specification of abuffer containing a message to be decoded. Thisis accomplished by calling the
xd_setp run-time library function. This function takes as an argument the start address of the message to be decoded.

166

Generated BER Functions

The function returns the starting tag value and overall length of the message. This makes it possible to identify the
type of message received and apply the appropriate decode function to decode it.

A decode function can then be called to decode the message. If the return status indicates success, the C variable
that was passed as an argument will contain the decoded message contents. Note that the decoder may have allocated
dynamic memory and stored pointers to objectsin the C structure. After processing on the C structureis complete, the
run-time library function rtxMemFree should be called to free the allocated memory.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

OSCCTET nsgbuf [1024] ;
ASNITAG nsgt ag;

i nt nmsgl en;

OSCTXT ctxt;

Per sonnel Record enpl oyee;

logic to read nessage into nsgbuf

/* Step 1: Initialize a context variable for decoding */

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1,

xd_setp (&ctxt, msgbuf, 0, &mrsgtag, &nsglen);

/* Step 2: Test nessage tag for type of nessage received */

/* (note: this is optional, the decode function can be */

/* called directly if the type of nessage is known).. */

if (msgtag == TV_Personnel Record)

/* Step 3: Call decode function (note: last two args */
/* should al ways be ASNIEXPL and 0).. */

status = asnlD Personnel Record (&ctxt,
&empl oyee,
ASNLEXPL, 0);
/[* Step 4: Check return status */
if (status == 0)
{
process received data in ‘enployee’ variable..

/* Renmenber to rel ease dynam c nenory when done! */

rtxMentree (&ctxt);

167

Generated BER Functions

el se
error processing...
el se

check for other known nessage types..

}
Decoding a Series of Messages Using the C Decode Functions

The above example is fine as a sample for decoding a single message, but what happensin the more typical scenario
of having a long-running loop that continuously decodes messages? It will be necessary to put the decoding logic
into aloop:

main ()
{
OSCCTET nsgbuf [1024] ;
ASNITAG nsgt ag;
i nt nmsgl en;
OSCTXT ctxt;
Per sonnel Record enpl oyee;

/* Step 1: Initialize a context variable for decoding */
if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/

printf (“context initialization failed (check license)\n”);
return -1,

}
for (;;) {
logic to read nessage into nsgbuf
xd_setp (&ctxt, msgbuf, 0, &mrsgtag, &nsglen);
/* Step 2: Test nessage tag for type of nessage received */
/* (note: this is optional, the decode function can be */

/* called directly if the type of nessage is known).. */

/* Now switch on initial tag value to determ ne what type of
nmessage was received.. */

switch (nmsgtag)

{
case TV_Personnel Record: /* conpiler generated constant */
{
status = asnlD Personnel Record (&ctxt,
&empl oyee,
ASNLEXPL, 0);

if (status == 0)
{

/* decodi ng successful, data in enployee */

168

Generated BER Functions

process received data..
el se
error processing...

}

br eak;

defaul t:
andl e unknown nessage type here */
} /* switch */

/* Need to reinitialize objects for next iteration */

rtxMenReset (&ctxt);

}

The only changes were the addition of thefor (;;) loop and the call to rtxMemReset that was added at the bottom of the
loop. Thisfunction resets the memory tracking parameters within the context to allow previously allocated memory to
be reused for the next decode operation. Optionally, rtxMemFree can be called to release all memory. Thiswill allow
the loop to start again with no outstanding memory allocations for the next pass.

The example above assumes that logic existed that would read each message to be processed into the same buffer for
every message processed inside the loop (i.e the buffer is reused each time). In the case in which the buffer already
contains multiple messages, encoded back-to-back, it is necessary to advance the buffer pointer in each iteration:

main ()
{
OSCCTET nsgbuf [1024] ;
ASNITAG nsgt ag;
i nt of fset = 0, nsglen, len;
OSCTXT ctxt;
Per sonnel Record enpl oyee;
FI LE* fp;

/* Step 1: Initialize a context variable for decoding */

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1,

}

if (fp = fopen (filename, "rb")) {
msgl en = fread (msgbuf, 1, sizeof(nsgbuf), fp);
}
el se {
handl e error

}

for (; offset < meglen;) {
xd_setp (&ctxt, msgbuf + offset, meglen - offset, &rsgtag, & en);

169

Generated BER Functions

/* Decode */
if (tag == TV_Personnel Record) {
/* Call conpiler generated decode function */

stat = asnlD Personnel Record (&ctxt, &enployee, ASNLEXPL, O0);
if (stat == 0) {

/* decodi ng successful, data in enpl oyee */

}
el se {
/* error handling */
return -1,
}
}
el se {
printf ("unexpected tag %x received\n", tag);
}

of fset += ctxt.buffer. bytelndex;
rtxMenReset (&ctxt);

}

Generated C++ Decode Method Format and Calling
Parameters

Generated decode functions are invoked through the class interface by calling the base class Decode method. The
calling sequence for this method is as follows:

status = <obj ect >. Decode ();

In this definition, <object> is an instance of the control class (i.e., ASN1C_<prodName>) generated for the given
production

An ASN1BERDecodeBuffer object reference is a required argument to the <object> constructor. This is where the
message start address and length are specified

The message length argument is used to specify the size of the message, if itisknown. In ASN.1 BER or DER encoded
messages, the overall length of the message is embedded in the first few bytes of the message, so this variable is
not required. It is used as a test mechanism to determine if a corrupt or partial message was received. If the parsed
message length is greater than this value, an error is returned. If the value is specified to be zero (the default), then
thistest is bypassed.

The function result variable st at us returns the status of the decode operation. The return status will be zero if
decoding is successful or anegative value if an error occurs. Return status values are defined in Appendix A of the C/
C++ Common Functions Reference Manual and online in the asnltype.h includefile.

Procedure for Using the C++ Control Class Decode Method

Normally when a message is received and read into a buffer, it can be one of several different message types.
So the first job a programmer has before calling a decode function is determining which function to cal. The
ASN1BERDecodeBuffer class has a standard method for parsing the initial tag/length from a message to determine the

170

Generated BER Functions

type of message received. This call is used in conjunction with a switch statement on generated tag constants for the
known message set in order to pick adecoder to call.

Onceit isknown which type of message has been received, an instance of agenerated message class can beinstantiated
and the decode function called. The start of message pointer and message length (if known) must be specified either
in the constructor call or in the call to the decode function itself.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
mai n ()
{

OSOCTET nsgbuf[1024];
ASNITAG nsgt ag;
i nt nsgl en, status;
logic to read nessage into nmsgbuf

/1 Use the ASNLBERDecodeBuffer class to parse the initial
/1 tag/length fromthe nessage..

ASN1BERDecodeBuf f er decodeBuffer (nsgbuf, |en);
status = decodeBuf fer. ParseTagLen (nsgtag, mnsglen);

if (status !'= 0) {
// handl e error

}

/1 Now switch on initial tag value to deterni ne what type of
/1l nmessage was received. .

switch (nmsgtag)

{
case TV_Personnel Record: // conpiler generated constant
{
ASNL1T_Per sonnel Record mnsgDat a;
ASNLC Personnel Record enpl oyee (decodeBuffer, nsgData);
if ((status = enpl oyee. Decode ()) == 0)
/1 decoding successful, data in nsgData
process received data..
}
el se
error processing...
}
case TV_ ...// handl e other known nessages

Note that the call to free memory is not required to release dynamic memory when using the C++ interface. This
is because the control class hides all of the details of managing the context and releasing dynamic memory. The

171

Generated BER Functions

memory is automatically released when both the message buffer object (ASN1BERMessageBuffer) and the control
class object (ASN1C_<ProdName>) are deleted or go out of scope. Reference counting of a context variable shared
by both interfaces is used to accomplish this.

Decoding a Series of Messages Using the C++ Control Class
Interface

The above example is fine as a sample for decoding a single message, but what happens in the more typical scenario
of having a long-running loop that continuously decodes messages? The logic shown above would not be optimal
from a performance standpoint because of the constant creation and destruction of the message processing objects.
It would be much better to create all of the required objects outside of the loop and then reuse them to decode and
process each message.

A code fragment showing away to do thisis asfollows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

OSCCTET nsgbuf [1024];

ASNITAG nmsgt ag;

i nt nmsgl en, st at us;

/1l Create nmessage buffer, ASNLT, and ASNLC objects
ASN1BERDecodeBuf f er decodeBuffer (nsgbuf, |en);

ASNLT_Per sonnel Record enpl oyeeDat a;
ASN1C Personnel Record enpl oyee (decodeBuffer, enpl oyeeData);

for (;;) {
logic to read nessage into nsgbuf
status = decodeBuffer.ParseTagLen (nsgtag, nsglen);

if (status !'= 0) {
/1 handl e error

}

/1 Now switch on initial tag value to determ ne what type of
/1l message was received. .

switch (nmsgtag)

{
case TV_Personnel Record: // conpiler generated constant
{
if ((status = enpl oyee. Decode ()) == 0)
{
/1 decoding successful, data in enpl oyeeDat a
process received data..
}
el se

172

Generated BER Functions

error processing...

}

br eak;

defaul t:
/1 handl e unknown nessage type here

} // switch
/1 Need to reinitialize objects for next iteration
if (lisLastlteration) enployee.nnenfFreeAll ();

} // end of |oop

Thisisquite similar to the first example. Note that we have pulled the ASN1T_Employee and ASN1C_Employee object
creation logic out of the switch statement and moved it above the loop. These objects can now be reused to process
each received message.

The only other change was the call to employee.memFreeAll that was added at the bottom of the loop. Since we can’t
count on the objects being deleted to automatically rel ease allocated memory, we need to do it manually. This call will
free all memory held within the decoding context. Thiswill allow the loop to start again with no outstanding memory
allocations for the next pass.

If the buffer already contains multiple BER messages encoded back-to-back then it is necessary to modify the buffer
pointer in each iteration. The getBytelndex method should be used at the end of loop to get the current offset in the
buffer. This offset should be used with the decode buffer object’s setBuffer method call at the beginning of the loop
to determine the correct buffer pointer and length:

OSUI NT32 of fset = O;
for (; offset < nmeglen;) {

/1 set buffer pointer and its length to decode

decodeBuffer.setBuffer (&wsgbuf[offset], nsglen - offset);
int curlen = (int)(nmsglen - offset);

status = decodeBuffer.ParseTagLen (nsgtag, curlen);

if (status !'= 0) {
/1 handl e error

}

/1 Now switch on initial tag value to determ ne what type of
/1l message was received. .

switch (nmsgtag)
{

case TV_Personnel Record: // conpiler generated constant

{
if ((status = enpl oyee. Decode ()) == 0)

{

/1 decodi ng successful, data in enpl oyeeDat a

173

Generated BER Functions

process received data..
el se
error processing...

}

br eak;

defaul t:
/1 handl e unknown nessage type here

} // switch

/1 get new of fset
of fset += decodeBuffer.getBytelndex ();

/1l Need to reinitialize objects for next iteration (if it is not
/1 last iteration)

if (offset < nsglen) enployee.menfFreeAll ();
} // end of |oop

BER Decode Performance Enhancement
Techniques

There are a number of different things that can be done in application code to improve BER decode performance.
These include adjusting memory allocation parameters, using compact code generation, using decode fast copy, and
using initialization functions.

Dynamic Memory Management

By far, the biggest performance bottleneck when decoding ASN.1 messagesisthe allocation of memory from the heap.
Each call to new or malloc is very expensive.

The decoding functions must allocate memory because the sizes of many of the variables that make up a message
are not known at compile time. For example, an OCTET STRING that does not contain a size constraint can be an
indeterminate number of bytesin length.

ASN1C does two things by default to reduce dynamic memory allocations and improve decoding performance:

1. Uses static variables wherever it can. Any BIT STRING, OCTET STRING, character string, or SEQUENCE OF
or SET OF construct that contains a size constraint will result in the generation of a static array of elements sized
to the max constraint bound.

2. Uses a specia nibble-allocation algorithm for allocating dynamic memory. This algorithm allocates memory in
large blocks and then splits up these blocks on subsequent memory allocation requests. Thisresultsin fewer calls
to the kernel to get memory. The downside is that one request for a few bytes of memory can result in a large
block being allocated.

Common run-time functions are available for controlling the memory allocation process. First, the default size of a
memory block as allocated by the nibble-all ocation algorithm can be changed. By defaullt, thisvalueis set to 4K bytes.
The run-time function rtMemSetDefBIkS ze can be called to change this size. This takes a single argument - the value
to which the size should be changed.

174

Generated BER Functions

It is also possible to change the underlying functions called from within the memory management abstraction layer
to obtain or free heap memory. By default, the standard C malloc, realloc, and free functions are used. These can
be changed by calling the rtMemSetAllocFuncs function. This function takes as arguments function pointers to the
allocate, reallocate, and free functions to be used in place of the standard C functions.

Another run-time memory management function that can improve performanceisrtMemReset. Thisfunction is useful
when decoding messagesin aloop. It isused instead of rtMemFree at the bottom of the loop to make dynamic memory
availablefor decoding the next message. Thedifferenceisthat rtMemReset does not actually free the dynamic memory.
It instead just resets the internal memory management parameters so that memory already allocated can be reused.
Therefore, all the memory required to handle message decoding is normally allocated within the first few passes of
the loop. From that point on, that memory is reused thereby making dynamic memory allocation a negligent issuein
the overall performance of the decoder.

A more detailed explanation of these functions and other memory management functions can be found in the C/ C+
+Common Run-Time Library Reference Manual.

Compact Code Generation

Using the compact code generation option (-compact) and lax validation option (-lax) can also improve decoding
performance.

The -compact option causes code to be generated that contains no diagnostic or error trace messages. In addition, some
status checks and other non-critical code are removed providing aslightly less robust but faster code base.

The —ax option causes all constraint checks to be removed from the generated code.

Performance intensive applications should also be sure to link with the compact version of the base run-time libraries.
These libraries can be found in the lib_opt (for optimized) subdirectory. These run-time libraries aso have al
diagnostics and error trace messages removed as well as some non-critical status checks.

Decode Fast Copy

“Fast Copy” isaspecia run-time flag that can be set for the decoder that can substantially reduce the number of copy
operations that need to be done to decode a message. The copy operations are reduced by taking advantage of the fact
that the data contents of some ASN.1 types already exist in decoded form in the message buffer. Therefore, thereis
no need to allocate memory for the data and then copy the data from the buffer into the allocated memory structure.

Asan example of what fast copy does, consider asimple ASN.1 SEQUENCE consisting of an element a, an INTEGER
and b, an OCTET STRING:

Sinmpl e ::= SEQUENCE ({
a | NTEGER,
b OCTET STRI NG

}

Assume an encoded value of this type contains avalue of a= 123 (hex 7B) and b contains the hex octets 0x01 0x02
0x03. The generated variable for the OCTET STRING will contain a data pointer. So rather than allocate memory for
this string and copy the datato it, fast copy will simply store a pointer directly to the datain the buffer:

175

Generated BER Functions

Simple.a =123

Simple.b.numocts = 3
Simple.b.data = ptr

Message buffer:

02 | 01 b | 04 | 03 | 01 02 | 03

The pointer stored in the data structure points directly at data in the message buffer. No memory allocation or copy
is done.

The user must keep in mind that if this technique is used, the message buffer containing the decoded message must be
available aslong asthe type variable containing the decoded dataisin use. Thiswill not work in a producer-consumer
threading model where one thread is decoding messages and the next thread is processing the contents. The producer
thread will overwrite the buffer contents and therefore data referenced in the decoded message type variable that the
consumer is processing.

Thiswill also not work if the message buffer is an automatic variable in afunction and the decoded result typeisbeing
passed out. The result type variable will point at datain the buffer variable that has gone out of scope.

To set fast copy, the rtSetFastCopy function must be invoked with the initialized context variable that will be used to
decode amessage. This should be done once prior to entering theloop that will be used to decode a stream of messages.

Using Initialization Functions

Initialization functions are generated by the ASN1C compiler when the -geninit option is added to the ASN1C
command-line. These functions can be used as an alternative to memset’ing a variable to zero to prepare it to receive
decoded data. The advantageisthat theinitialization functions are smarter and know exactly what within the structures
needs to be zeroed as opposed to blindly clearing everything. So, for example, large byte arrays used to hold OCTET
STRING datawill not be zeroed. This can add up to significant performance improvementsin the long run, particular
in complex, deeply-nested ASN.1 types.

If initialization functions are generated, the generated decode logic will use them wherever it can in place of callsto
zero memory.

BER/DER Deferred Decoding

Another way to improve decoding performance of large messagesisthrough the use of deferred decoding. Thisalows
for the sel ective decoding of only parts of amessagein asingle decode function call. When combined with the fast copy
procedure defined above, this can significantly reduce decoding time because large parts of messages can be skipped.

Deferred decoding can be done on elements defined within a SEQUENCE, SET or CHOICE construct. It is done by
designating an element to be an open type by using the <isOpenType/> configuration setting. This setting causes the

176

Generated BER Functions

ASNI1C compiler to insert an Asn1OpenType placeholder in place of the type that would have normally been used
for the element. The data in its original encoded form will be stored in the open type container when the message is
decoded. If fast copy isused, only apointer to thedatain the message buffer isstored so large copies of dataare avoided.

Thedatawithin the deferred decoding open type container can befully decoded later by using aspecial decode function
generated by the ASN1C compiler for this purpose. The format of this function is as follows:

asnlD <Pr odNanme> <El ement Name>_OpenType (OSCTXT* pctxt, <El ement Type>* pval ue)

Here <ProdName> is replaced with name of the type assignment and <ElementName > is replaced with name of the
element. In thisfunction, the argument pctxt is used to pass the a pointer to a context variableinitialized with the open
type data and the pvalue argument will hold the final decoded data value.

In following example, decoding of the element id is deferred:

Identifier ::= SEQUENCE ({
i d | NTEGER,
oi d OBJECT | DENTI FI ER

}

The following configuration file is required to indicate the element id is to be processed as an open type (i.e. that it
will be decoded later):

<asnlconfi g>
<nodul e>
<name>nmodul enane</ nane>
<pr oduct i on>
<name>l denti fi er </ nane>
<el enent >
<name>i d</ nanme>
<i sCpenType/ >
<el enent/ >
<pr oducti on/ >
<nmodul e/ >
<asnlconfig/ >

In the generated code, the element id type will be replaced with an open type (Asn1OpenTypefor C or Asn1TOpenType
for C++) and the following additional function is generated:

EXTERN i nt asnlD | dentifier_id_OpenType (OSCTXT* pctxt, OSINT32* pval ue);

In the Identifier decode function, element id is decoded as an open type.

Generated BER Streaming Decode Functions

BER messages can be directly read and decoded from an input stream such as afile, network or memory stream using
BER streaming decode functions. The ASN1C compiler -stream option is used to generate decoders of this type. For
each ASN.1 production defined in an ASN.1 source file, a C streaming decode function is generated. This function
will decode an ASN.1 message into a C variable of the given type.

If C++ code generation is specified, a control class is generated that contains a DecodeFrom method that wraps this
function. Thisfunction isinvoked through the classinterface to decode an ASN.1 message into the variable referenced
in the msgData component of the class.

177

Generated BER Functions

Inthisversion, there are three types of streams: file, socket and memory. The most useful are file and socket streams. It
ispossibleto decode datadirectly from afile or socket without intermediate copying into memory. If the full amount of
datais not available for reading then the behavior of these streams will be different: the file and memory input streams
will report an error, the socket input stream will block until datais available or an 1/O error occurs (for example, the
remote side closes the connection).

Generated Streaming C Function Format and Calling
Parameters

The format of the name of each streaming decode function generated is as follows:
asnlBSD [<prefi x>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:

status = asnlBSD <name> (OSCTXT* pctxt,
<nane> *pval ue,
ASN1TagType tagging,
int length);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The variable
must be initialized using the ber SrminitContext run-time function before use.

Thepval ue argument is a pointer to avariable of the generated type that will receive the decoded data.

Thet aggi ng and | engt h arguments are for internal use when calls to decode functions are nested to accomplish
decoding of complex variables. At the top level, these parameters should always be set to the constants ASN1EXPL
and zero respectively.

The function result variable status returns the status of the decode operation. The return status will be zero if decoding
is successful or negative if an error occurs. Return status values are defined in the rtxErrCodes.h includefile.

Procedure for Calling Streaming C Decode Functions

This section describes the step-by-step procedure for calling astreaming C BER decode function. This procedure must
befollowed if C code generation was done. This procedure can also be used as an alternative to using the control class
interface if C++ code generation was done.

Before any decode function can be called; the user must first initialize a context variable. Thisis a variable of type
OSCTXT. Thisvariable holds all of the working data used during the decoding of a message. The context variableis
declared as a normal automatic variable within the top-level calling function. It must beinitialized before use. This
can be accomplished by using the ber SrminitContext function.

OSCTXT ctxt; // context variable

178

Generated BER Functions

if (berStrmnitContext (&ctxt) = 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n");
return -1,

}

The next step isto create a stream object within the context. This object is an abstraction of the output device to which
the datais to be encoded and is initialized by calling one of the following functions:

e rtxStreamFileOpen

rtx&reamFileAttach
* rtxStreamSocketAttach

e rtxSreamMemoryCreate

rtxtreamMemoryAttach

The flags parameter of these functions should be set to the OSRTSTRMF_INPUT constant value to indicate an input
stream is being created (see the C/C++ Common Run-Time Library Reference Manual for afull description of these
functions).

A simplified version of the Open functions are the CreateReader functions:

* rtxStreamFileCreateReader

 rtxSreamMemoryCreateReader

* rtxStreamSocketCreateReader

After initializing the context and popul ating avariable of the structure to be encoded, adecode function can becalled to
decode amessage from the stream. If the return status indicates success, the C variable that was passed as an argument
will contain the decoded message contents. Note that the decoder may have allocated dynamic memory and stored
pointers to objects in the C structure. After processing on the C structure is complete, the run-time library function
rtxMemFree should be called to free the allocated memory.

After stream processing is complete, the stream is closed by invoking the rtxSreamClose function.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude “enpl oyee. h” /* include file generated by ASNLIC */
#include "rtxsrc/rtxStreanfile. h”
main ()
{
ASN1TAG nsgt ag;
i nt nmsgl en;
OSCTXT ctxt;
Per sonnel Record enpl oyee;
const char* filename = “nmessage. dat”

/* Step 1: Initialize a context variable for decoding */

179

Generated BER Functions

if (berStrmnitContext (&ctxt) = 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n");
return -1,

}

/* Step 2: Open the input streamto read data */

stat = rtxStreanFil eCreat eReader (&ctxt, filenane);
if (stat '=0) {

rtxErrPrint (&ctxt);

return stat;

/* Step 3: Test nessage tag for type of nessage received */
/* (note: this is optional, the decode function can be */
/* called directly if the type of nessage is known).. */

if ((stat = berDecStrnPeekTagAndLen (&ctxt, &tag, & en)) = 0) {
rtxErrPrint (&ctxt);
return stat;

}
if (msgtag == TV_Personnel Record)
{
/* Step 4: Call decode function (note: last two args */
/* should al ways be ASNIEXPL and 0).. */
status = asnlBSD_Personnel Record (&ct xt,
&empl oyee,
ASNLEXPL, O0);
/[* Step 5: Check return status */
if (status == 0)
{
process received data in ‘enployee’ variable..
}
el se
error processing...
}
el se

check for other known nessage types..
/* Step 6: Close the stream*/
rtxStreantl ose (&ctxt);
/* Renmenber to rel ease dynam c nenory when done! */

rt FreeCont ext (&ctxt);
}

180

Generated BER Functions

Decoding a Series of Messages Using the Streaming C Decode
Functions

The above example is fine as a sample for decoding a single message, but what happens in the more typical scenario
of having a long-running loop that continuously decodes messages? It will be necessary to put the decoding logic
into aloop.

A code fragment showing away to do thisis asfollows:

#i ncl ude “enpl oyee. h” /* include file generated by ASNLIC */
#include "rtxsrc/rtxStreanfile. h”

main ()

{

ASN1TAG nsgt ag;
int msglen, stat;

OSCTXT ct xt;
Per sonnel Record enpl oyee;
const char* filename = “nmessage. dat”

/* Step 1: Initialize a context variable for decoding */

if (berStrmnitContext (&ctxt) = 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1,

}

/* Step 2: Open the input streamto read data */

stat = rtxStreanFil eCreat eReader (&ctxt, filenane);
if (stat '=0) {

rtxErrPrint (&ctxt);

return stat;

}
for (;;) {

/* Step 3: Test nessage tag for type of nessage received */
/* (note: this is optional, the decode function can be */
/* called directly if the type of nessage is known).. */

if ((stat = berDecStrnPeekTagAndLen (&ctxt, &tag, & en)) = 0) {
rtxErrPrint (&ctxt);
return stat;

if (msgtag == TV_Personnel Record)

/* Step 4: Call decode function (note: last two args */
/* should al ways be ASNIEXPL and 0).. */

stat = asnlBSD Personnel Record (&ctxt,
&empl oyee,
ASNLEXPL, 0);

181

Generated BER Functions

/[* Step 5: Check return status */

if (stat == 0)

process received data in ‘enployee’ variable..
el se
error processing...
el se

check for other known nessage types..
/* Need to reset all nenory for next iteration */
rtxMenReset (&ctxt);

} /* end of loop */

/* Step 6: Close the stream*/

rtxStreantl ose (&ctxt);

/* Renenber to rel ease dynam c nenory when done! */

rt FreeCont ext (&ctxt);
}

The only changes were the addition of thefor (;;) loop and the call to rtxMemReset that was added at the bottom of the
loop. Thisfunction resets the memory tracking parameters within the context to allow previously allocated memory to
be reused for the next decode operation. Optionally, rtxMemFree can be called to release all memory. Thiswill allow
the loop to start again with no outstanding memory allocations for the next pass.

Generated Streaming C++ Decode Method Format and
Calling Parameters

Generated C streaming decode functions are invoked through the C++ class interface by calling the generated
DecodeFFrom method. The calling sequence for this method is as follows:

status = <obj ect >. DecodeFrom (<i nput Streanp);

In this definition, <object> is an instance of the control class (i.e., ASN1C_<prodName>) generated for the given
production.

The <inputStream> placeholder represents an input stream object type. This is an object derived from an
ASN1DecodeSream class.

The function result variable st at returns the completion status. Error status codes are negative. Return status values
are defined in the rtxErr Codes.h include file.

Another way to decode message using the C++ class interface is to use the >> stream operator:

<i nput St reank >> <obj ect >;

182

Generated BER Functions

Exceptions are not used in ASN1C C++, therefore, the user must fetch the status value following acall such asthisin
order to determineif it was successful. The getSatus method in the ASN1DecodeStream class is used for this purpose.

Also, the method Decode without parameters is supported for backward compatibility. In this case it is necessary to
create a control class object (i.e., ASN1C_<prodName>) using an input stream reference as the first parameter and a
reference to a variable of the generated type as the second parameter of the constructor.

Procedure for Using the Streaming C++ Control Class Decode
Method

Normally the receiving message can be one of several different message types. It is therefore necessary to determine
the type of message that was received so that the appropriate decode function can be called to decode it. The
ASN1BERDecodeStream class has standard methods for parsing theinitial tag/length from amessage to determine the
type of message received. These calls are used in conjunction with a switch statement on generated tag constants for
the known message set. Each switch case statement contains logic to create an object instance of a specific ASN1C
generated control class and to invoke and then to invoke that object’ s decode method.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude "Enpl oyee. h" /1 include file generated by ASNLC
#i ncl ude "rtbersrc/ ASNLBERDecodeSt ream h"
#i nclude "rtxsrc/ OSRTFi | el nput Stream h"

main ()
{
ASNLTAG t ag;
int i, len;
const char* filename = "nessage. dat”;

OSBOOL trace = TRUE;
/] Decode

ASN1BERDecodeStream in (new OSRTFi | el nput Stream (fil enane));
if (in.getStatus () != 0) {

in.printErrorinfo ();

return -1,

}

if (in.peekTagAndLen (tag, len) !'= 0) {
printf ("peekTagAndLen failed\n");
in.printErrorinfo ();
return -1,

}

/1 Now switch on initial tag value to determ ne what
/1 type of nessage was received..

switch (nsgtag)
{
case TV_Personnel Record: // conpiler generated
/1 const ant
{
ASNLT_Per sonnel Record nsgDat a;
ASN1C Per sonnel Record enpl oyee (nsgData);

183

Generated BER Functions

in >> enpl oyee;

if (in.getStatus () != 0) {
printf ("decode of Personnel Record failed\n");
in.printErrorinfo ();

return -1,
}
/1 or enpl oyee. DecodeFrom (i n);
br eak;
}
case TV_ ...// handl e other known messages
}
}
return O;

}

Note that the call to free memory and the stream close method are not required to release dynamic memory when
using the C++ interface. Thisis because the control class hides all of the details of managing the context and releasing
dynamic memory. The memory isautomatically released when both the input stream object (ASN1BERDecodeSiream
and derived classes) and the control class object (ASN1C_<ProdName>) are deleted or go out of scope. Reference
counting of a context variable shared by both interfaces is used to accomplish this.

Decoding a Series of Messages Using the C++ Control Class
Interface

The above example is fine as a sample for decoding a single message, but what happens in the more typical scenario
of having a long-running loop that continuously decodes messages? The logic shown above would not be optimal
from a performance standpoint because of the constant creation and destruction of the message processing objects.
It would be much better to create al of the required objects outside of the loop and then reuse them to decode and
process each message.

A code fragment showing away to do thisis asfollows:

#i ncl ude "Enpl oyee. h" /1 include file generated by ASNLC
#i ncl ude "rtbersrc/ ASNLBERDecodeSt ream h"
#i nclude "rtxsrc/ OSRTFi | el nput Stream h"

int min ()
{
ASNLITAG t ag;
int i, len;
const char* filename = "nessage. dat"”;
CSBOOL trace = TRUE;

/] Decode

ASN1BERDecodeStream in (new OSRTFi | el nput St ream (fil enane));
if (in.getStatus () != 0) {

in.printErrorinfo ();

return -1,

184

Generated BER Functions

}

ASNLT_Per sonnel Record nsgDat a;
ASN1C Per sonnel Record enpl oyee (nsgData);

for (;:) {
if (in.peekTagAndLen (tag, len) !'= 0) {
printf ("peekTagAndLen failed\n");
in.printErrorinfo ();
return -1,

}

/1 Now switch on initial tag value to determ ne what
/1 type of nessage was received..

switch (nmsgtag)
{

case TV_Personnel Record: // conpiler generated
/1 const ant

in >> enpl oyee;
if (in.getStatus () != 0) {
printf ("decode of Personnel Record failed\n");

in.printErrorinfo ();
return -1,

/1 or enpl oyee. DecodeFrom (i n);

}

case TV_ ...// handl e other known messages

}

/1l Need to reinitialize objects for next iteration
enpl oyee. nenfFreeAl | ();
} // end of |oop

return O;

}

Thisisquite similar to the first example. Note that we have pulled the ASN1T Employee and ASN1C_Employee object
creation logic out of the switch statement and moved it above the loop. These objects can now be reused to process
each received message.

The only other change was the call to employee.memFreeAll that was added at the bottom of theloop. Since the objects
are not deleted to automatically release allocated memory, we need to do it manually. This call will free all memory
held within the decoding context. This will allow the loop to start again with no outstanding memory allocations for
the next pass.

185

Chapter 8. Generated PER Functions

Generated PER Encode Functions

PER encode/decode functions are generated when the -per, -perindef or -uperswitch is specified on the command line.
For each ASN.1 production defined in the ASN.1 source file, a C PER encode function is generated. This function
will convert a populated C variable of the given typeinto a PER encoded ASN.1 message.

If C++ code generationisspecified, acontrol classisgenerated that containsan Encode method that wrapsthisfunction.
This function is invoked through the class interface to encode an ASN.1 message into the variable referenced in the
msgData component of the class.

Generated C Function Format and Calling Parameters

The format of the name of each generated PER encode function is as follows:
asnlPE_[<prefi x>] <pr odName>

where <pr odNane> is the name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function is as follows:
status = asnlPE <nane> (OSCTXT* pctxt, <nane>[*] val ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

Theval ue argument contains the value to be encoded or holds a pointer to the value to be encoded. Thisvariableis
of the type generated from the ASN.1 production. The object is passed by value if it is a primitive ASN.1 data type
such asBOOLEAN, INTEGER, ENUMERATED, etc.. It is passed using apointer referenceif itisastructured ASN.1
type value. Check the generated function prototype in the header file to determine how the value argument is to be
passed for agiven function.

The function result variable st at returns the status of the encode operation. Status code O (0) indicates the function
was successful. Note that this return value differs from that of BER encode functions in that the encoded length of
the message component is not returned — only an OK status indicating encoding was successful. A negative value
indicates encoding failed. Return status values are defined in the "asnltype.h" include file. The error text and a stack
trace can be displayed using the rtErrPrint function.

Generated C++ Encode Method Format and Calling
Parameters

Generated encode functions are invoked through the class interface by calling the base class Encode method. The
calling sequence for this method is as follows:

stat = <object>. Encode ();

186

Generated PER Functions

In this definition, <object> is an object of the class generated for the given production. The function result variable
st at returnsthe status value from the PER encode function. This status valuewill be 0 (0) if encoding was successful
or anegative error status value if encoding fails. Return status values are defined in the "asnltype.h" includefile.

The user must call the encode buffer class methods getMsgPtr and getMsgLen to obtain the starting address and length
of the encoded message component.

Populating Generated Structure Variables for Encoding

See the section Populating Generated Sructure Variables for Encoding for a discussion on how to populate variables
for encoding. Thereisno differencein how it is done for BER versus how it is done for PER.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C PER encode function. This method must be used if
C code generation was done. This method can also be used as an aternative to using the control class interface if C
++ code generation was done.

Before a PER encode function can be called, the user must first initialize an encoding context block structure. The
context block isinitialized by calling the rtinitContext to initialize the block. The user then must call pu_setBuffer to
specify a message buffer to receive the encoded message. Specification of a dynamic message buffer is possible by
setting the buffer address argument to null and the buffer size argument to zero. The pu_setBuffer function also allows
for the specification of aligned or unaligned encoding.

An encode function can then be called to encode the message. If the return statusindicates success (0), then the message
will have been encoded in the given buffer. PER encoding starts from the beginning of the buffer and proceeds from
low memory to high memory until the message is complete. This differs from BER where encoding was done from
back-to-front. Therefore, the buffer start addressis where the encoded PER message begins. The length of the encoded
message can be obtained by calling the pe_GetMsgLen run-time function. If dynamic encoding was specified (i.e.,
a buffer start address and length were not given), the run-time routine pe_GetMsgPtr can be used to obtain the start
address of the message. This routine will also return the length of the encoded message.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

OSCCTET nsgbuf[1024];

int msglen, stat;

OSCTXT ct xt;

OSBOOL al i gned = TRUE;

Enpl oyee enpl oyee; /* typedef generated by ASNLC */
/* Popul ate enpl oyee C structure */

enpl oyee. nane. gi venNane = "SM TH';

/* Allocate and initialize a new context pointer */
stat = rtlnitContext (&ctxt);

if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");

187

Generated PER Functions

rtxErrPrint (&ctxt);
return stat;

}

pu_set Buffer (&ctxt, msgbuf, mnsglen, aligned);

if ((stat = asnlPE_Enpl oyee (&ctxt, &enployee)) == 0) {
msgl en = pe_GCet MsgLen (&ctxt);

}

el se

error processing...

}

In general, static buffers should be used for encoding messages where possible as they offer a substantia performance
benefit over dynamic buffer allocation. The problem with static buffers, however, isthat you are required to estimate
in advance the approximate size of the messages you will be encoding. There is no built-in formulato do this, the size
of an ASN.1 message can vary widely based on data types and other factors.

If performanceis not asignificant issue, then dynamic buffer allocation isagood alternative. Setting the buffer pointer
argument to NULL inthecall to pu_setBuffer specifiesdynamic allocation. Thistellsthe encoding functionsto allocate
abuffer dynamically. The address of the start of the message is obtained after encoding by calling the run-timefunction
pe_GetMsgPtr .

The following code fragment illustrates PER encoding using a dynamic buffer:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

OSCCTET *nsgptr;

int msglen, stat;

OSCTXT ct xt;

OSBOOL al i gned = TRUE;

Enpl oyee enpl oyee;/* typedef generated by ASNIC */

enpl oyee. nane. gi venNane = "SM TH';

stat = rtlnitContext (&ctxt);

if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");
rtxErrPrint (&ctxt);
return stat;

}

pu_setBuffer (&ctxt, 0, 0, aligned);

if ((stat = asnlPE_Enpl oyee (&ctxt, &enployee)) == 0) {
megptr = pe_GCet MsgPtr (&ctxt, &nmsglen);

}

el se

188

Generated PER Functions

error processing...

}

Itisalso possible to encode directly to astream interface. To do this, the call to pu_setBuffer above would be replaced
with a call to create a stream writer within the context such as rtxSreamFileCreateWriter. The call to the generated
PER encode function would not change - it will automatically know to use the stream interface instead of a memory
buffer.

Procedure for Using the C++ Control Class Encode
Method

The procedure to encode a message using the C++ class interface is as follows:

1

aa A W DN

Instantiate an ASN.1 PER encode buffer object (ASN1PEREncodeBuffer) to describe the buffer into which the
message will be encoded. Two overloaded constructors are available. The first form takes as arguments a static
encode buffer and size and a Boolean value indicating whether aligned encoding is to be done. The second form
only takes the Boolean aligned argument. Thisform is used to specify dynamic encoding.

. Instantiate an ASN1T_<ProdName> object and populate it with data to be encoded.
. Instantiate an ASN1C_<ProdName> object to associate the message buffer with the data to be encoded.
. Invoke the ASN1C_<ProdName> object Encode method.

. Check the return status. The return value is a status value indicating whether encoding was successful or not.

Zero indicates success. If encoding failed, the status value will be a negative number. The encode buffer method
printErrorinfo can be invoked to get a textual explanation and stack trace of where the error occurred.

. If encoding was successful, get the start-of-message pointer and message length. The start-of-message pointer is

obtained by calling the getMsgPtr method of the encode buffer object. If static encoding was specified (i.e., a
message buffer address and size were specified to the PER Encode Buffer class constructor), the start-of-message
pointer is the buffer start address. The message length is obtained by calling the getMsgLen method of the encode
buffer object.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

const OSOCTET* nsgptr;
OSCCTET nsgbuf [1024];
int msglen, stat;

OSBOOL al i gned = TRUE;

/1 step 1l: instantiate an instance of the PER encode
/1 buffer class. This exanple specifies a static
/1 message buffer.
ASN1PEREncodeBuf f er encodeBuffer (nsgbuf,
si zeof (msgbuf),
al i gned);
/1 step 2: populate nsgbData with data to be encoded

ASNLT_Per sonnel Record nsgDat a;

189

Generated PER Functions

In general, static buffers should be used for encoding messages where possible as they offer a substantia performance
benefit over dynamic buffer allocation. The problem with static buffers, however, isthat you are required to estimate
in advance the approximate size of the messages you will be encoding. Thereis no built-in formulato do this, the size

nmsgDat a. nane. gi venNane = "SM TH";

/1 step 3: instantiate an instance of the ASNLC <ProdNane>
/1 class to associate the encode buffer and nessage data..

ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);
/1 steps 4 and 5: encode and check return status

if ((stat = enpl oyee. Encode ()) == 0)

{
printf ("Encodi ng was successful\n");
printf ("Hex dunp of encoded record:\n");
encodeBuf f er. hexDump ();
printf ("Binary dunp:\n");
encodeBuf f er. bi nDunmp (" enpl oyee");

/] step 6: get start-of-nessage pointer and nessage | ength.
/1 start-of-message pointer is start of nsgbuf
/1 call getMsgLen to get message |ength..

msgptr = encodeBuffer.getMgPtr (); // will return &rsgbuf
| en = encodeBuffer.get MsgLen ();
}

el se

{
printf ("Encoding failed\n");

encodeBuffer.printErrorinfo ();
exit (0);
}

/1 megptr and | en now describe fully encoded nessage

of an ASN.1 message can vary widely based on data types and other factors.

If performance is not a significant issue, then dynamic buffer allocation is a good alternative. Using the form of the
ASN1PEREnNcodeBuffer constructor that does not include buffer address and size arguments specifies dynamic buffer
allocation. This constructor only requires a Boolean value to specify whether aligned or unaligned encoding should

be performed (aligned istrue).

The following code fragment illustrates PER encoding using a dynamic buffer:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

OSCCTET* nsgptr;
int msglen, stat;
OSBOOL al i gned = TRUE;

190

Generated PER Functions

/1l Create an instance of the conpiler generated cl ass.
/1 This exanpl e does dynam c encodi ng (no nessage buffer
/1 is specified)..

ASN1PEREncodeBuf f er encodeBuffer (aligned);

ASNLT_Per sonnel Record nsgDat a;

ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);
/1 Popul ate nmsgbata within the class variable

nmsgDat a. nane. gi venNane = "SM TH";

/] Encode

if ((stat = enpl oyee. Encode ()) == 0)

{
printf ("Encodi ng was successful\n");
printf ("Hex dunp of encoded record:\n");
encodeBuf f er. hexDump ();
printf ("Binary dunp:\n");
encodeBuf f er. bi nDunp (" enpl oyee");
/1 Get start-of-nessage pointer and | ength
msgptr = encodeBuffer.get MsgPtr ();
| en = encodeBuffer.get MsgLen ();

}

el se

{
printf ("Encoding failed\n");
encodeBuffer.printErrorinfo ();
exit (0);

}

return O;

}

It isalso possible to encode a PER message to astream rather than amemory buffer. To do this, you would first declare
avariable of one of the OSRT output stream classes. This would then be associated with the encode buffer through
the ASN1PERencode buffer declaration. Everything after that would be similar to the memory buffer based program.
The preceding program fragment rewritten to do streaming output to afile would look like this:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{ .

Int stat;

OSBOOL al i gned = TRUE;

const char* filename = "message_out. per";

/1l Create an instance of the conpiler generated cl ass.
/1 This exanple wite output to a file stream.

191

Generated PER Functions

OSRTFi | eQut put Stream fostrm (fil enane) ;
ASN1PEREncodeBuf f er encodeBuffer (fostrm aligned);
ASNLT_Per sonnel Record nsgDat a;

ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);
/1 Popul ate nmsgbata within the class variable

nmsgDat a. nane. gi venNane = "SM TH";

/] Encode

if ((stat = enpl oyee. Encode ()) == 0)

{
printf ("Encodi ng was successful\n");
printf ("Hex dunp of encoded record:\n");
encodeBuf f er. hexDump ();
printf ("Binary dunp:\n");
encodeBuf f er. bi nDunp (" enpl oyee");

}

el se

{
printf ("Encoding failed\n");
encodeBuffer.printErrorinfo ();
exit (0);

}

return O;

}

Note that the encodeBuffer.hexDump and encodeBuffer.binDump commands work despite the fact that the output has
been written to a stream. This is because a capture buffer is used when tracing is enabled to record all of the encoded
information. If memory istight, a user should ensure that trace output is turned off when using the stream.

Encoding a Series of PER Messages using the C++
Interface

When encoding a series of PER messages using the C++ interface, performance can be improved by reusing the
message processing objects to encode each message rather than creating and destroying the objects each time. A
detailed example of how to do thiswas given in the section on BER message encoding. The PER case would be similar
with the PER function calls substituted for the BER calls. As was the case for BER, the encode message buffer object
init method can be used to reinitialize the encode buffer between invocations of the encode functions.

Generated PER Decode Functions

PER encode/decode functions are generated when the -per switch is specified on the command line. For each ASN.1
production defined in the ASN.1 source file, a C PER decode function is generated. This function will parse the data
contents from a PER-encoded ASN.1 message and popul ate a variable of the corresponding type with the data.

If C++ code generation isspecified, acontrol classisgenerated that contains a Decode method that wrapsthisfunction.
This function is invoked through the class interface to encode an ASN.1 message into the variable referenced in the
msgData component of the class.

192

Generated PER Functions

Generated C Function Format and Calling Parameters

The format of the name of each generated PER decode function is as follows:
asnlPD_[<prefi x>] <pr odName>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:
status = asnlPD <nane> (OSCTXT* pctxt, <nane>* pval ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewhere in his or her program.

Thepval ue argument isapointer to avariable to hold the decoded result. Thisvariableis of the type generated from
the ASN.1 production. The decode function will automatically allocate dynamic memory for variable length fields
within the structure. This memory is tracked within the context structure and is released when the context structure
isfreed.

The function result variable st at returns the status of the decode operation. Status code 0 (0) indicates the function
was successful. A negative valueindicates decoding failed. Return status values are defined in the "asnltype.h" include
file. The reason text and a stack trace can be displayed using the rtErrPrint function described later in this document.

Generated C++ Decode Method Format and Calling
Parameters

Generated decode functions are invoked through the class interface by calling the base class Decode method. The
calling sequence for this method is as follows:

status = <obj ect>. Decode ();
In this definition, <object> is an object of the class generated for the given production.

An ASN1PERDecodeBuffer object must be passed to the <aobject> constructor prior to decoding. This is where the
message start address and length are specified. A Boolean argument is also passed indicating whether the message to
be decoded was encoded using aligned or unaligned PER

The function result variable st at us returns the status of the decode operation. The return status will be zero (0)
if decoding is successful or a negative value if an error occurs. Return status values are documented in the C/C++
Common Functions Reference Manual and in the rtxErrCodes.h includefile.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C PER decode function. This method must be used if
C code generation was done. This method can also be used as an aternative to using the control class interface if C
++ code generation was done.

193

Generated PER Functions

Unlike BER, the user must know the ASN.1 type of a PER message before it can be decoded. Thisis because the type
cannot be determined at run-time. There are no embedded tag values to reference to determine the type of message
received.

The following are the basic stepsin calling a compiler-generated decode function:

1. Prepare a context variable for decoding

2. Initialize the data structure to receive the decoded data

3. Cdll the appropriate compiler-generated decode function to decode the message

4. Freethe context after use of the decoded data is complete to free allocated memory structures

Before a PER decode function can be called, the user must first initialize a context block structure. The context block is
initialized by either calling the rtNewContext function (to allocate adynamic context block), or by calling rtlnitContext
to initialize a static block. The pu_setBuffer function must then be called to specify a message buffer that contains the
PER-encoded message to be decoded. Thisfunction also allows for the specification of aligned or unaligned decoding.

The variable that is to receive the decoded data must then be initialized. This can be done by either initializing the
variable to zero using memset, or by calling the ASN1C generated initialization function.

A decode function can then be called to decode the message. If the return status indicates success (0), then the message
will have been decoded into the given ASN.1 type variable. The decode function may automatically allocate dynamic
memory to hold variable length variables during the course of decoding. This memory will be tracked in the context
structure, so the programmer does not need to worry about freeing it. It will be released when the context is freed.

Thefinal step of the procedure isto free the context block. This must be done regardless of whether the block is static
(declared on the stack and initialized using rtInitContext), or dynamic (created using rtNewContext). The function to
free the context is rtFreeContext.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

OSCCTET nsgbuf [1024];
ASN1TAG nsgt ag;

int msglen, stat;

OSCTXT ct xt;

OSBOOL al i gned = TRUE;
Per sonnel Record enpl oyee;

logic to read nessage into nsgbuf
/* This exanple uses a static context block */
/* step 1: prepare the context block */
stat = rtlnitContext (&ctxt);
if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");

rtErrPrint (&ctxt);
return stat;

194

Generated PER Functions

pu_set Buffer (&ctxt, msgbuf, mnsglen, aligned);

/* step 2: initialize the data variable */
asnllnit_Personnel Record (&enpl oyee);

/* step 3: call the decode function */

stat = asnlPD _Personnel Record (&ctxt, &enpl oyee);

if (stat == 0)

{
process received data..

}

el se {
/* error processing... */
rtxErrPrint (&ctxt);

}

/* step 4: free the context */

rt FreeCont ext (&ctxt);
}

An input stream can be used instead of a memory buffer as the data source by replacing the pu_setBuffer call above
with one of the rtxStream* CreateReader functions to set up afile, memory, or socket stream as input.

Procedure for Using the C++ Control Class Decode
Method

The following are the steps are involved in decoding a PER message using the generated C++ class:

1. Instantiate an ASN.1 PER decode buffer object (ASN1IPERDecodeBuffer) to describe the message to be decoded.

The constructor takes as arguments a pointer to the message to be decoded, the length of the message, and a flag
indicating whether aligned encoding was used or not.

. Instantiate an ASN1T_<ProdName> object to hold the decoded message data.

. Instantiate an ASN1C_<ProdName> object to decode the message. This class associates the message buffer object
with the object that isto receive the decoded data. The results of the decode operation will be placed in the variable
declared in step 2.

. Invoke the ASN1C_<ProdName> object Decode method.

. Check the return status. The return value is a status value indicating whether decoding was successful or not. Zero
(0) indicates success. If decoding failed, the status value will be a negative number. The decode buffer method
PrintErrorinfo can be invoked to get atextual explanation and stack trace of where the error occurred.

. Release dynamic memory that was allocated by the decoder. All memory associated with the decode context is
released when both the ASN1PERDecodeBuffer and ASN1C_<ProdName> objects go out of scope.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC

195

Generated PER Functions

main ()

{
OSOCTET msgbuf [1024] ;

i nt nmsgl en, stat;
OSBOOL al i gned = TRUE;

logic to read nessage into nmsgbuf
/1 step 1l: instantiate a PER decode buffer object
ASN1PERDecodeBuf f er decodeBuffer (nsgbuf, nsglen, aligned);
/] step 2: instantiate an ASNLT_<ProdNane> obj ect
ASNLT_Per sonnel Record nsgDat a;
/] step 3: instantiate an ASNLC <ProdNane> obj ect
ASN1C Per sonnel Record enpl oyee (decodeBuffer, nsgData);
/1 step 4: decode the record
stat = enpl oyee. Decode ();

/1 step 5: check the return status

if (stat == 0)

{ process received data..
}
el se {
/1 error processing..
decodeBuffer.PrintErrorinfo ();
}
/] step 6: free dynamic nenory (will be done automatically

/1 when both the decodeBuffer and enpl oyee objects go out
/1 of scope)..

}

A stream can be used as the data input source instead of a memory buffer by creating an OSRT input stream object in
stepl and associating it with the decodeBuffer object. For example, to read from afile input stream, the decodeBuffer
declaration in step 1 would be replaced with the following two statements:

OSRTFi | el nput Stream i strm (fil enane);
ASN1PERDecodeBuf f er decodeBuffer (istrm aligned);

Decoding a Series of Messages Using the C++ Control
Class Interface

The above example is fine as a sample for decoding a single message, but what happens in the more typical scenario
of having a long-running loop that continuously decodes messages? The logic shown above would not be optimal
from a performance standpoint because of the constant creation and destruction of the message processing objects.

196

Generated PER Functions

It would be much better to create all of the required objects outside of the loop and then reuse them to decode and
process each message.

A code fragment showing away to do thisis as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

OSOCTET nsgbuf[1024] ;

i nt nsgl en, stat;

OCSBOOL al i gned = TRUE;

/1 step 1. instantiate a PER decode buffer object
ASN1PERDecodeBuf f er decodeBuffer (nsgbuf, nsglen, aligned);
/1 step 2: instantiate an ASNLT_<ProdNane> obj ect

ASNLT_ Personnel Record nsgDat a;

/1 step 3: instantiate an ASNLC <ProdNane> obj ect

ASNLC Personnel Record enpl oyee (decodeBuffer, nsgData);

/1 loop to continuously decode records

for () {

logic to read nessage i nto nmsgbuf

stat = enpl oyee. Decode ();
/1l step 5: check the return status

if (stat == 0)

{
process received data..
}
el se {
/1 error processing..
decodeBuffer.PrintErrorinfo ();
}

/1l step 6: free dynam c nenory
enpl oyee. nenfFreeAl |l ();

/1 1f reading unaligned data, it is necessary to do a byte align operation to nov
/1 to the next octet boundary before decodi ng the next nessage..

decodeBuf fer. byteAign();

}

The only difference between this and the previous example is the addition of the decoding loop and the modification
of step 6 inthe procedure. The decoding loop is an infinite loop to continuously read and decode messages from some

197

Generated PER Functions

interface such as a network socket. The decode calls are the same, but before in step 6, we were counting on the
message buffer and control objects to go out of scope to cause the memory to be released. Since the objects are now
being reused, thiswill not happen. So the call to the memFreeAll method that isdefined in the ASN1C Type base class
will force all memory held at that point to be released.

Performance Considerations: Dynamic Memory
Management

Please refer to Performance Considerations: Dynamic Memory Management in the BER Decode Functions section
for adiscussion of memory management performance issues. All of the issues that apply to BER and DER also apply
to PER as well.

198

Chapter 9. Generated Octet Encoding Rules
(OER) Functions

Generated OER Encode Functions

OER encode/decode functions are generated when the -oer switch is specified on the command line. For each ASN.1
production defined in the ASN.1 source file, a C OER encode function is generated. This function will convert a
populated C variable of the given type into an OER-encoded ASN.1 message.

C++isnot directly supported for OER; however, it is possible to call the generated C functions from a C++ program.

Generated C Function Format and Calling Parameters

The format of the name of each generated PER encode function is as follows:
OERENnc_[<pr ef i x>] <pr odNanme>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function is as follows:
status = OEREnc_<nane> (OSCTXT* pctxt, <nane>[*] val ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

Theval ue argument contains the value to be encoded or holds a pointer to the value to be encoded. Thisvariableis
of the type generated from the ASN.1 production. The object is passed by value if it is a primitive ASN.1 data type
suchasBOOLEAN, INTEGER, ENUMERATED, etc.. It ispassed using apointer referenceif it isastructured ASN.1
type value. Check the generated function prototype in the header file to determine how the value argument is to be
passed for a given function.

The function result variable st at returns the status of the encode operation. Status code O (0) indicates the function
was successful. Note that this return value differs from that of BER encode functions in that the encoded length of
the message component is not returned — only an OK status indicating encoding was successful. A negative value
indicates encoding failed. Return status values are defined in the "asnltype.h" include file. The error text and a stack
trace can be displayed using the rtxErrPrint function.

Populating Generated Structure Variables for Encoding

See the section Populating Generated Sructure Variables for Encoding for a discussion on how to populate variables
for encoding. Thereis no differencein how it is done for BER versus how it is done for OER.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C OER encode function. This method must be used if
C code generation was done.

199

Generated Octet Encoding Rules (OER) Functions

Before an OER encode function can be called, the user must first initialize an encoding context block structure. The
context block isinitialized by calling the rtinitContext function.

The user then has the option to do stream-based or memory-based encoding. If stream-based is to be done, the user
must call a rtxStreamCreateéWriter function for the type of stream to which data will be written. For example, if the
user wishesto write datato afile, the rtxStreamFileCreateWriter function would be called.

To do memory-based encoding, the rtxl nitContextBuffer function would be called. This can be used to specify use of a
static or dynamic memory buffer. Specification of adynamic buffer is possible by setting the buffer address argument
to null and the buffer size argument to zero.

An encode function can then be called to encode the message. If the return status indicates success (0), then the
message will have been encoded in the given buffer or written to the given stream. OER encoding starts from the
beginning of the buffer and proceeds from low memory to high memory until the message is complete. This differs
from definite-length BER where encoding was done from back-to-front. Therefore, the buffer start addressiswherethe
encoded OER message begins. The length of the encoded message can be obtained by calling the rtxCtxtGetMsglLen
run-time function. If dynamic encoding was specified (i.e., a buffer start address and length were not given), the
rtxCtxtGetMsgPtr run-time function can be used to obtain the start address of the message. Thisroutinewill also return
the length of the encoded message. If amemory stream was used, the message start address and length can be obtained
by calling the rtxSreamMemoryGetBuffer function.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

Per sonnel Record enpl oyee;

OSCTXT ctxt;

OSCCTET* msgptr;

i nt i, len, stat;

const char* filename = "nessage. dat”;

/* Popul ate enpl oyee C structure */
asnllnit_Personnel Record (&enpl oyee);
enpl oyee. nane. gi venNane = "SM TH';
/[* Initialize context */
stat = rtlnitContext (&ctxt);
if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");

rtxErrPrint (&ctxt);
return stat;

}

/* Create menory output stream */
stat = rtxStreamvenoryCreateWiter (&ctxt, 0, 0);

if (stat < 0) {
printf ("Create menory output streamfailed\n");

200

Generated Octet Encoding Rules (OER) Functions

rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return stat;

}

/* Encode */
stat = OEREnc_Personnel Record (&ctxt, &enpl oyee);
megptr = rtxStreamvenoryGet Buffer (&ctxt, & en);

if (trace) {
printf ("Hex dunp of encoded record:\n");
rt xHexDunmp (nsgptr, |en);

}

In general, static buffers should be used for encoding messages where possible as they offer a substantial performance
benefit over dynamic buffer allocation. The problem with static buffers, however, isthat you are required to estimate
in advance the approximate size of the messages you will be encoding. There is no built-in formulato do this, the size
of an ASN.1 message can vary widely based on data types and other factors.

The use of streams is a good alternative for large messages as the entire encoded message does not need to fit into
memory.

Generated OER Decode Functions

OER encode/decode functions are generated when the -oer switch is specified on the command line. For each ASN.1
production defined in the ASN.1 source file, aC OER decode function is generated. This function will parse the data
contents from an OER-encoded ASN.1 message and popul ate a variable of the corresponding type with the data.

Generated C Function Format and Calling Parameters

The format of the name of each generated OER decode function is as follows:
OERDec_[<pr ef i x>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:
status = OERDec_<nane> (OSCTXT* pctxt, <nane>* pval ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

Thepval ue argument isapointer to avariable to hold the decoded result. Thisvariableis of the type generated from
the ASN.1 production. The decode function will automatically allocate dynamic memory for variable length fields

201

Generated Octet Encoding Rules (OER) Functions

within the structure. This memory is tracked within the context structure and is released when the context structure
isfreed.

The function result variable st at returns the status of the decode operation. Status code 0 (0) indicates the function
was successful. A negative value indicates decoding failed. Return status values are defined in the "asn1ErrCodes.h"
and "rtxErrCodes.h" header files. The reason text and a stack trace can be displayed using the rtxErrPrint function
described later in this document.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C OER decode function.

Unlike BER, the user must know the ASN. 1 type of an OER message beforeit can be decoded. Thisisbecausethetype
cannot be determined at run-time. There are no embedded tag values to reference to determine the type of message
received.

The following are the basic stepsin calling a compiler-generated decode function:

1. Prepare a context variable for decoding

2. Initialize the data structure to receive the decoded data

3. Call the appropriate compiler-generated decode function to decode the message

4. Freethe context after use of the decoded data is complete to free allocated memory structures

Before an OER decode function can be called, the user must first initialize a context block structure. The context block
isinitialized by calling the rtInitContext function.

The user then has the option to do stream-based or memory-based decoding. If stream-based is to be done, the user
must call a rtxStreamCreateReader function for the type of stream from which data will be read. For example, if the
user wishesto read data from afile, the rtxStreamFileCreateReader function would be called.

To do memory-based decoding, the rtxlnitContextBuffer function would be called. The message to be decoded must
reside in memory. The arguments to this function would then specify the message buffer in which the data to be
decoded exists.

The variable that is to receive the decoded data must then be initialized. This can be done by either initializing the
variable to zero using memset, or by calling the ASN1C generated initialization function.

A decode function can then be called to decode the message. If the return status indicates success (0), then the message
will have been decoded into the given ASN.1 type variable. The decode function may automatically allocate dynamic
memory to hold variable length variables during the course of decoding. This memory will be tracked in the context
structure, so the programmer does not need to worry about freeing it. It will be released when the either the context is
freed or explicitly when the rtxMemFree or rixMemReset function is called.

Thefinal step of the procedure isto free the context block. This must be done regardless of whether the block is static
(declared on the stack and initialized using rtlnitContext), or dynamic (created using rtNewContext). The function to
free the context is rtFreeContext.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

202

Generated Octet Encoding Rules (OER) Functions

OSOCTET* pMsgBuf;
int len, stat;

OSCTXT ct xt;
Per sonnel Record enpl oyee;
const char* filename = "nessage. dat"”;

/* step 1: initialize context */
stat = rtlnitContext (&ctxt);

if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");
rtErrPrint (&ctxt);
return stat;

}

/* step 2: read input file into a nenory buffer */

stat = rtxFil eReadBinary (&ctxt, filenanme, &pMsgBuf, & en);
if (0 == stat) {
stat = rtxlnitContextBuffer (&ctxt, pMsgBuf, |en);

}

if (0 !=stat) {
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return stat;

}

/* step 3: initialize the data variable */
asnllnit_Personnel Record (&enpl oyee);

/* step 4: call the decode function */

stat = OERDec_Personnel Record (&ctxt, &enpl oyee);

if (stat == 0)

{
process received data..

}

el se {
/* error processing... */
rtxErrPrint (&ctxt);

}

/* step 4: free the context */

rt FreeCont ext (&ctxt);
}

An input stream can be used instead of a memory buffer as the data source by replacing the rtxFileReadBinary code
block above with one of the rtxStreamCreateReader functions to set up afile, memory, or socket stream as input.

203

Chapter 10. Generated Medical Device
Encoding Rules (MDER) Functions

Note

MDER isavailable only as a professional compiler option. The encoding and decoding functions are built on
top of ASN1C's streaming functions and will not work with the typical buffer-based implementations seenin
BER or PER. When introduced in version 6.4, no C++ implementation for MDER was available.

The Medical Device Encoding Rules (MDER) are described in |EEE standard 11073-20601-2008, Annex F. This
standard describes a simplified encoding to be used across medical devices. ASN1C can generate encoders and
decoders for specifications based on the | EEE standard, which uses a strict subset of ASN.1.

To generate encoding and decoding functions, use the - mder switch on the command-line or select the appropriate
option in the GUI. The following sections describe the generated encoding and decoding functions. Descriptions of
the MDER run time functions may be found in our C MDER Runtime Library Reference Manual.

Generated MDER Encode Functions

Generated C Function Format and Calling Parameters

The format of the name of each generated encode function is as follows:
VDERENc_[<pr ef i x>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function follows:

stat = MDEREnc_<nane> (OSCTXT* pct xt,
<nane>* pval ue);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application.
The user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The
variableshouldbeinitialized usingther t | ni t Cont ext run-timelibrary function (seethe C MDERRuntimeLibrary
Reference Manual for a complete description of this function).

The pval ue argument holds a pointer to the data to be encoded and is of the type generated from the ASN.1
production.

The function result variable st at returns an error status code if encoding fails. Return status values are defined in
theasnlt ype. h includefile.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C MDER encode function.

204

Generated Medical Device
Encoding Rules (MDER) Functions

Before any encode function can be called; the user must first initialize an encoding context. Thisis a variable of type
OSCTXT. Thisvariable holds all of the working data used during the encoding of a message. The context variable is
declared as a normal automatic variable within the top-level calling function. It must beinitialized before use. This
can be accomplished by usingther t | ni t Cont ext function asfollows:

OSCTXT ct xt;

if (rtlnitContext (&ctxt) !'=0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1;

}

After initializing the context and populating avariable of the structure to be encoded, an encode function can be called
to encode the message.

A program fragment that could be used to encode a simple release request PDU is as follows:

#i nclude "I EEE-11073-20601- ASN1. h" /* include file generated by ASNLIC */

int min (void) {
ApduType *pdat a; /* typedef generated by ASNIC */
OSCTXT ctxt;
OSCCTET* msgptr;
i nt st at;

/* Step 1: Initialize the context and set the buffer pointer */

stat = rtlnitContext (&ctxt);

if (stat '=0) {
/* initialization failed, could be a Iicense problem*/
rtxErrPrint (&ctxt);
return stat;

}

/* Step 2: Populate the structure to be encoded */

pdata = rtxMemAl | ocType (&ctxt, ApduType);
asnllinit_ApduType (pdata);

pdata->t = T_ApduType_rlraq;

pdata->u.rlrq = rtxMemAl | ocTypeZ (&ctxt, R rqApdu);
pdat a->u. rlrqg->reason = normal;

/* Step 3: Call the generated encode function */
stat = MDEREnc_ApduType (&ctxt, pdata);

/* Step 4: Check the return status. */

if (stat < 0) {

rtxErrPrint (&ctxt);
return stat;

205

Generated Medical Device
Encoding Rules (MDER) Functions

stat = rtFreeContext (&ctxt);

if (stat '=0) {
printf ("Error freeing context!\n");
return stat;

}

return O;

}

Encoding a Series of Messages Using the C Encode
Functions

Encoding a series of messagesin MDER is very similar to encoding a series of messagesin any other set of encoding
rules. Performance can beimproved by callingr t xMenReset to avoid allocating new memory for dynamic message
structures, as in the code below:

/* initialize context, et c. */

for (5 ;) {

/* initialize / popul ate nessage structure to be encoded */
/* call MDEREnc_<nessageType> (...); */

/* call rtxMenReset when finished encoding: */
rtxMenmReset (pctxt);

}

More details may be found in the sample programsincluded in the ASN1C software development kit.

Generated MDER Decode Functions

Generated C Function Format and Calling Parameters

The format of the name of each decode function generated is as follows:
VDERDec_[<pr ef i x>] <pr odNanme>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:
st atus = MDERDec_<nane> (OSCTXT* pctxt, <nanme> *pval ue);
In this definition, <name> denotes the prefixed production name defined above.
The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The

user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The variable
must beinitialized using ther t | ni t Cont ext run-time function before use.

206

Generated Medical Device
Encoding Rules (MDER) Functions

Thepval ue argument is a pointer to avariable of the generated type that will receive the decoded data.

The function result variable st at us returns the status of the decode operation. The return status will be greater

than or equal to zero if decoding is successful or negative if an error occurs. Return status values are defined in the
"asnltype.h" includefile.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C MDER decode function. This method must be used
if C code generation was done. This method can also be used as an alternative to using the control class interface if
C++ code generation was done.

Before any decode function can be called; the user must first initialize a context variable. This is a variable of type
OSCTXT. This variable holds all of the working data used during the decoding of a message. The context variable
is declared as a normal automatic variable within the top-level calling function. It must be initialized before use.
This can be accomplished as follows:

OSCTXT ct xt;
int stat;

stat = rtlnitContext (&ctxt);
if (stat '=0) {
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return stat;

}

The next step isto create a stream reader that will read from the given source. In our example, we read from afile, but
it is also possible to read data from a socket or other source as well.

A decode function can then be called to decode the message. If the return status indicates success, the C variable
that was passed as an argument will contain the decoded message contents. Note that the decoder may have allocated
dynamic memory and stored pointers to objectsin the C structure. After processing on the C structure is complete, the
run-time library functionr t xMenfr ee should be called to free the alocated memory.

A program fragment that could be used to decode a simple PDU type follows:

#i ncl ude | EEE- 11073- 20601- ASNL. h /* include file generated by ASNLIC */
#include "rtxsrc/rtxStreanfile. h"

int main (void)
{
ApduType dat a;
OSCTXT ctxt;
const char* filename = "nessage. dat"”;
i nt st at;

/* Step 1: Initialize a context variable for decoding */

stat = rtlnitContext (&ctxt);

if (stat '=0) {
/* initialization failed, could be a Iicense problem*/
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);

207

Generated Medical Device
Encoding Rules (MDER) Functions

return stat;

}

/[* Step 2: Initialize a streamreader */

stat = rtxStreanFil eCreat eReader (&ctxt, filenane);
if (0 !=stat) {

rtxErrPrint (&ctxt);

rt FreeCont ext (&ctxt);

return stat;

}
/* Step 3: decode */
asnllinit_ApduType (&data);

stat = MDERDec_ApduType (&ctxt, &data);
if (stat '=0) {
printf ("decode of data failed\n");
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return -1,

}

Decoding a Series of Messages Using the C Decode
Functions

Decoding a series of messagesisvery similar to the method used for other encoding rules. MDER, however, issimpler.
Users need not concern themselves with idiosyncrasies like byte alignment or length markers.

Short pseudo-code is shown below. As in the encoding example, rt xMenReset is used at the end of the loop to
avoid allocating new memory for dynamic data structures. This helps to improve performance.

/* initialize context, et c. */

for (5 ;) {

/* initialize data structure */
/* call NMDERDec_ <nane> function */
/* perform operations on decoded structure */

/* reset menory: */
stat = rtxMenReset (&ctxt);

}

More details may be found in the sample programsincluded in the ASN1C software development kit.

Two-Phase Messaging

MDER is specified using ITU-T X.208, which uses a two-phase method for encoding and decoding ANY DEFI NED
BY types. These types are used to allow flexibility in message transmission by specifying a"hol€" in a message to be
filled in by atype specified by an object identifier.

208

Generated Medical Device
Encoding Rules (MDER) Functions

Let us assume for sake of example that we wish to transmit a message that has a generic header and a payload defined
by some object identifier. We must first encode the payload and attach it to the message. Then we can encode the
whole message and transmit it. Because this takes two steps, we call this two-phase encoding.

Theinverse holds for decoding. The whole message isfirst decoded. The payload may then be identified and decoded
according to its specific type.

This section describes how to perform two-phase encoding and decoding using the MDER Run Time Library.
Examples are also provided in the distribution.

Two-phase Encoding

We demonstrate an example of two-phase encoding using communication with an electrocardiogram. This code is
based on the ASN.1 specification provided in |EEE 11073-20601-2008 and submitted drafts for an application of this

type.

Two-phase encoding requires the use of multiple encoding contexts to encode both the header and payload. They must
therefore be declared with the rest of the pertinent variables:

ApduType apdu;

Aar gApdu aarq;

Dat aPr ot o* pDat aPr ot o;

PhdAssoci ati onl nfornmati on phdAssocl nfo;

OSCTXT ctxt, ctxt?2;

OSCCTET* nsgptr;

i nt | en;

const char* filename = "nessage. dat";

We first populate and encode the payload; specific details will vary depending on the application:

/* Popul ate and encode PhdAssoci ati onl nformation */
OSCRTLMEMSET (&phdAssocl nfo, 0, sizeof (phdAssocl nfo));

phdAssocl nf o. prot ocol _versi on. nunmbi ts
phdAssocl nf o. prot ocol _ver si on. dat a[0]

= 32,
= 0x40;
phdAssocl nf o. encodi ng_rul es. nunbits = 16;
rtxSetBit (phdAssocl nfo.encoding rul es.data, 16, Encodi ngRul es_nder);

phdAssocl nf o. nonencl at ure_versi on. nunbits = 32;
rtxSetBit (phdAssocl nfo.nonencl ature_version.data, 32,
Nonencl at ur eVer si on_nom ver si onl);

phdAssocl nfo. functional _units. numbits = 32;

phdAssocl nf o. system type. nunbits = 32;
rtxSetBit (phdAssocl nfo.systemtype.data, 32, Systemlype_sys_ type_agent);
{
static const OSCCTET sysld[] = {
0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38
}
phdAssocl nfo. system i d. nunocts = (OSU NT32) 8;
phdAssocl nfo. system.id. data = (OSOCTET*) sysld;

}

209

Generated Medical Device
Encoding Rules (MDER) Functions

phdAssocl nfo. dev_config_id = extended_config_start;

phdAssocl nf o. dat a_req_node_capab. data_req_node_fl ags. nunbits = 16;
phdAssocl nfo. data_req_node_capab. data_req_i nit_agent _count = 1;
phdAssocl nf o. dat a_req_node_capab. data_req_i nit_nanager_count = O;

/* Create menory output stream */
stat = rtxStreamvenoryCreateWiter (&ctxt, 0, 0);
if (stat < 0) {
printf ("Create menory output streamfailed\n");
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return stat;

}

/* Encode */
stat = MDEREnc_PhdAssoci ationlnformation (&ctxt, &phdAssoclnfo);

msgptr = rtxStreamvenoryGet Buffer (&ctxt, & en);

In brief, the data structures used for the payload are initialized to zero using the OSCRTLMEMSET macro, which here
acts just like the C runtime library menset function. The data used for populating this example are taken from a
draft specification.

After filling in the necessary fields, ther t xSt r eamMenor yCr eat eW i t er function is used to create a memory
stream for encoding the payload. More information on this function can be found in the C/C++ Common Run Time
Library manual. In case of failure, errors are trapped and reported.

Finally, the proper MDERENCc functionis called to encode the data. A pointer to the message content isretrieved using
ther t xSt r eamvenor yGet Buf f er function. This pointer isused later to fill in the contents of the payload.

After encoding the payload, the rest of the message content must be populated and encoded:

/* Initialize 2nd context structure */
stat = rtlnitContext (&ctxt?2);

/* Popul ate apdu with test data */

OSCRTLMEMSET (&aarq, O, sizeof (AargApdu));

aar . assoc_version. nunbits = 32;

rtxSetBit (aarg.assoc_version.data, 32, AssociationVersion_assoc_versionl);

pDat aProto = rtxMenAl | ocType (&ctxt?2, DataProto);
pDat aPr ot o- >data_proto_id = data_proto_id_20601;
pDat aPr ot 0- >dat a_prot o_i nfo. nunocts = | en;

pDat aPr ot o- >dat a_proto_i nfo. data = nmsgptr;

rtxDLi st Append (&ctxt2, &aarq.data_proto_|ist, pDataProto);

Themsgpt r variableisused heretofill inthe contentsof thedat a_pr ot o_i nf o structure. Therest of the contents
areinitialized and then encoded:

apdu.t = T_ApduType_aarq;
apdu. u. aargq = &aargq;

/* Create menory output stream */

210

Generated Medical Device
Encoding Rules (MDER) Functions

stat = rtxStreamvenoryCreateWiter (&ctxt2, 0, 0);
if (stat < 0) {
printf ("Create menory output streamfailed\n");
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);

}

/* Encode */
stat = MDEREnc_ApduType (&ctxt2, &apdu);

Again, amemory stream writer is used here for encoding, but other options exist to write to afile or a socket.

Two-phase Decoding

Two-phase decoding is the reverse operation of two-phase encoding. In this scenario, a message is received and
decoded. The header and payload are contained in the message, and the payload type and content must be decoded
after the message is received.

This example shows how to decode the message encoded in the previous section. As before, some setup is required
to perform the decode:

ApduType dat a;

OSCTXT ctxt;

OSBOOL trace = TRUE, verbose = FALSE;
const char* filenane = "message. dat";

i nt i, stat;

/* Initialize context structure */
stat = rtlnitContext (&ctxt);
if (stat '=0) {

rtxeErrPrint (&ctxt);

return stat;

}
rtxSet Di ag (&ctxt, verbose);

Inthiscase, thecontentisread fromaninput file, soafilestreamiscreated usingr t xSt r eanti | eCr eat eReader .
Thereafter, the PDU data type is initialized using its initialization function and the message is decoded with the
generated MDERDec function:

/* Create file input stream*/
stat = rtxStreanFil eCreat eReader (&ctxt, filenane);
if (0!=stat) {

rtxErrPrint (&ctxt);

rt FreeCont ext (&ctxt);

return stat;

}

asnllinit_ApduType (&data);

/* Call conpiler generated decode function */
stat = MDERDec_ApduType (&ctxt, &data);
if (stat '=0) {
printf ("decode of ApduType failed\n");
rtxErrPrint (&ctxt);

211

Generated Medical Device
Encoding Rules (MDER) Functions

rt FreeCont ext (&ctxt);
return -1,

rtxStreant ose (&ctxt);

The second phase of the decode can now proceed. Because the open type data can appear in alist, awhi | e loop is
used to cycle through the data:

/* Decode APDU open type data */
if (data.t == T_ApduType_aarq) {
OSRTDLi st Node* pnode = data.u.aarqg->data_proto_list. head;
while (0 !'= pnode) {
PhdAssoci ati onl nformati on phdAssocl nf o;
Dat aPr ot o* pDat aProto = (DataProto*) pnode->dat a;

/* Create menory input stream*/
stat = rtxStreamvenoryCr eat eReader
(&ct xt, (OSOCTET*) pDat aProt o->data_proto_info. data,
pDat aPr ot 0- >dat a_prot o_i nf 0. nunoct s) ;

Noteherethat ther t xSt r eamVenor yCr eat eReader functionisused to stream datafrom the previously decoded
message. It pointsto the octets held inside of the open type. After initializing the stream reader, the data can be decoded
into the appropriate structure using the corresponding MDERDec function:;

/* Decode PhdAssoci ationl nfornation */
asnllnit_PhdAssoci ationl nfornati on (&phdAssocl nfo);

stat = MDERDec_PhdAssoci ationlnformation (&ctxt, &phdAssoclnfo);
if (stat '=0) {

printf ("decode of ApduType failed\n");

rtXxerrPrint (&ctxt);

rt FreeCont ext (&ctxt);

return -1;

}

rtxStreant ose (&ctxt);

pnode = pnode- >next;

212

Chapter 11. Generated XML Functions

Overview

X.693 specifies XER ("XML Encoding Rules"). There are three variants of XER given: BASIC-XER (often just XER
for short), canonical XER, and EXTENDED-XER. Into this mix, Objective Systems has added its own encoding rules
which we'll call OSys-XER. OSys-XER is very similar to XER, but has a few variations that are meant to produce
XML documents more closely aligned with what you might get if you were using XML Schema to specify your
abstract syntax. Generally, OSys-XER produces fewer tags. The differences between these two sets of encoding rules
are discussed in more detail below.

ASNI1C supports BASIC-XER, canonical XER, and OSys-XER. It has for some time supported EXTENDED-XER
viadirect compilation of XSD. In version 6.5.0, we have begun to add direct support for EXTENDED-XER by adding
support for some of the XER encoding instructions. Nonetheless, EXTENDED-XER is most fully support today via
direct compilation of XSD. By compiling X SD, you can abtain behavior much the same aswith OSys-XER, and more.

Prior to version 6.5.1, ASN1C generated two different styles of code and had two different runtime layers for the
various XML encoding rules. In support of XER (basic and canonical), there was the XER style of generated code
and the XER runtime. In support of OSys-XER and extended-XER (via direct compilation of XSD), there was what
we called smply the XML style of generated code and the XML runtime. These two styles of code generation had
different encode and decode method signatures, and used different XML parsing techniques (SAX vs. pull-parser). As
of version 6.5.1, these have been merged together. The old style of XER code gener ation hasnow been depr ecated.
XER is now supported using the same style of code and the same runtime that was previously used for OSys-
XER and extended-XER (via direct XSD compilation).

Depending on the circumstances, the generated code may support more than one set of encoding rules. In these
cases, the OSASN1 XER and OSXMLC14Nflags (setusingr t xCt xt Set Fl ag) are used to choose, at runtime, which
encoding rulesto follow. OSASN1 XER should be set when using BASIC-XER, canonical XER, or EXTENDED-XER.
For canonical XER, OSXMLC14N must also be set.. The table below describes the possibilities.

Note that you may usethe -xsd switch when generating XML encoders and decoders. The XML schema produced from
the ASN.1 specification using the -xsd switch can be used to validate the XML messages generated using the XML
encode functions. Similarly, an XML instance can be validated using the generated XML schema prior to decoding.

What is Generated

Generated code supports BASIC-XER, canonica XER,
and OSys-XER. Set the flags described above to choose
the desired encoding at runtime. Generated PDU methods
will automatically set OSASN1XER for you.

Compiler Invocation

-xer flag isused to compile ASN.1 without XER encoding
instructions

-xsd produces schema that validates BASIC-XER
encodings.

-xer or -xml flag is used to comple ASN.1 with supported
XER encoding instructions (if any instructions are not
supported, al instructionsareignored, and the above entry
in thistable applies)

Generated code supports EXTENDED-XER only. You
should set the OSASN1 XERflag. If you are using the PDU
methods, it will be automatically set for you.

-xsd produces schema that validates EXTENDED-XER
encodings. As of thiswriting, thisis not fully supported.

-xml used to compile ASN.1

This is the same as the first entry (using -xer) except that
the generated PDU methods will NOT automatically set
OSASN1XERfor you. Thismeansyou will get OSys-XER
encodings unless you set the flag yourself.

213

Generated XML Functions

Compiler Invocation What is Gener ated

-xsd produces schema that validates OSys-XER
encodings.

-xml used to compile XSD Generated code supports EXTENDED-XER only. You
should set the OSASN1 XERflag. If you are using the PDU
methods, it will be automatically set for you.

Differences between OSys-XER and XER (BASIC-XER)

OSys-XER differsfrom (BASIC-)XER in the following ways:

 Lists of numbers, enumerated tokens, and named bits are expressed in space-separated list form instead of as
individually wrapped elements or value lists.

For example, the ASN.1 specification “A ::= SEQUENCE OF INTEGER” with value“{ 12 3 }" would produce
the following encoding in XER:

<A><INTEGER>1</INTEGER><INTEGER>2</INTEGER><INTEGER>3</INTEGER>
in XML, it would be the following:
<A>12 3

* Thevalues of the BOOLEAN data type are expressed as the lower case words “true” or “false” with no delimiters.
In XER, the values are <true/> and <false/>.

» Enumerated token values are expressed as the identifiers themselves instead of as empty XML elements (i.e.
elements wrapped in ‘< />"). For example, a value of the ASN.1 type “Colors ::= ENUMERATED { red, blue,
green }” equal to “red” would simply be “<color>red</color>" instead of “<color><red/></color>".

* Thespecial REAL values<NOT-A-NUMBER/>, <PLUS-INFINITY/>and <MINUS-INFINITY /> are represented
asNaN, INF and -INF, respectively.

* GeneralizedTime and UTCTime values are transformed into the XSD representation for dateTime (YYYY-
MMDDTHH: MM:SS[.SSSS|[(Z]|(+]-)HH:MM)]) when encoded to XML. When an XML document is decoded, the
time format is transformed into the ASN.1 format.

EXTENDED-XER

EXTENDED-XER (specified in X.693) allows you to vary the XML encoding of ASN.1 by using XER encoding
instructions. ASN1C supports EXTENDED-XER in two different ways: by compiling XSD and by compiling ASN.1
with XER encoding instructions. Support for XER encoding instructionsin ASN.1 islimited.

This section relates to our support for XER encoding instructions. If some features you need are not supported, you
might consider using direct compilation of XSD.

How to Generate Code for EXTENDED-XER

If your ASN.1 contains XER encoding instructions, ASN1C will automatically generate code for EXTENDED-
XER instead of BASIC-XER. This is true whether you use - xer or - xml on the command line. If, however, any
unsupported encoding instructions are found, ASN1C will ignore all XER encoding instructions, since it would not
be capable of supporting EXTENDED-XER for that specification.

214

Generated XML Functions

Supported Instructions and Brief Summary

ASNI1C supports these instructions: ATTRI BUTE and BASE64. Very brief summaries of the effects of these
instructions follow.

e ATTRI BUTE: Thisinstruction causes a component of a sequence to be encoded as an XML attribute.

e BASEG64: Thisinstruction causes octet strings to be encoded in a base64 representation, rather than a hexadecimal
one.

Limitations
The following are limitations related to EXTENDED-XER:

e For BASE64: ASN1C only supports BASE64 on octet strings. Using BASE64 with octet stings having contents
constraints, open types, or restricted character strings is not supported.

* For encoder's options: ASN1C decoders do not support the following encoder's options allowed by EXTENDED-
XER:

« encoding named bits as empty elements
« encoding named numbers as empty elements

 Enforcement of Encoding Instruction Restrictions: ASN1C does not check that you are using encoding instructions
properly. Misapplication of encoding instructions has undefined results. For example, X.693 does not generally
alow ATTRI BUTE to be applied to a sequence type (there are a few cases where it can be); such an application
produces malformed XML.

In particular, when applying ATTRI BUTE to a restricted character string type, the type should be restricted to
excludethe control characterslisted in X.680 15.15.5, since these control characters are encoded as empty elements.
(Another solution would be to use ATTRI BUTE and BASE64 together, except that ASN1C does not currently
support BASE64 for restricted character strings.) ASN1C will not enforce this rule, but you will get malformed
XML if you try to encode a string having control characters as an attribute.

e XSD Generation: The - xsd switch does not currently generate XSD that can be used to validate EXTENDED-
XER encodings. (Actualy, in the worst cases, it is not possible to produce XSD that validates precisely the set of
valid EXTENDED-XER encodings; the closest approximations would either fail to regject some invalid encodings
or fail to accept some valid encodings. Thisis aresult of the encoder's options, which can produce mixed content
models and XML Schema's limited abilities to constrain mixed content models.)

Working with generated EXTENDED-XER code

Working with the code generated for EXTENDED-XER isthe same asfor XER, except that you must be sure to have
set the OSASNLXER context flag. The generated PDU encoders and decoders should automatically set OSASN1LXER
for you, but if you are not using these methods, you should be sure to set the OSASN1XER flag yourself, using
rt xCt xt Set Fl ag.

For encoding and decoding, you will work with the "XML" (as opposed to the "XER") runtime. Thisis actually true
for BASIC-XER also, unless you are using the deprecated, old style XER.

Finally, there is a sample reader and writer program in c/ sanpl e_xer/ enpl oyee-exer and cpp/
sanpl e_xer/ enpl oyee- exer, should you need to see an example.

215

Generated XML Functions

Generated XER Encode Functions (Old Style -
Deprecated)

XER stands for “XML Encoding Rules’, aform of XML specified in the X.693 standard for use with ASN.1.

Note

As noted in the Overiew, the style of generated code that is discussed here is now deprecated. To upgrade
to the new style, see the section below for some upgrade tips. The old-style XER encode functions can still
be generated by specifying the- xer - conpat 649 (or | ower) switchesonthecommand line. This
ability may be removed in some future version of ASN1C, so you are encouraged to upgrade to the new style.

For each ASN.1 prouction defined in the ASN.1 sourcefile, aC XER encode function is generated. This function will
convert a populated C variable of the given typeinto an XER encoded ASN.1 message (i.e. an XML document).

If C++ code generationisspecified, acontrol classisgenerated that containsan Encode method that wrapsthisfunction.
This function is invoked through the class interface to encode an ASN.1 message into the variable referenced in the
msgData component of the class.

Note that you may use the -xsd switch when generating XER encoders and decoders with -xer. The XML schema
produced from the ASN.1 specification using the -xsd switch can be used to validate the XML messages generated
using the XER encode functions. Similarly, an XML instance can be validated using the generated XML schema prior
to decoding.

Generated C Function Format and Calling Parameters

The format of the name of each generated XER encode function is as follows:
asnlXE_[<prefi x>] <pr odNanme>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function is as follows:

status = asnlXE <nane> (OSCTXT* pctxt, <nane>[*] val ue,
const char* el emNane,
const char* attributes);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewhere in hisor her or her program.

Theval ue argument containsthe valueto be encoded or holds apointer to the value to be encoded. Thisvariableis of
the type generated from the ASN.1 production. The object is passed by valueif it isa primitive ASN.1 data type such
asBOOLEAN, INTEGER, ENUMERATED, etc.. It is passed using a pointer referenceif it isastructured ASN.1 type
value (in this case, the name will be pvalue instead of value). Check the generated function prototype in the header
file to determine how this argument isto be passed for a given function.

216

Generated XML Functions

The elemName and attributes arguments are used to pass the XML element name and attributes respectively. The
elemName argument is the name that will be included in the <name> </name> brackets used to delimit an XML item.
There are three distinct ways this argument can be specified:

1. If it contains standard text, this text will be used as the element name.

2. Ifitisnull, adefault element name will be applied. Default namesfor all of the built-in ASN.1 types are defined in
the 2002 X.680 standard. For example, <BOOL EAN> isthe default element namefor the BOOLEAN built-in type.

3. If the name is empty (i.e. equal to “”, a zero-length string — not to be confused with null), then no element name
is applied to the encoded data.

The function result variable st at returns the status of the encode operation. Status code zero indicates the function
was successful. A negative value indicates encoding failed. Return status values are defined in the rtxErrCodes.h
include file. The error text and a stack trace can be displayed using the rtxErrPrint function.

Generated C++ Encode Method Format and Calling
Parameters

Generated encode functions are invoked through the class interface by calling the base class Encode method. The
calling sequence for this method is as follows:

stat = <object>. Encode ();

In this definition, <object> is an object of the class generated for the given production. The function result variable
stat returns the status value from the XER encode function. This status value will be zero if encoding was successful
or anegative error status value if encoding fails. Return status values are defined in the rtxErrCodes.h include file.

The user must call the encode buffer class methods getMsgPtr and getMsgLen to obtain the starting address and length
of the encoded message component.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling C XER encode functions. This procedure is similar to
that for the other encoding methods except that some of the functions used are specific to XER.

Before an XER encode function can be called, the user must first initialize an encoding context block structure. The
context block isinitialized by calling rtinitContext to initialize a context block structure. The user then must call the
xer Set EncBuf Pt r function to specify amessage buffer to receive the encoded message. Specification of adynamic
message buffer is possible by setting the buffer address argument to null and the buffer size argument to zero. This
function also aso allows specification of whether standard XER or canonical XER encoding should be done.

An encode function can then be called to encode the message. If the return statusindicates success (0), then the message
will have been encoded in the given buffer. XER encoding starts from the beginning of the buffer and proceeds from
low memory to high memory until the message is complete. This differs from BER where encoding was done from
back-to-front. Therefore, the buffer start addressiswherethe encoded X ER message begins. Thelength of the encoded
message can be obtained by calling the xer GetMsgLen run-time function. If dynamic encoding was specified (i.e.,
a buffer start address and length were not given), the run-time routine xer GetMsgPtr can be used to obtain the start
address of the message. This routine will also return the length of the encoded message.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */

main ()

217

Generated XML Functions

{
OSCCTET nsgbuf [4096] ;
i nt nmsgl en, stat;
OSCTXT ctxt;
OSBOOL cxer = FALSE; /* canonical XER flag */
OSBOOL al i gned = TRUE;
Enpl oyee enpl oyee; /* typedef generated by ASNIC */
/* Initialize context and set encode buffer pointer */
if (rtlnitContext (&ctxt) !'= 0) {
rtxErrPrint (&ctxt);
return -1,
}
xer Set EncBuf Ptr (&ctxt, msgbuf, sizeof (nmsgbuf), cxer);
/* Popul ate variable with data to be encoded */
enpl oyee. nane. gi venNanme = “John”;
/* Encode data */
stat = asnlXE _Enpl oyee (&ctxt, &enployee, 0, 0);
if (stat) == 0) {
msgl en = xer Get MsgLen (&ctxt);
}
el se
error processing...
}

rt FreeContext (&ctxt); /* release the context pointer */

After encoding is complete, msgbuf containsthe XML textual representation of the data. By default, aUTF-8 encoding
is used. For the ASCII character set, this results in a buffer containing normal textual data. Therefore, the contents
of the buffer are represented as a normal text string and can be displayed using the C printf run-time function or any
other function capable of displaying text.

Procedure for Using the C++ Control Class Encode

Method

The procedure to encode a message using the C++ class interface is as follows:

1. Instantiate an ASN.1 XER encode buffer object (ASN1IXEREncodeBuffer) to describe the buffer into which the
message will be encoded. Constructors are available that allow a static message buffer to be specified and/or
canonical encoding to be turned on (canonical encoding removes all encoding options from the final message to
produce a single encoded representation of the data). The default constructor specifies use of a dynamic encode
buffer and canonical encoding set to off.

2. Instantiate an ASN1T_<type> object and populate it with data to be encoded.
3. Instantiate an ASN1C_<type> object to associate the message buffer with the data to be encoded.

4. Invoke the ASN1C_<type> object Encode method.

218

Generated XML Functions

5. Check the return status. The return value is a status value indicating whether encoding was successful or not.
Zero indicates success. If encoding failed, the status value will be a negative number. The encode buffer method
printErrorinfo can be invoked to get a textual explanation and stack trace of where the error occurred.

6. If encoding was successful, get the start-of-message pointer and message length. The start-of-message pointer is
obtained by calling the getMsgPtr method of the encode buffer object. If static encoding was specified (i.e., a
message buffer address and size were specified to the XER Encode Buffer class constructor), the start-of-message
pointer is the buffer start address. The message length is obtained by calling the getMsgLen method of the encode
buffer object.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

const OSOCTET* msgptr;
OSCCTET nsgbuf [1024];

i nt nmsgl en, stat;
OSBOOL canoni cal = FALSE;

/1 step 1l: instantiate an instance of the XER encode
/1 buffer class. This exanple specifies a static
/1 message buffer..
ASN1XEREncodeBuf f er encodeBuffer (nsgbuf,
si zeof (msgbuf) ,
canoni cal) ;
/] step 2: popul ate nsgbData with data to be encoded
ASNLT_Per sonnel Record nsgDat a;
nmsgDat a. nane. gi venNane = "SM TH";
/1 step 3: instantiate an instance of the ASNLC <ProdNane>
/1 class to associate the encode buffer and nessage data..
ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);

/1 steps 4 and 5: encode and check return status

if ((stat = enpl oyee. Encode ()) == 0)

{
printf ("encoded XM. nessage:\n");
printf ((const char*)nsgbuf);
printf (“\n");
/] step 6: get start-of-nessage pointer and nessage | ength.
/1 start-of-message pointer is start of nsgbuf
/1 call getMsgLen to get message |ength.
msgptr = encodeBuffer.getMgPtr (); // will return &rsgbuf
| en = encodeBuffer.get MsgLen ();
}

219

Generated XML Functions

el se

{
printf ("Encoding failed\n");

encodeBuffer.printErrorinfo ();
exit (0);
}

/1 megptr and | en now describe fully encoded nessage

Tips for Upgrading to the New Style

The old XER runtime generally has corresponding methods in the XML runtime that you can use. For example,
xerEncStartDocument can be replaced by rtXmlEncStartDocument.

XmIEnc_<Type> PDU methods will encode a type along with the start and end of the XML document.
These methods can be used to replace a sequence of calls to xerEncStartDocument, asn1XE _<Type> and
xerEncEndDocument.

When invoking an XmlEnc_<Type> method, you must pass the correct element name to encode the value within;
unlike asn1XER_<Type>, the xmlasnltypename is not automatically supplied for you. Y ou will want to pass null
for the namespace argument, since XER does not use XML namespaces.

Callsto rtinitContext should be replaced by calls to rtXmlInitContext

If you are not using one of the XmIEnc_<Type> methods, you must use rtxCtxtSetFlag to set the OSASNIXER
flag. This signals the generated and runtime code that XER, and not OSys-XER, rules apply.

xerSetEncBuUfPtr is replaced by rtXmlSetEncBufPtr. The latter does not accept a "canonica" flag. Use
rtxCtxtSetFlag to set the OSXMLCI14N flag if you want to encode using canonical-XER (the OSASN1XER flag
must still also be set).

xerGetMsgPtr is replaced by rtXmlGetEncBufPtr
XERBYTECNT can be replaced by rtxCixtGetMsgLen

ASN1XEREncodeBuffer is replaced by OSXMLEncodeBuffer. If you used the three or four argument constructor
for ASN1XEREncodeBuffer to specify canonical-XER or open type encoding, then you will now need to set aflag
on the context, using rxCixtSetFlag. For canonical-XER set OSXMLC14N (and also OSASN1XER!). For open
type encoding, set OSXMLFRAG to prevent encoding an XML prolog.

OSXMLEnNncodeBuffer does not have a << operator. Replace buffer << nyQbj ect with
myObj ect . EncodeTo(buffer)

Generated XER Decode Functions (Old Style -
Deprecated)

Note

As noted in the Overiew, the style of generated code that is discussed here is now deprecated. To upgrade
to the new style, see the section below for some upgrade tips. The old-style XER decode functions can still
be generated by specifying the- xer -conpat 649 (or | ower) switchesonthecommand line. This
ability may be removed in some future version of ASN1C, so you are encouraged to upgrade to the new style.

220

Generated XML Functions

The code generated to decode XML messages is different than that of the other encoding rules. This is because off-
theshelf XML parser software is used to parse the XML documents to be decoded. This software contains a common
interface known as the Smple API for XML (or SAX) that is a de-facto standard that is supported by most parsers.
ASNI1C generates an implementation of the content handler interface defined by this standard. This implementation
receives the parsed XML data and uses it to popul ate the structures generated by the compiler.

The default XML parser used is the EXPAT parser (http://expat.sourceforge.net). This is a lightweight, open-source
parser that wasimplemented in C. The C++ SAX interface was added by adapting the headers of the Apache XERCES
C++ XML Parser (http://xml.apache.org) to work with the underlying C code. These headers were used to build a
common C++ SAX interface across different vendor’'s SAX interfaces (unlike Java, these interfaces are not all the
same). The ASN1C XER SAX C and C++ libraries come with the EXPAT parser asthe default parser and also include
plug-ininterfacesthat allow the code to work with the Microsoft XML parser (MSXML), The GNOME libxml2 parser,
and the XERCES XML parser. Interfacing to other parsers only requires building an abstraction layer to map the
common interface to the vendor’s interface.

A diagram showing the components used in the XML decode processis as follows:

Step 1: Generate code

C++ header file:

struct MySeq({
int a ;
bocl b;
char* ¢;

}i

|

ASN1C C++ source file:

startElement () {

}

characters () {

}
endElement () {

}

Step 2: Build Application

XML document: Populated data var:

XML Parser *

ASNI1C generates code to implement the following methods defined in the SAX content handler interface:

start El ement

221

Generated XML Functions

characters

endEl ement

The interface defines other methods that can be implemented as well, but these are sufficient to decode XER encoded
data

Procedure for Using the C Interface

The ASN1C compiler generates XER decode functions for C for constructed types in a specification. These can be
invoked in the same manner as other decode functions. In this case, they install the generated SAX content handler
functions and invoke the XML parser’'s parse function to parse a document. The procedure to call these generated
functionsis described below.

Generated C Function Format and Calling Parameters

The format of the name of each generated C XER decode function is as follows:
asnilXD [<prefi x>] <pr odNane>

where <pr odName> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:
status = asnlXD <nane> (OSCTXT* pctxt, <nane>* pval ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so that it can be used in an asynchronous or threaded application.
The user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The
variable must beinitialized using the rtInitContext run-time function before use.

C XER decoding is stream-oriented. To perform streaming operations, the context pointer pctxt must also beinitialized
asastream by using the rtxStreaminit run-time library function (see the C/C++ Common Run-Time Library Reference
Manual for a description of the run-time stream C functions).

Thepval ue argument isapointer to avariableto hold the decoded result. Thisvariableis of the type generated from
the ASN.1 production. The decode function will automatically allocate dynamic memory for variable length fields
within the structure. This memory is tracked within the context structure and is released when the context structure
isfreed.

The function result variable st at returns the status of the decode operation. Status code zero indicates the function
was successful. A negative value indicates decoding failed. Return status values are defined in the rtxErrCodes.h
include file. The reason text and a stack trace can be displayed using the rtxErrPrint function.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C XER decode function. This method must be used if
C code generation was done. This method cannot be used as an alternative to using the control class interface if C+
+ code generation was done. Use the C++ procedure instead.

There are four steps to calling a compiler-generated decode function:

222

Generated XML Functions

1. Prepare a context variable for decoding;

2. Open astream,

3. Call the appropriate compiler-generated decode function to decode the message;

4. Freethe context after use of the decoded data is complete to free allocated memory structures

Before a C XER decode function can be called; the user must initialize a context variable. Thisis avariable of type
OSCTXT. Thisvariable holds all of the working data used during the decoding of a message. The context variable is
declared as a normal automatic variable within the top-level calling function. It must beinitialized before use. This
can be accomplished by using the rtlnitContext function. Also, the context must beinitialized for streaming operations
by calling the rtxSreamlnit function:

OSCTXT ctxt; // context variable

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1;

}

rtxStreaminit (&ctxt)); // Initialize stream

The next step isto create a stream object within the context. This object is an abstraction of the output device to which
the datais to be encoded and isinitialized by calling one of the following functions:

* rtxStreamFileOpen

* rtxStreamFileAttach

* rtxStreamSocketAttach
e rtxSreamMemoryCreate
* rtxStreamMemoryAttach

The flags parameter of these functions should be set to the OSRTSTRMF_INPUT constant value to indicate an input
stream is being created (see the C/C++ Common Run-Time Library Reference Manual for afull description of these
functions).

A decode function can then be called to decode the message. If the return statusindicates success (0), then the message
will have been decoded into the given ASN.1 type variable. The decode function may automatically allocate dynamic
memory to hold variable length items during the course of decoding. This memory will be tracked in the context
structure, so the programmer does not need to worry about freeing it. It will be released when the context is freed.

The final step of the procedure is to close the stream and free the context block. The function to free the context is
rtFreeContext.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

i nt st at;

OSCTXT ctxt;

Per sonnel Record enpl oyee;

223

Generated XML Functions

}

ASN1Const CharPtr fil ename = "nessage. xm ";
/[* Step 1: Init context structure */

if (rtlnitContext (&ctxt) !'=0) return -1;
rtxStream nit (&ctxt);

[* Step 2: Open a stream */

stat = rtxStreanFil eQpen (&ctxt, filename, OSRTSTRMF_I NPUT);
if (stat '=0) {

rtErrPrint (&ctxt.errlnfo);

return -1,

}

/* Step 3: decode the record */

stat = asnlXD Personnel Record (&ctxt, &enpl oyee);
if (stat == 0) {
if (trace) {
printf ("Decode of Personnel Record was successful\n");
printf ("Decoded record:\n");
asnlPrint_Personnel Record ("Enpl oyee", &enpl oyee);

}
}
el se {
printf ("decode of Personnel Record failed\n");
rtxErrPrint (&ctxt);
rtxStreantl ose (&ctxt);
return -1,
}

/[* Step 4: Close the streamand free the context. */

rtxStreantl ose (&ctxt);
rt FreeCont ext (&ctxt);

return O;

Procedure for Using the C++ Interface

SAX handler methods are added to the C++ control class generated for each ASN.1 production.

The procedure to invoke the generated decode method is similar to that for the other encoding rules. It is as follows:

1. Instantiate an ASN.1 XER decode buffer object (ASN1IXERDecodeBuffer) to describe the message to be decoded.
Constructors exist that allow an XML file or memory buffer to be specified as an input source.

2. Instantiate an ASN1T_TypeName object to hold the decoded message data.

3. Instantiate an ASN1C_TypeName object to decode the message. This class associates the message buffer object
with the object that isto receive the decoded data. The results of the decode operation will be placed in the variable
declared in step 2.

224

Generated XML Functions

4. Invoke the ASN1C_TypeName object Decode method. This method initiates and invokes the XML parser’s parse
method to parse the document. This, in turn, invokes the generated SAX handler methods.

5. Release dynamic memory that was allocated by the decoder. All memory associated with the decode context is
released when both the ASN1XERDecodeBuffer and ASN1C_TypeName objects go out of scope.

A program fragment that could be used to decode an employee record is as follows:

i nt

{

}

main (int argc, char* argv[])

const char* filename = "enpl oyee. xm ";
int stat;

/1 steps 1, 2, and 3: instantiate an instance of the XER
/1 decoding classes. This exanple specifies an XM file
/1 as the nessage input source..

ASNLT_ Personnel Record enpl oyee;
ASN1XERDecodeBuf f er decodeBuffer (fil enane);
ASNLC Personnel Record enpl oyeeC (decodeBuf fer, enpl oyee);

/1l step 4: invoke the decode nethod
stat = enpl oyeeC. Decode ();
if (0 == stat) {

enpl oyeeC. Print ("enpl oyee");
}

el se
decodeBuffer.printErrorinfo ();

/1 step 5: dynamic nmenory is rel eased when enpl oyeeC and
/1 decode buffer objects go out of scope.

return (stat);

Procedure for Interfacing with Other C and C++ X ML
Parser Libraries

As mentioned previously, the Expat XML Parser library is the default XML parser library implementation used for
decoding XER messages. It isalso possibleto use the C++ SAX handlers generated by ASN1C with other XML parser
library implementations. The XER Run-Time Library (ASN1XER) provides a common interface to other parsersvia
a common adapter interface layer. There is a special XML interface object file for each of the following supported
XML parsers:

o rtXmlLibxml2IF - interfaceto LIBXMLZ;

o rtXmlXerceslF - interface to XERCES;

o rtXmlExpatlF - interface to EXPAT.

o rtXmiMicrol F - interface to custom, small footprint, microparser

225

Generated XML Functions

The XER Run-Time Library is completely independent from the XML readers because the adapter layer within these
libraries defines a common SAX API.

If an application is linked statically then the static variant of one of these interface objects (their names have suffix
“_a") should be linked cooperatively with the XML parser, ASN1XER and ASN1RT libraries.

If the application islinked dynamically (using dynamically-linked libraries (DLL) in Windows or shared objects (SO
or SL in UNIX/Linux) then it is necessary to link the application with the dynamic variant of the interfaces (without
suffix “_a"), dynamic version of the XML parser, ASN1IXER and ASN1RT dynamic libraries.

Tips for Upgrading to the New Style

* XmlIDec_<Type> PDU methods can be used to replace asn1XD_<Type> methods.

* Unlike the asn1XD_<Type> methods, the XmIDec_<Type> methods do not match an outer start tag but begin by
decoding the content of the type. Y ou must use rtXmlpMatchStartTag to match the outer start tag yourself.

 Callsto rtinitContext should be replaced by callsto rtXmllnitContext

« If you are not using one of the XmlDec_<Type> methods, you must use rtxCtxtSetFlag to set the OSASNIXER
flag. This signals the generated and runtime code that XER, and not OSys-XER, rules apply.

» xerSetDecBUfPtr is replaced by using one of the rtxStream methods. For example, if the buffer wasread from afile,
youcanusestat = rtxStreanFil eQpen (pctxt, filenane, OSRTSTRMF_| NPUT);

e Use rtxCtxtSetFlag to set the OSXMLC14N flag if you want to encode using canonical-XER (the OSASN1XER
flag must still also be set).

» ASN1XERDecodeBuffer is replaced with OSXML DecodeBuffer. Note that OSXML DecodeBuffer can be created
on streams (there is no OSXM L DecodeStream corresponding to ASN1XERDecodeStream).

* OSXMLDecodeBuffer does not have a >> operator. Replace buffer >> nyChj ect with
myObj ect . DecodeFr om(buf f er)

Generated XML Encode Functions

Note

Asof version 6.5.1, this section applies to XER encoding rules. See the Overview section above.
XML C encode and decode functions allow datain a populated variable to be formatted into an XML document.

For each ASN.1 production defined in the ASN.1 source file, a C XML encode function is generated. In the case
of XML schema, a C encode function is generated for each type and global element declaration. This function will
convert apopulated C variable of the given type into an XML encoded message (i.e. an XML document).

If C++ code generationisspecified, acontrol classisgenerated that containsan Encode method that wrapsthisfunction.
This function is invoked through the class interface to encode an ASN.1 message into the variable referenced in the
msgData component of the class.

Generated C Function Format and Calling Parameters

The format of the name of each generated XML encode function is as follows:

[<namespace>] Xm Enc_|[<pr ef i x>] <pr odNane>

226

Generated XML Functions

where <namespace> is an optional C namespace prefix, <pr odNanme> is the name of the ASN.1 production for
which the function is being generated and <pr ef i x> is an optional prefix that can be set via a configuration file
setting. The configuration setting used to set the prefix is the <typePrefix> element. This element specifies a prefix
that will be applied to all generated typedef names and function names for the production. <namespace> is set using
the ASN1C -namespace command-line argument. Note that this should not be confused with the notion of an XML
namespace.

The calling sequence for each encode function is as follows:

status = <ns>Xm Enc_<name> (OSCTXT* pctxt, <name>[*] val ue,
const OSUTF8CHAR* el emNane,
const OSUTF8CHAR* nsPrefix);

In this definition, <ns> is short for <namespace> and <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewhere in his or her program.

Theval ue argument containsthe valueto be encoded or holds apointer to the value to be encoded. Thisvariableis of
the type generated from the ASN.1 production. The object is passed by valueif it isa primitive ASN.1 data type such
asBOOLEAN, INTEGER, ENUMERATED, etc.. It is passed using a pointer referenceif it isastructured ASN.1 type
value (in this case, the name will be pvalue instead of value). Check the generated function prototype in the header
file to determine how this argument isto be passed for a given function.

The elemName and nsPrefix arguments are used to pass the XML element name and namespace prefix respectively.
The two arguments are combined to form aqualified name (QName) of the form <nsPrefix:elemName>. If elemName
is null or empty, then no element tag is added to the encoded content. If nsPrefix is null or empty, the element name
isapplied as alocal name only without a prefix.

The function result variable st at returns the status of the encode operation. Status code zero indicates the function
was successful. A negative value indicates encoding failed. Return status values are defined in the rtxErrCodes.h
include file. The error text and a stack trace can be displayed using the rtxErrPrint function.

In addition to the XML encode function generated for types, a different type of encode function is generated for
Protocol Data Units (PDU’s). These are typesin an ASN.1 specification that are not referenced by any other types.
In an XML schema specification, these are global elements that are not reference within any other types or global
elements.

Theformat of the a PDU encode function is the same name format as above with the suffix _PDU. This function does
not contain the elemName and nsPrefix arguments - these are built into the function as defined in the schema. For this
reason, calling PDU functionsis usually more convenient than calling the equivalent function for the referenced type.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling C XML encode functions. This procedure is similar to
that for the other encoding methods except that some of the functions used are specific to XML.

Before an XML encode function can be called, the user must first initialize an encoding context block structure. The
context block isinitialized by calling rtXmlInitContext to initialize acontext block structure. The user then must call the
rtXml SetEncBufPtr function to specify a message buffer to receive the encoded message. Specification of a dynamic
message buffer is possible by setting the buffer address argument to null and the buffer size argument to zero.

An encode function can then be called to encode the message. If the return status indicates success, then the message
will have been encoded in the given buffer. XML encoding starts from the beginning of the buffer and proceeds from
low memory to high memory until the message is complete. This differs from BER where encoding was done from

227

Generated XML Functions

back-to-front. Therefore, the buffer start address is where the encoded XML message begins. If a dynamic message
buffer was used, the start address of the encoded message can be obtained by calling the rtXmlEncGetMsgPtr function.
Since the encoded XML message is nothing more than a null-terminated string in a memory buffer, the standard C
library function strlen can be used to obtain the length.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLC */
int main (int argc, char** argv)
{
Per sonnel Record enpl oyee;
OSCTXT ctxt;
OSOCTET nsgbuf [4096] ;
i nt stat;
/* Initialize context and set encode buffer pointer */
stat = rtXm I nitContext (&ctxt);
if (0!=stat) {
printf ("context initialization failed\n");
rtxerrPrint (&ctxt);
return stat;
}
rt Xm Set EncBuf Ptr (&ctxt, msgbuf, sizeof (nmsgbuf));
/* Populate variable with data to be encoded */
enpl oyee. nane. gi venNane = “John”;
/* Encode data */
stat = Xm Enc_Personnel Record_PDU (&ct xt, &enpl oyee);
if (stat) == 0) {
/* Note: nessage can be treated as a null-terninated string
in menory */
printf ("encoded XM. nessage:\n");
puts ((char*)msgbuf);
printf ("\n");
}
el se
error processing...
}

rt FreeContext (&ctxt); /* release the context pointer */

Generated C++ Encode Method Format and Calling
Parameters

When C++ code generation is specified using the -xml switch, the generated EncodeTo and DecodeFrom methods in
the PDU control class are set up to encode complete XML documents including the start document header as well as
namespace attributes in the main element tag.

228

Generated XML Functions

Generated encode functions are invoked through the class interface by calling the base class Encode method. The
calling sequence for this method is as follows:

stat = <object>. Encode ();

In this definition, <object> is an object of the class generated for the given production. The function result variable
st at returnsthe status value from the XML encode function. This status value will be zero if encoding was successful
or anegative error status value if encoding fails. Return status values are defined in the rtxErrCodes.h include file.

The user must call the encode buffer class methods getMsgPtr and getMsgLen to obtain the starting address and length
of the encoded message component.

Procedure for Using the C++ Control Class Encode
Method

The procedure to encode a message using the C++ classinterface is as follows:

1. Instantiate an XML encode buffer object (OSXMLEncodeBuffer) to describe the buffer into which the message will
be encoded. Constructors are available that allow a static message buffer to be specified. The default constructor
specifies use of a dynamic encode buffer.

2. Instantiate an ASN1T_<type> object and populate it with data to be encoded.
3. Instantiate an ASN1C_<type> object to associate the message buffer with the data to be encoded.
4. Invoke the ASN1C_<type> object Encode or EncodeTo method.

5. Check the return status. The return value is a status value indicating whether encoding was successful or not.
Zero indicates success. If encoding failed, the status value will be a negative number. The encode buffer method
printErrorinfo can be invoked to get atextual explanation and stack trace of where the error occurred.

6. If encoding was successful, get the start-of-message pointer and message length. The start-of-message pointer is
obtained by calling the getMsgPtr method of the encode buffer object. If static encoding was specified (i.e., a
message buffer address and size were specified to the XML Encode Buffer class constructor), the start-of-message
pointer is the buffer start address. The message length is obtained by calling the getMsgLen method of the encode
buffer object.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

OSOCTET msgbuf [4096] ;
i nt nmsgl en, stat;

/1 step 1l: instantiate an instance of the XML encode
/1 buffer class. This exanple specifies a static
/1 message buffer..

OSXMLEncodeBuf f er encodeBuffer (msgbuf, sizeof(nmsgbuf));

/] step 2: popul ate nsgbData with data to be encoded

229

Generated XML Functions

ASNLT_Per sonnel Record nsgDat a;
nmsgDat a. nane. gi venNane = "SM TH";

/1 step 3: instantiate an instance of the ASNLC <ProdNane>
/1 class to associate the encode buffer and nessage data..

ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);

/1 steps 4 and 5: encode and check return status

if ((stat = enpl oyee. Encode ()) == 0)

{
printf ("encoded XM. nessage:\n");
printf ((const char*)nsgbuf);
printf (“\n");
/] step 6: get start-of-nessage pointer and nessage | ength.
/] start-of-message pointer is start of nsgbuf
/1 call getMsgLen to get message |ength.
msgptr = encodeBuffer.getMgPtr (); // will return &rsgbuf
| en = encodeBuffer.get MsgLen ();
}
el se
{
printf ("Encoding failed\n");
encodeBuffer.printErrorinfo ();
exit (0);
}

/1 megptr and | en now describe fully encoded nessage

Generated XML Decode Functions

Note

Asof version 6.5.1, this section applies also to XER encoding rules. See the Overview section above.

A major difference between generated X ER decode functions and generated XML decode functionsin ASN1C version
6.0 and later is that the XML functions no longer use the Simple APl for XML (SAX) interface. Instead, the XML
runtime now uses an XML pull-parser developed in-house for improved efficiency. The pull-parser also provides a
similar interfaceto that of binary encoding rules such asBER or PER meaning easier integration with existing encoding
rules. Finally, the pull-parser interface does not require integration with any 3rd-party XML parser software.

For each ASN.1 production defined in the ASN.1 source file, a C XML decode function is generated. This function
will parse the data contents from an XML message of the corresponding ASN.1 or XML schema type and populate
avariable of the C type with the data.

If C++ code generation is specified, a control class is generated that contains a DecodeFrom method that wraps this
function. Thisfunction isinvoked through the classinterface to encode an ASN.1 message into the variable referenced
in the msgData component of the class.

230

Generated XML Functions

Generated C Function Format and Calling Parameters

The format of the name of each generated XML decode function is as follows:
[<nanespace>] Xm Dec_[<pr ef i x>] <pr odName>

where <namespace> is an optional C namespace prefix, <pr odName> is the name of the ASN.1 production for
which the function is being generated and <pr ef i x> is an optional prefix that can be set via a configuration file
setting. The configuration setting used to set the prefix is the <typePrefix> element. This element specifies a prefix
that will be applied to all generated typedef names and function names for the production. <namespace> is set using
the ASN1C -namespace command-line argument. Note that this should not be confused with the notion of an XML
namespace.

The calling sequence for each decode function is as follows:
status = <ns>Xnl Dec_<nane> (OSCTXT* pctxt, <nane>* pval ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

Thepval ue argument isapointer to avariableto hold the decoded result. Thisvariableis of the type generated from
the ASN.1 production. The decode function will automatically allocate dynamic memory for variable length fields
within the structure. This memory is tracked within the context structure and is released when the context structure
isfreed.

The function returns the status of the decode operation. Status code zero indicates the function was successful. A
negative valueindicates decoding failed. Return status values are defined in the rtxErrCodes.h includefile. The reason
text and a stack trace can be displayed using the rtxErrPrint function.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C XML decode function. This method must be used
if C code generation was done. This method can also be used as an alternative to using the control class interface if
C++ code generation was done.

These are the steps involved calling a compiler-generated decode function:

1. Prepare a context variable for decoding

2. Open an input stream for the XML document to be decoded

3. Decode theinitial tag value to figure out what type of message was received (optional).

4. Call the appropriate compiler-generated decode function to decode the message

5. Freethe context after use of the decoded data is complete to free allocated memory structures

Before a C XML decode function can be called, the user must first initialize a context block structure. The context
block structure isinitialized by calling the rtXmlInitContext function.

An input stream is then opened using one of the rtxStream functions. If the data is to be read from a file, the
rtxStreamkFileCreateReader function can use used. Similar functions exist for opening a memory or socket-based
stream.

231

Generated XML Functions

If the user knows the type of XML message that is to be processed, he can directly call the decode function at this
point. If not, the user may call the rtXmlpMatchSartTag method to match the initial tag in the message with aknown
start tag. The user can continue to do this until amatch is found with one of the expected message types. Note that the
rtXmlpMarkLastEvent function must be called if the tag is to be reparsed to attempt another match operation.

A decode function can then be called to decode the message. If the return statusindicates success (0), then the message
will have been decoded into the given ASN.1 type variable. The decode function may automatically allocate dynamic
memory to hold variable length variables during the course of decoding. This memory will be tracked in the context
structure, so the programmer does not need to worry about freeing it. It will be released when the context is freed.

Thefinal step of the procedure isto free the context block. The function to free the context is rtFreeContext.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

Per sonnel Record dat a;

OSCTXT ct xt;

OSBOOL trace = TRUE, verbose = FALSE;

const char* filename = "nmessage. xm";

int i, stat;

logic to read nessage into nsgbuf
/* This exanple uses a static context block */
/* step 1: initialize the context block */
stat = rtXm I nitContext (&ctxt);

if (stat '=0) {
rtxErrPrint (&ctxt);
return stat;

}

/* step 2: open an input stream */

stat = rtxStreanFil eCreat eReader (&ctxt, filenane);
if (stat '=0) {

rtxErrPrint (&ctxt);

return -1,

}

/* step 3: attenpt to match the start tag to a known val ue */

if (0 == rtXm pMatchStart Tag (&ctxt, OSUTF3("Enpl oyee”)) {

/* Note that it is necessary to mark the |last event active in
the pull-parser to that it can be parsed again in the PDU
decode function. */

rt Xm pMar kLast Event Active (&ctxt);

/* step 4: call the decode function */

232

Generated XML Functions

stat = Xm Dec_Personnel Record_PDU (&ctxt, &data);

if (stat == 0)

{
process received data..

}

el se {
/* error processing... */
rtxErrPrint (&ctxt);

}

}

/* can check for other possible tag matches here.. */
/* step 5: free the context */

rt FreeCont ext (&ctxt);
}

Generated C++ Decode Method Format and Calling
Parameters

Generated decode functions are invoked through the class interface by calling the base class Decode or DecodeFrom
methods. The calling sequence for this method is as follows:

status = <obj ect>. Decode ();
In this definition, <object> is an object of the class generated for the given production.

An OSXMLDecodeBuffer object must be passed to the <object> constructor prior to decoding. This is where the
message stream containing the XML document to be decoded is specified. Several constructors are available allowing
the specification of XML input from afile, memory buffer, or another stream.

The function result variable st at us returns the status of the decode operation. The return status will be zero if
decoding is successful or a negative value if an error occurs. Return status values are documented in the C/C++
Common Functions Reference Manual and in the rtxErrCodes.h includefile.

Procedure for Using the C++ Control Class Decode
Method

The following are the steps are involved in decoding an XML message using the generated C++ class:

1. Instantiate an XML decode buffer object (OSXMLDecodeBuffer) to describe the message to be decoded. There are
several choices of constructorsthat can be used including one that takes the name of afile which containsthe XML
message, one the allows a memory buffer to be specified, and one that allows an existing stream object to be used.

2. Instantiate an ASN1T_<ProdName> object to hold the decoded message data.

3. Instantiate an ASN1C_<ProdName> object to decode the message. This class associ ates the message buffer object
with the object that isto receive the decoded data. The results of the decode operation will be placed in the variable
declared in step 2.

4. Invoke the ASN1C_<ProdName> object Decode or DecodeFrom method.

233

Generated XML Functions

5. Check the return status. The return value is a status value indicating whether decoding was successful or not.
Zero indicates success. If decoding failed, the status value will be a negative number. The decode buffer method
printErrorinfo can be invoked to get a textual explanation and stack trace of where the error occurred.

6. Release dynamic memory that was alocated by the decoder. All memory associated with the decode context is
released when both the OSXMLDecodeBuffer and ASN1C_<ProdName> objects go out of scope.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

const char* filename = "nmessage. xm";

OSBOOL verbose = FALSE, trace = TRUE;

int i, stat;

logic to read nessage into nmsgbuf
/1 step 1l: instantiate an XM. decode buffer object
OSXML.DecodeBuf f er decodeBuffer (filenane);
/] step 2: instantiate an ASNLT_<ProdNane> obj ect
ASNLT_Per sonnel Record nsgDat a
/] step 3: instantiate an ASNLC <ProdNane> obj ect
ASN1C Personnel Record enpl oyee (decodeBuffer, nsgData);
/1 step 4: decode the record
stat = enpl oyee. Decode ();
/1 step 5: check the return status

if (stat == 0)

{ process received data..
}
el se {
/1 error processing..
decodeBuffer.PrintErrorinfo ();
}
/] step 6: free dynamic nenory (will be done automatically

/1 when both the decodeBuffer and enpl oyee objects go out
/1 of scope)..

234

Chapter 12. Generated JavaScript Object
Notation (JSON) Functions

JavaScript Object Notation (JSON) is a minimal format for exchanging data. In version 6.6, ASN1C introduces the
capability of targeting JSON for encoding and decoding. This marries a well-known simple text format (JSON) with
arobust and mature schemalanguage (ASN.1) and provides a possible interchange between JISON and ASN.1 binary
formats like BER or PER.

To generate encoding and decoding functions, use the - j son switch on the command-line or select the appropriate
optionin the GUI. The following sections describe the generated encoding and decoding functions. Descriptions of the
JSON run time functions may be found in our C JSON Runtime Library Reference Manual. C++ classes are described
in the C++ JSON Runtime Libarary Reference Manual.

Generated JSON Encode Functions

Generated C Function Format and Calling Parameters

The format of the name of each generated encode function is as follows:
asnlJsonEnc_J <prefi x>] <pr odNanme>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function follows:

stat = asnlJsonEnc_<nane> (OSCTXT* pct xt,
<nanme>* pval ue);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. This is a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application.
The user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The
variable should beinitialized usingther t | ni t Cont ext run-timelibrary function (seethe C JSON Runtime Library
Reference Manual for a complete description of this function).

The pval ue argument holds a pointer to the data to be encoded and is of the type generated from the ASN.1
production.

The function result variable st at returns an error status code if encoding fails. Return status values are defined in
theasnlt ype. h includefile.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C JISON encode function.

Before any encode function can be called; the user must first initialize an encoding context. Thisis avariable of type
OSCTXT. Thisvariable holds all of the working data used during the encoding of a message. The context variable is
declared as a normal automatic variable within the top-level calling function. It must beinitialized before use. This
can be accomplished by using ther t | ni t Cont ext function asfollows:

235

Generated JavaScript Object Notation (JSON) Functions

OSCTXT ct xt;

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf ("context initialization failed (check license)\n");
return -1,

}

After initializing the context and populating a variable of the structure to be encoded, an encode function can be called
to encode the message.

A complete example may be found in the enpl oyee sample program, here edited for brevity:

st at rtinitContext (&ctxt);
stat = rtxStreanfFileCreateWiter (&txt, filenane);
if (stat '=0) {

printf ("Unable to create file stream\n");

rtxXErrPrint(&ctxt);
return stat;

}

rtxSet Di ag (&ctxt, verbose);
asnllnit_Personnel Record (&enpl oyee);
/* popul ate enpl oyee structure */

stat = asnlJsonEnc_Personnel Record (&ctxt, &enployee);

Encoding a Series of Messages

Encoding a series of messagesin JSON is similar to encoding a series of messages in any other set of encoding rules:
iterate through the input data using aloop, using r t xMenReset to improve performance by reusing memory:

/* initialize context, et c. */

for (5 ;) {

/* initialize / popul ate nessage structure to be encoded */
/* call NMDEREnc_<nessageType> (...); */

/* call rtxMenReset when finished encoding: */
rtxMenReset (pctxt);

Generated C++ Encoding Methods

Generated C++ encoding methods use the control classes and the OSJSONEncodeBuffer and
OSJ SONCQut put St r eamclasses to accomplish encodings, as in the following code snippet:

236

Generated JavaScript Object Notation (JSON) Functions

OSJSONEncodeBuf f er encodeBuffer (0, 0);
encodeBuffer.setDi ag (verbose);

ASNLT_Per sonnel Record nsgDat a;
ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);

/* Popul ate structure of generated type here */
/1 Encode

if ((stat = enpl oyee. Encode ()) == 0) {
if (trace) {
printf ("Encodi ng was successful\n");
printf ("%\n", (const char *)encodeBuffer.getMgPtr());

The generated control class (ASN1C_Per sonnel Recor d) contains methods for encoding (Encode). It unites the
message data (heldin ASN1T_Per sonnel Recor d) and the encoding buffer (OSJ SONEncodeBuf f er) to encode
the JSON message.

Encoding a Series of Messages using the C++ Control
Class

Encoding a series of messagesisvirtualy identical in the C++ case asit iswith C:

for (5 5) {
/1 logic for populating the data type

stat = enpl oyee. Encode();
if (stat == 0) {
/1 encodi ng was successful

}
el se {

/1 error handling
}

encodeBuffer.init()

The major difference in this case is that the i ni t method is called at the end of the loop rather than the C runtime
functionrt xMenmReset . Thei ni t method serves the same purpose.

Generated JSON Decode Functions

Generated C Function Format and Calling Parameters

The format of the name of each decode function generated is as follows:

237

Generated JavaScript Object Notation (JSON) Functions

asnlJsonDec_[<pr ef i x>] <pr odNanme>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:
status = asnlJsonDec_<nane> (OSCTXT* pctxt, <name> *pval ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The variable
must beinitialized using ther t | ni t Cont ext run-time function before use.

The pval ue argument isapointer to avariable of the generated type that will receive the decoded data.

The function result variable st at us returns the status of the decode operation. The return status will be greater
than or equal to zero if decoding is successful or negative if an error occurs. Return status values are defined in the
"asnltype.h" includefile.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C JSON decode function. This method must be used
if C code generation was done. This method can also be used as an alternative to using the control class interface if
C++ code generation was done.

Before any decode function can be called; the user must first initialize a context variable. Thisis a variable of type
OSCTXT. This variable holds al of the working data used during the decoding of a message. The context variable
is declared as a normal automatic variable within the top-level calling function. It must be initialized before use.
This can be accomplished as follows:

OSCTXT ct xt;
int stat;

stat = rtlnitContext (&ctxt);
if (stat '=0) {
rtxeErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return stat;

}

The next step is to create a reader that will read from the given source. In our example, we read from afile, but it is
also possible to read data from a socket or other source as well. Alternatively, a decode buffer may also be used.

A decode function can then be called to decode the message. If the return status indicates success, the C variable
that was passed as an argument will contain the decoded message contents. Note that the decoder may have allocated
dynamic memory and stored pointersto objectsin the C structure. After processing on the C structureis complete, the
run-time library function r t xMenfr ee should be called to free the allocated memory.

A program fragment that could be used to decode a simple PDU type follows:

238

Generated JavaScript Object Notation (JSON) Functions

/* Init context structure */

if (rtlnitContext (&ctxt) !'= 0) {
printf ("Error initializing context\n");
return -1,

}

stat = rtxStreanFil eCreat eReader (&ctxt, filenane);

if (stat '=0) {
printf ("Unable to open % for reading.\n", filenamne);
rtxErrPrint(&ctxt);
rt FreeCont ext (&ct xt) ;
return stat;

}

rtxSet Di ag (&ctxt, verbose);

[* Decode */
asnllnit_Personnel Record (&enpl oyee);

stat = asnlJsonDec_Personnel Record (&ctxt, &enployee);

This example follows the enpl oyee sample in the distribution kit.

Decoding a Series of Messages Using the C Decode
Functions

Decoding a series of messagesis very similar to the method used for other encoding rules.

Short pseudo-code is shown below. As in the encoding example, rt xMenReset is used at the end of the loop to
avoid allocating new memory for dynamic data structures. This helps to improve performance.

/* initialize context, et c. */
for (5 ;) {
/* initialize data structure */
/* call asnlJsonDec_<nanme> function */

/* perform operations on decoded structure */

/* reset nmenory: */
stat = rtxMenReset (&ctxt);

}
More details may be found in the sample programsincluded in the ASN1C software development kit.
Generated C++ Encoding Methods

Generated C++ decoding methods use the control classes and the OSJSONDecodeBuffer and
OSJSONI nput St r eamclasses to accomplish decoding, asin the following code snippet:

239

Generated JavaScript Object Notation (JSON) Functions

OSJSONDecodeBuf f er encodeBuffer (fil ename);
decodeBuffer.setDi ag (verbose);

ASNLT_Per sonnel Record nsgDat a;
ASN1C Personnel Record enpl oyee (decodeBuffer, nsgData);

/* Popul ate structure of generated type here */
/| Decode
if ((stat = enpl oyee. Decode ()) == 0) {

if (trace) {

printf ("Encodi ng was successful\n");
printf ("%\n", (const char *)decodeBuffer.getMgPtr());

The generated control class (ASNLC_Per sonnel Recor d) contains methods for encoding (Encode). It unites the
messagedata(heldin ASN1T_Per sonnel Recor d) and the encoding buffer (0SJ SONEnc odeBuf f er) to encode

the JSON message.

Decoding a Series of Messages using the C++ Control
Class

Decoding a series of messagesis virtualy identical in the C++ case asit iswith C:

for (5 ;) {

stat = enpl oyee. Decode();
if (stat == 0) {
/1 decodi ng was successful

}
el se {

/1 error handling
}

decodeBuffer.init()

The major difference in this case is that the i ni t method is called at the end of the loop rather than the C runtime

functionrt xMenReset . Thei ni t method serves the same purpose.

240

Chapter 13. Generated 3GPP Layer 3
(3GL3) Functions

Generated 3GPP Layer 3 Encode Functions

3GPP Layer 3 encode/decode functions are generated when the -3gl3 switch is specified on the command line. For
each ASN.1 production defined inthe ASN.1 sourcefile, aC 3GPP Layer 3 encode function isgenerated. Thisfunction
will convert a populated C variable of the given typeinto a 3GPP layer 3 encoded message.

C++ is not directly supported for 3GPP Layer 3; however, it is possible to call the generated C functions from a C
++ program.

Generated C Function Format and Calling Parameters

The format of the name of each generated 3GPP layer 3 encode function is as follows:
x3GL3Enc_[<pr ef i x>] <pr odNane>

where <pr odNane> is the name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

It is also possible to change the 'x3GL3' prefix at the beginning of the function name by using the <pr ot ocol >
configuration setting. For example, an APl was generated for the Non-Access Stratum (NAS) protocol within the
ASNI1C package. A protocol setting of NAS was used for this, so al encode function names begin with 'NASEnc '
instead of 'x3GL3Enc_'.

The calling sequence for each encode function is as follows:
status = x3GA.3Enc_<nanme> (OSCTXT* pctxt, <name>[*] val ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

Theval ue argument contains the value to be encoded or holds a pointer to the value to be encoded. Thisvariableis
of the type generated from the ASN.1 production. The object is passed by value if it is a primitive ASN.1 data type
suchasBOOLEAN, INTEGER, ENUMERATED, etc.. It ispassed using apointer referenceif it isastructured ASN.1
type value. Check the generated function prototype in the header file to determine how the value argument is to be
passed for a given function.

The function result variable st at returns the status of the encode operation. Status code 0 (0) indicates the function
was successful. Note that this return value differs from that of BER encode functions in that the encoded length of
the message component is not returned — only an OK status indicating encoding was successful. A negative value
indicates encoding failed. Return status values are defined in the "asnltype.h" include file. The error text and a stack
trace can be displayed using the rtxErrPrint function.

Itis possibleto add extraargumentsto 3GPP Layer 3 encode functions through the use of the <addarg> configuration
setting. Thisis normally done to pass data from container type member variables into an encode function.

241

Generated 3GPP Layer 3 (3GL3) Functions

Populating Generated Structure Variables for Encoding

See the section Populating Generated Structure Variables for Encoding for a discussion on how to populate variables
for encoding.

The only difference in populating encode member variables for the general case and for 3GPP layer 3 hasto do with
an element configured to be alength variable viathe <i s3G_engt h/ > configuration setting. A value populated in
thisfield will beignored and replaced with the actual length of the encoded data.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C 3GL 3 encode function.

Before a 3GL 3 encode function can be called, the user must first initialize an encoding context block structure. The
context block isinitialized by calling the rtInitContext function.

Only memory-buffer based encoding is supported for 3GPP layer 3 because the message sizes are generally small
(normally less than 256 bytes).

To do memory-based encoding, the rtxl nitContextBuffer function would be called. This can be used to specify use of a
static or dynamic memory buffer. Specification of adynamic buffer is possible by setting the buffer address argument
to null and the buffer size argument to zero.

An encode function can then be called to encode the message. If the return status indicates success (0), then the
message will have been encoded in the given buffer or written to the given stream. 3GL 3 encoding starts from the
beginning of the buffer and proceeds from low memory to high memory until the message is complete. This differs
from definite-length BER where encoding was done from back-to-front. Therefore, the buffer start addressiswherethe
encoded 3GL 3 message begins. The length of the encoded message can be obtained by calling the rtxCtxtGetMsgLen
run-time function. If dynamic encoding was specified (i.e., a buffer start address and length were not given), the
rtxCixtGetMsgPtr run-time function can be used to obtain the start address of the message. Thisroutinewill also return
the length of the encoded message.

A program fragment that could be used to encode a 3G NAS Identity Request message is as follows:

#i ncl ude "rt3gppsrc/ TS24008Msgs. h" /* include file generated by ASNLC */

main ()
{
TS24008Msg_PDU pdu;
TS24008Msg_I dentit yRequest i dReq;

OSCTXT ct xt;

OSOCTET nmsgbuf [256], *nmsgptr;

i nt i, len, stat;

const char* filenane = "nessage. dat";

/* Initialize context structure */

stat = rtlnitContext (&ctxt);

if (0 !=stat) {
printf ("rtlnitContext failed; status = %\n", ret);
rtxerrPrint (&ctxt);
return ret;

242

Generated 3GPP Layer 3 (3GL3) Functions

/* Popul ate C structure */

pdu. | 3Hdr Opts.t = T_TS24007L3_L3Hdr Opti ons_ski pl nd;
pdu. | 3Hdr Opt s. u. ski pl nd = 0;
asnlSet TC _TS24008Msg_PDU obj I dentityRequest (&ctxt, &pdu, & dReq);

OSCRTLMEMSET (& dReq, 0, sizeof (idReq));
i dReq. val ue. typeOl dent = TS24008I E_IdentityTypeVal ue_typeOfldent _inei;

/* Encode */
rtxCtxt Set Buf Ptr (&ctxt, msgbuf, sizeof (msgbuf));

stat = NASEnc_TS24008Msg_PDU (&ct xt, &pdu);

if (0 !=stat) {
printf ("encode PDU failed; status = %l\n", ret);
rtxErrPrint (&ctxt);
return ret;

}

megptr = rtxCt xt Get MsgPtr (&ctxt);
len = rtxCtxt Get MsgLen (&ctxt);

}

In general, static buffers should be used for encoding messages where possible as they offer a substantia performance
benefit over dynamic buffer alocation. In the case of L3 messages, most are small because the length field is sized to
hold asingle octet. It istherefore possible to size the buffer at 256 bytes which is the maximum size.

Generated 3GPP Layer 3 Decode Functions

3GPP Layer 3 decode functions are generated when the -3gl3 switch is specified on the command line. For each ASN.1
production defined in the ASN.1 source file, a C 3GL 3 decode function is generated. This function will parse the data
contents from a 3GPP layer 3 binary message and populate a variable of the corresponding type with the data.

Generated C Function Format and Calling Parameters

The format of the name of each generated decode function is as follows:
x3G.3Dec_|[<pr efi x>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

It is also possible to change the 'x3GL3' prefix at the beginning of the function name by using the <pr ot ocol >
configuration setting. For example, an APl was generated for the Non-Access Stratum (NAS) protocol within the
ASNI1C package. A protocol setting of NAS was used for this, so al decode function names begin with 'NASDec '
instead of 'x3GL3Dec .

The calling sequence for each decode function is as follows:

243

Generated 3GPP Layer 3 (3GL3) Functions

status = x3@.3Dec_<nanme> (OSCTXT* pctxt, <name>* pval ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

Thepval ue argument isapointer to avariableto hold the decoded result. Thisvariableis of the type generated from
the ASN.1 production. The decode function will automatically allocate dynamic memory for variable length fields
within the structure. This memory is tracked within the context structure and is released when the context structure
isfreed.

The function result variable st at returns the status of the decode operation. Status code O (0) indicates the function
was successful. A negative value indicates decoding failed. Return status values are defined in the "asn1ErrCodes.h"
and "rtxErrCodes.h" header files. The reason text and a stack trace can be displayed using the rtxErrPrint function
described later in this document.

Itis possibleto add extraarguments to 3GPP Layer 3 decode functions through the use of the <addarg> configuration
setting. Thisis normally doneto pass data from container type member variables into a decode function.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C 3GL 3 decode function.

A Protocol DataUnit (PDU) functionisnormally defined that includesall of the message that make up agiven protocol.
These are grouped together using an Information Object Set that sets up arelation between the protocol discriminator/
message type field combination and the associated message datatype. This PDU function isthen called to decode both
the header and payload datain one call.

Thefollowing are the basic stepsin calling the PDU decode function:

1. Prepare a context variable for decoding

2. Initialize the data structure to receive the decoded data

3. Call the PDU decode function to decode the message

4. Freethe context after use of the decoded data is complete to free allocated memory structures

Before a3GL 3 decode function can be called, the user must first initialize a context block structure. The context block
isinitialized by calling the rtInitContext function.

Only memory-buffer based encoding is supported for 3GPP layer 3 because the message sizes are generally small
(normally less than 256 bytes).

To do memory-based decoding, the rtxlnitContextBuffer function would be called. The message to be decoded must
reside in memory. The arguments to this function would then specify the message buffer in which the data to be
decoded exists.

The PDU variable that is to receive the decoded data must then be initialized. This can be done by either initializing
the variable to zero using memset, or by calling the ASN1C generated initialization function.

The PDU decode function can then be called to decode the message. If the return status indicates success (0), then the
message will have been decoded into the PDU type variable. The decode function may automatically allocate dynamic
memory to hold variable length variables during the course of decoding. This memory will be tracked in the context

244

Generated 3GPP Layer 3 (3GL3) Functions

structure, so the programmer does not need to worry about freeing it. It will be released when the either the context is
freed or explicitly when the rtxMemFree or rtxMemReset functionis called.

Thefinal step of the procedure isto free the context block. This must be done regardless of whether the block is static
(declared on the stack and initialized using rtlnitContext), or dynamic (created using rtNewContext). The function to
free the context is rtFreeContext.

A program fragment that could be used to decode a 3G NAS PDU is as follows:

#i ncl ude "rt3gppsrc/ TS24008Msgs. h" /* include file generated by ASNLIC */

main ()
{
TS24008Msg_PDU dat a;
OSCTXT ctxt;
OSOCTET* nmsgbuf ;
const char* filename = "nessage.dat";
i nt st at;
OsSI ZE | en;

/* step 1: initialize context */
stat = rtlnitContext (&ctxt);

if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");
rtErrPrint (&ctxt);
return stat;

}

/* step 2: read input file into a nenory buffer */

stat = rtxFil eReadBinary (&ctxt, filenanme, &pMsgBuf, & en);
if (0 == stat) {
stat = rtxlnitContextBuffer (&ctxt, pMsgBuf, |en);

}

if (0!=stat) {
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return stat;

}

/* step 3: set protocol version nunber */

rt xCt xt Set Pr ot ocol Version (&ctxt, 8);

/* step 4: call the decode function */

stat = NASDec_TS24008Msg_PDU (&ctxt, &data);

if (stat == 0)
{

}

process received data..

245

Generated 3GPP Layer 3 (3GL3) Functions

el se {
/* error processing... */
rtxErrPrint (&ctxt);

}

/* step 4: free the context */

rt FreeCont ext (&ctxt);

246

Chapter 14. Additional Generated
Functions

Generated Initialization Functions

Asof ASN1C version 6.0, initialization functions are automatically generated (in previousversions, it was necessary to
usethe-genlnit option to forcethisaction). If for somereason, auser doeswant initiali zation functionsto be generated,
the -nolnit switch can be used to turn initialization function generation off.

The use of initialization functions are optional - a variable can be initialized by simply setting its contents to zero
(for example, by using the C run-time memset function). The advantage of initialization function is that they provide
smarter initialization which can lead to improved application performance. For example, it is not necessary to set
alarge byte array to zero prior to its receiving a populated value. The use of memset in this situation can result in
degraded performance.

Generated initialization functions are written to the main <module> .c file. Thisfile contains common constants, global
variables, and functions that are generic to al type of encode/decode functions. If the -cfile command-line option is
used, the functions are written to the specified .c or .cpp file along with all other generated functions. If -maxcfilesis
specified, each generated initialization function is written to a separate .c file.

The format of the name of each generated initialization function is as follows:
asnllnit_J[<prefix>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each generated initialization function is as follows:
asnllnit_<nane> (<nane>* pval ue)
In this definition, <name> denotes the prefixed production name defined above.

The pvalue argument is used to pass a pointer to avariable of the item to be initialized.

Generated Memory Free Functions

The -genFree option causes functions to be generated that free dynamic memory allocated using the ASN1C run-time
memory management functions and macros (rtxMem). By default, all memory held within a context is freed using the
rtxMemkFree run-timefunction. It isalso possible to free an individual memory item using the rtMemFreePtr function.
But it is not possible to free all memory held within a specific generated type container. For example, a SEQUENCE
type could contain elementsthat require dynamic memory. Theseelementsinturn can reference other typesthat require
dynamic memory. The generated memory free functions make it possible to release all memory held within avariable
of the type with asingle call.

Generated memory free functions are written to the main <module> .c file. Thisfile contains common constants, global
variables, and functions that are generic to al type of encode/decode functions. If the -cfile command-line option is
used, the functions are written to the specified .c or .cpp file along with all other generated functions. If -maxcfilesis
specified, each generated function is written to a separate .c file.

247

Additional Generated Functions

The format of the name of each generated memory free function is asfollows:
asnlFree_[<prefix>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each generated memory free function is as follows:
asnlFree_<nane> (OSCTXT* pctxt, <nane>* pval ue)
In this definition, <name> denotes the prefixed production name defined above.

The pctxt argument is used to hold the context pointer that the memory to be freed was allocated with. Thisis a
basic "handle" variable that is used to make the function reentrant so it can be used in an asynchronous or threaded
application. The user is required to supply a pointer to a variable of this type declared somewhere in his or her or
her program.

The pvalue argument is used to pass a pointer to a variable of the item that contains the dynamic memory to be freed.

Generated Print Functions

The following options are available for generating code to print the contents of variables of generated types:

-print - Thisis the standard print option that causes print functions to be generated that output data to the standard
output device (stdout).

-genPrtToStr - This option causes print functions to be generated that write their output to a memory buffer.

-genPrtToStrm - This option causes print functions to be generated that write their output to an output stream viaa
user-defined print callback function.

Print to Standard Output

The -print option causes functionsto be generated that print the contents of variables of generated typesto the standard
output device. It is possible to specify the name of a.c or .cpp file as an argument to this option to specify the name
of the file to which these functions will be written. This is an optional argument. If not specified, the functions are
written to separate files for each module in the source file. The format of the name of each fileis <module>Print.c. If
an output filename is specified after the —print qualifier, all functions are written to that file.

The format of the name of each generated print function is as follows:
asnlPrint _[<prefix>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each generated print function is as follows:
asnlPrint_<name> (const char* name, <name>* pval ue)

In this definition, <name> denotes the prefixed production name defined above.

248

Additional Generated Functions

The name argument is used to hold the top-level name of the variable being printed. It is typically set to the same
name as the pvalue argument in quotes (for example, to print an employee record, a call to asn1Print_ Employee
(“ employee’ , & employee) might be used).

The pvalue argument is used to pass a pointer to a variable of the item to be printed.

If C++ code generation is specified, a Print method is added to the ASN1C control class for the type. This method
takes only a name argument; the pvalue argument is obtained from the msgData reference contained within the class.

Print to String

The -genPrtToStr option causes functions to be generated that print the contents of variables of generated typesto a
given text buffer. This buffer can then be used to output the information to other mediums such as afile or window

display.

Itispossibleto specify the name of a.c or .cpp file asan argument to this option to specify the name of thefileto which
these functions will be written. Thisis an optional argument. If not specified, the functions are written to separate files
for each module in the sourcefile. The format of the name of each file is <module>PrtToStr.c. If an output filename
is specified after the —genPrtToStr qualifier, all functions are written to that file.

The calling sequence for each generated print-to-string function is as follows:

asnlPrt ToStr _<name> (const char* nane, <name>* pval ue,
char* buffer, int bufSize)

The name and pvalue arguments are the same as they were in the -print case.

The buffer and bufSize arguments are used to describe the memory buffer thetext isto bewritten into. These arguments
specify afixed-size buffer. If the generated text islarger than the given buffer size, as much text as possibleis written
to the buffer and a—1 status value is returned. If the buffer is large enough to hold the text output, all text is written
to the buffer and a zero status is returned. If there is text aready in the buffer, the function will append to this text,
rather than overwrite it, starting at the first null character. So in this case there must be enough space in the buffer
starting from the first null character to hold all of the generated text; otherwise, a status of -1 is returned. For this
reason initializing a newly allocated buffer with zeroes before passing it to the function is a good idea.

For C++, two toString methods are generated in the control class that call the generated print-to-string function. With
the first signature, in addition to the name argument, the method also takes a buffer and bufSize argument to describe
the buffer to which the text is to be written. The second signature does not take a name argument; instead, the name
of theitem that the control class instance describesis defaulted.

Print to Stream

The -genPrtToStrm option causes functions to be generated that print the contents of variables of generated typesto an
output stream viaauser-defined callback function. The advantage of thesefunctionsisthat auser can register acallback
function, and then the print stream is automatically directed to the callback function. This makes it easier to support
print-to-file or print-to-window type of functionalities. It also make it possible to create an optimized print-to-string
capability by maintaining a structure that keeps track of the current end-of-string position in the output buffer. The
generated print-to-string functions always must use the strlen run-time function to find the end position, an operation
that becomes compute intensive in large string buffersthat are constantly appended to.

It ispossibleto specify the name of a.c or .cpp file as an argument to this option to specify the name of thefileto which
these functionswill be written. Thisisan optional argument. If not specified, the functions are written to separate files
for each modulein the sourcefile. The format of the name of each fileis <module>PrtToSrm.c. If an output filename
is specified after the —genPrtToStrm qualifier, all functions are written to that file.

249

Additional Generated Functions

Before calling generated print-to-stream functions, a callback function should be registered. Otherwise, a default
callback function will be used that directs the print stream to the standard output device.

The callback function is declared as;

void (*rtxPrintCall back)
voi d* pPrntStrm nfo, const char* fntspec, va list arglist);

Thefirst parameter isuser-defined datawhich will be passed to each invocation of the callback function. Thisparameter
can be used to pass print stream specific data, for example, afile pointer if the callback function is to output datato a
file. The second and third parameters to the callback function constitute the data to be printed, in the form of format
specification followed by list of arguments. A simple callback function for printing to file can be defined as follows:

void witeToFile (void* pPrntStrm nfo, const char* fntspec, va list arglist)

{
FILE * fp = (FILE*) pPrntStrm nfo;

viprintf (fp, fmspec, arglist);
}

Oncethe callback functionisdefined, it hasto beregistered with theruntimelibrary. Therearetwo typesof registrations
possible: 1. global, which appliesto all print streams and, 2. context level, which applies to print streams associated
with a particular context.

For registering aglobal callback use:
rtxSet @ obal PrintStream (rtxPrintCallback nyCall back, void* pStrm nfo);
For registering a context level callback use:
rtxSet PrintStream (OSCTXT *pctxt, rtxPrintcCallback nyCall back, void* pStrmn nfo);

Once the callback function is registered, the calling of each generated print-to-stream function will result in output
being directed to the callback function.

The print to stream functions are declared as follows:
asnlPrt ToStrm <nane> (OSCTXT *pctxt, const char* nane, <nanme>* pval ue);
The name and pvalue arguments are the same as they were in the -print case.

The petxt argument is used to specify an ASN1C context. If avalid context argument is passed and there is a context
level callback registered, then that callback will be used. If there is no context level callback registered, or the pctxt
argument isNULL, then the global callback will be used. If thereisno global callback registered, the default callback
will be used which writes the print output to stdout.

If C++ code generation is specified, setPrintStream and toSream methods are added to the ASN1C control class for
the type. The setPrintStream method takes only myCallback and pStrminfo arguments; the pctxt argument is obtained
from the context pointer reference contained within the class. The toSream method takes only a name argument; the
pctxt argument is derived from the context pointer reference within the class and the pvalue argument is obtained from
the msgData reference contained within the class.

Print Format

The -prtfmt option can be used in conjunction with any of the -genPrint options documented above to alter the format
of the printed data. There are two possible print formats. details and bracetext.

250

Additional Generated Functions

The details format prints a line-by-line display of every item in the generated structure. For example, the following
is an excerpt from adetails display:

Enpl oyee. nane. gi venNane = ' John'
Enpl oyee. nane.initial ="'P

Enpl oyee. nane. fanmi | yName = ' Smith'
Enpl oyee. nunber = 51

Enpl oyee.title = 'Director’

The aternative format - bracetext - provides a C-like structure printout. Thisis a more concise format that will omit
optional fields that are not present in the decoded data. An example of thisis asfollows:

Enpl oyee {

nane {
gi venNane = ' John'
initial ="'P
fam | yName = 'Smith'

}

nunber = 51

title = "Director'

Asof ASN1C version 6.0 and higher, bracetext isthedefault format used if -prtfmt isnot specified on the commandline.
Previous versions of ASN1C had details as the default setting.

Generated Compare Functions

The -genCompare option causes comparison functions to be generated. These functions can be used to compare the
contents of two generated type variables.

If an output fileis not specified with the —.genCompare qualifier, the functions are written to separate .c files for each
moduleinthe sourcefile. Theformat of the name of each fileis<module>Compare.c. If an output filenameis specified
after the —.genCompare qualifier, al functions are written to that file.

The format of the name of each generated compare function is as follows:
asnlConpare_[<prefi x>] <pr odNanme>

where <pr odNamne> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each generated compare function is as follows:
OSBOOL asnlConpare_<nane> (const char* nane,
<nanme>* pval ue, <nanme>* pCnpVal ue,
char* errBuff, int errBufSize);

In this definition, <name> denotes the prefixed production name defined above.

The name argument is used to hold the top-level name of the variable being compared. It istypically set to the same
name as the pvalue argument in quotes (for example, to compare employee records, acall to ‘asnlCompare_Employee
(“employee’, & employes, etc.)’ might be used).

251

Additional Generated Functions

The pvalue argument is used to pass apointer to avariable of theitem to thefirst item to be compared. The pCmpValue
argument is used to pass the second value. The two items are then compared field-by-field for equality.

The errBuff and errBuffSize arguments are used to describe a text buffer into which information on what fields the
comparison failed on is written. These arguments specify a fixed-size buffer — if the generated text is larger than the
given buffer size, the text is terminated. These arguments may be omitted by passing null (0) valuesif you only care
to know if the structures are different and not concerned with the details.

The return value of the function is a Boolean value that istrue if the variables are equal and false if they are not.

Generated Copy Functions

The -genCopy option causes copy functions to be generated. These functions can be used to copy the content of one
generated type variable to another.

If no output file is specified with the —genCopy qudifier, the functions are written to separate .c/.cpp files for each
module in the source file. The format of the name of each file is <module>Copy.c/.cpp where <module> would be
replaced with the name of the ASN.1 module. If an output filename is specified after the —genCopy qudifier, all
functions are written to that file.

The format of the name of each generated copy function is as follows:
asnlCopy_|[<prefi x>] <pr odNane>

where <pr odNamne> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
isthe <t ypePr ef i x> element. This element specifies a prefix that will be applied to all generated typedef names
and function names for the production.

The calling sequence for each generated copy function is as follows:

voi d asnlCopy_<nane> (OSCTXT* pct xt,
<nane>* pSrcVal ue,
<nane>* pDst Val ue);

In this definition, <name> denotes the prefixed production name defined above.

The pointer to the context structure (pctxt) provides a storage area for the function to store al variables that have
been copied

The pScValue argument is used to pass a pointer to a variable to be copied. The pDstValue argument is used to pass
the pointer to the destination value. The source value is then copied to the destination value field-by-field. Memory
will be alocated for dynamic fields using callsto the rtxMemAlloc function.

If C++ isused (-cpp option is specified) and PDU generation is not disabled (<noPDU> config option is not used)
then the control class ASN1C_<name> additionally will contain:

» A copy constructor that can be used to create an exact copy of the classinstance.
The calling sequenceis asfollows:
ASN1C_<nane> (ASNLC <nanme>& orginal);
For example:

ASN1C Per sonnel Record (ASNLC Personnel Record& original);

252

Additional Generated Functions

A getCopy method that creates a copy of the ASNIT _<name> variable:
ASN1T_<nane>& get Copy (ASNLT_<nane>* pDstData = 0);
For example:
ASNLT_ Per sonnel Record& get Copy (ASNLT_Personnel Record* pDstData = 0);

The pDstData argument is used to pass the pointer to a destination variable where the value will be copied. It may
be null, in this case the new ASN1T <name> variable will be allocated viaacall to the rtxMemAlloc function.

» A newCopy method that will create a new, dynamically alocated copy of the referenced ASNAT _ data member
variable.

» An assignment operator. Thisis used to copy one instance of a control class to another one:

i nline ASNLC <name>& operator= (ASNLC <nanme>& srcDat a)

{
srcDat a. get Copy (&mrsgDat a) ;
return *this;
}
For example:

i nl i ne ASN1C Per sonnel Recor d& oper at or =
(ASNL1C Per sonnel Recor d& srcDat a)
{

srcDat a. get Copy (&nrsgDat a) ;
return *this;

}

Finally, the class declaration might look as follows:

cl ass EXTERN ASN1C_Per sonnel Record :
public ASN1CType

{

pr ot ect ed:
ASNL1T_Per sonnel Recor d& nmsgDat a;
public:
ASN1C_Per sonnel Record (
ASN1MessageBuf f er & nsgBuf, ASNLT_Per sonnel Recor d& dat a) ;

ASN1C_Per sonnel Record (ASNLC_Per sonnel Record& original);

ASNLT_Personnel Recor d& get Copy (ASNLT_Per sonnel Recor d*
pDstData = 0);

ASNLT_ Per sonnel Record* newCopy ();

i nl i ne ASN1C _Per sonnel Recor d&
operat or= (ASNLC Per sonnel Recor d& srcDat a)
{

srcDat a. get Copy (&nrsgDat a) ;
return *this;

253

Additional Generated Functions

}
bl

The generated ASN1T<name> structure will also contain an additional copy constructor if C++ is used and PDU
generation is not disabled. A destructor is aso generated if the type contains dynamic memory fields. This destructor
will free the dynamic memory upon destruction of the type instance.

For example:

typedef struct EXTERN ASNLT_Personnel Record : public ASNLTPDU {

ASNLT Personnel Record () {
m uni Present = O;
m seqOf seqPresent = O;
}
ASNLT_Per sonnel Record (ASNLC Personnel Record& srcbDat a) ;
~ASNLT Per sonnel Record();
} ASNLT_Personnel Recor d;

This constructor is used to create an instance of the ASN1T _<name> type from an ASN1C <name> control class
object.

Memory Management of Copied Items

Prior to ASN1C version 5.6, dynamic memory of decoded or copied items would only be available as long as the
control class instance and/or the message buffer object used to decode or copy the item remained in scope or was not
deleted. This restriction no longer exists as long as the type being copied is a Protocol Data Unit (PDU). The copied
item will now hold a reference to the context variable used to create the item and will increment the item’s reference
count. Thisreferenceis contained in the ASN1TPDU base class variable from which PDU data types are now derived.
The dynamic memory within the item will persist until theitem is deleted.

Generated Test Functions

The -genTest option causes test functions to be generated. These functions can be used to populate variables of
generated types with random test data. The main purpose is to provide a code template to users for writing code to
populate variables. Thisis quite useful to users because generated data types can become very complex asthe ASN.1
schemas become more complex. It is sometimes difficult to figure out how to navigate all of the lists and pointers.
Using —genTest can provide code that simply has to be modified to accomplish the population of a data variable with
any type of data.

The generated test functions are written to a.c or .cpp file with aname of the following format:
<asnlModul eNanme>Test . c

where <asnlModuleName> is the name of the ASN.1 module that contains the type definitions. The format of the
name of each generated test function is as follows:

asnlTest [<prefi x>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each generated test function is as follows:

254

Additional Generated Functions

<typeNane>* pval ue = <testFunc> (OSCTXT* pctxt)
In this definition, <testFunc> denotes the formatted function name defined above.

Thepct xt argument is used to hold a context pointer to keep track of dynamic memory allocation parameters. This
isabasic "handle" variable that is used to make the function reentrant so that it can be used in an asynchronous or
threaded application. The user is required to supply a pointer to a variable of this type declared somewhere in his or
her program. The variable must have been previoudly initialized using the rtInitContext run-time function.

The pval ue argument is a pointer to hold the populated data variable. This variable is of the type generated for
the ASN.1 production. The test function will automatically allocate dynamic memory using the run-time memory
management for the main variable aswell as variable length fields within the structure. Thismemory istracked within
the context structure and is released when the context structureis freed.

In the case of C++, amethod is added to the generated control class for test code generation. The name of this method
isgenTestl nstance. The prototypeis as follows:

<typeNane>* pval ue = <obj ect>. genTest| nstance();

where <typeName> is the ASN1T_<name> type name of the generated type and <object> is an instance of the
ASNI1C <name> generated control class.

Generated Sample Programs

In addition to test functions, it is possible to generate writer and reader sample programs. These programs contain
sample code to popul ate and encode an instance of ASN.1 data and then read and decode this data respectively. These
programs are generated using the -genwriter and -genreader command-line switches.

255

Chapter 15. Event Handler Interface

The—eventscommand line switch causes hooksfor user-defined event handlersto beinserted into the generated decode
functions. What these event handlers do is up to the user. They fire when key message-processing events or errors
occur during the course of parsing an ASN.1 message. They are similar in functionality to the Simple API for XML
(SAX) that was introduced to provide a simple interface for parsing XML messages.

The -notypes option can be used in conjunction with the -events option to generate pure parsing functions. In this case,
no C typesor encode or decode functions are generated for the productionswithin the given ASN.1 sourcefile. Instead,
only aset of parser functions are generated that invoke the event handler callback functions. This gives the user total
control over what is done with the message data. Data that is not needed can be discarded and only the parts of the
message needed for a given application need to be saved.

How it Works

Users of XML parsers are probably aready quite familiar with the concepts of SAX. Significant
events are defined that occur during the parsing of a message. As a parser works through a message,
these events are ‘fired as they occur by invoking user defined callback functions. These callback
functions are also known as event handler functions. A diagram illustrating this parsing process is as

POQO

ASIN.1 MESSAGE

Parser {
— decode

follows:

The events are defined to be significant actions that occur during the parsing process. We will define the following
events that will be passed to the user when an ASN.1 messageis parsed:

1. startElement — This event occurs when the parser moves into a new element. For example, if we have a
SEQUENCE({ a, b, c} construct (type names omitted), this event will fire when we begin parsing a, b, and c. The
name of the element is passed to the event handling callback function.

2. endElement — This event occurs when the parser leaves a given element space. Using the example above, these
would occur after the parsing of a, b, and ¢ are complete. The name of the element is once again passed to the
event handling callback function.

3. contentsmethods— A series of virtual methods are defined to passall of the different types of primitive values that
might be encountered when parsing a message (see the event handler class definition below for acompletelist).

4, error — This event will be fired when a parsing error occurs. It will provide fault-tolerance to the parsing process
asit will give the user the opportunity to fix or ignore errors on the fly to allow the parsing process to continue.

256

ASN.1
function)

Event Handler Interface

These events are defined as unimplemented virtual methods in two base classes: Asn1NamedEventHandler (the first
3 events) and AsnlErrorHandler (the error event). These classes are defined in the asn1CppEvtHndIr.h header file.

The start and end element methods are invoked when an element is parsed within a constructed type. The start method
isinvoked as soon as the tag/length is parsed in a BER message or the preamble/length is parsed in a PER message.
The end method isinvoked after the contents of the field are processed. The signature of these methods is as follows:

virtual void startEl enent (const char* name, int index) = O;
virtual void endEl ement (const char* nane, int index) = O;

The name argument isused passthe element name. Theindex argument isused for SEQUENCE OF/SET OF constructs
only. It is used to pass the index of theitem in the array. This argument is set to —1 for all other constructs.

There is one contents method for passing each of the ASN.1 data types. Some methods are used to handle several
different types. For example, the charValue method is used for values of all of the different character string types
(IA5String, NumericString, PrintableString, etc.) aswell asfor big integer values. Note that this method is overloaded.
The second implementation is for 16-bit character strings. These strings are represented as an array of unsigned short
integersin ASN1C. All of the other contents methods correspond to a single equivalent ASN.1 primitive type.

The error handler base class has a single virtual method that must be implemented. This is the error method and this
has the following signature:

virtual int error (OSCTXT* pCtxt, ASNLCCB* pCCB, int stat) = O;

In this definition, pCtxt is a pointer to the standard ASN.1 context block that should already be familiar. The pCCB
structure is known as a“ Context Control Block”. This can be thought of as a sub-context used to control the parsing of
nested constructed types within a message. It isincluded as a parameter to the error method mainly to allow accessto
the“segx” field. Thisisthe sequence element index used when parsing a SEQUENCE construct. If parsing aparticular
element is to be retried, thisitem must be decremented within the error handler.

How to Use It

To define event handlers, two things must be done:

1. One or more new classes must be derived from the Asn1NamedEventHandler and/or the Asn1ErrorHandler base
classes. All pure virtual methods must be implemented.

2. Objects of these classes must be created and registered prior to calling the generated decode method or function.

The best way to illustrate this procedure is through examples. We will first show a simple event handler application
to provide a customized formatted printout of the fields in a PER message. Then we will show a simple error handler
that will ignore unrecognized fields in a BER message.

Example 1: A Formatted Print Handler

The ASN1C evaluation and distribution kits include a sample program for doing a formatted print of parsed data.
This code can be found in the cpp/sample_per/eventHandler directory. Parts of the code will be reproduced here for
reference, but refer to this directory to see the full implementation.

The format for the printout will be simple. Each element name will be printed followed by an equal sign (=) and an
open brace ({) and newline. The value will then be printed followed by another newline. Finally, a closing brace (})
followed by another newline will terminate the printing of the element. An indentation count will be maintained to
allow for aproperly indented printout.

A header file must first be created to hold our print handler class definition (or the definition could be added to an
existing header file). Thisfile will contain a class derived from the Asn1NamedEventHandler base class as follows:;

257

Event Handler Interface

class PrintHandler : public AsnlNamedEvent Handl er {

pr ot ect ed:
const char* nWar Nane;
i nt m ndent Spaces;

publi c:
Print Handl er (const char* var Nane);
~Print Handl er ();
void indent ();
virtual void startEl enent (const char* nanme, int index = -1);
virtual void endEl enent (const char* nane, int index = -1);
virtual void bool Val ue (OSBOOL val ue);

other virtual contents nethod decl arations

}

In this definition, we chose to add the mVarName and mlndentSpaces member variables to keep track of these items.
The user is free to add any type of member variables he or she wants. The only firm requirement in defining this
derived class is the implementation of the virtual methods.

We implement these virtual methods as follows:
In startElement, we print the name, equal sign, and opening brace:

void PrintHandl er::startEl enent (const char* nane, int index)
{

i ndent ();

printf (“% = {\n”, nanme);

m ndent Level ++;

}

In this simplified implementation, we simply indent (thisis another private method within the class) and print out the
name, equal sign, and opening brace. We then increment the indent level. Note that thisis a highly simplified form.
We don't even bother to check if the index argument is greater than or equal to zero. This would determineif a‘[x]’
should be appended to the element name. In the sample program that is included with the compiler distribution, the
implementation is complete.

In endElement, we simply terminate our brace block as follows:

voi d PrintHandl er::endEl ement (const char* nane, int index)

{

m ndent Level - -;

i ndent ();

printf (“}\n");
}

Next, we need to create an object of our derived class and register it prior to invoking the decode method. In the
reader.cpp program, the following lines do this:

/1l Create and register an event handl er object

Print Handl er* pHandl er = new PrintHandl er ("enpl oyee");
decodeBuf f er . addEvent Handl er (pHandl er);

The addEventHandler method defined in the Asn1lMessageBuffer base class is the mechanism used to do this. Note
that event handler objects can be stacked. Several can be registered before invoking the decode function. When thisis

258

Event Handler Interface

done, the entire list of event handler objects is iterated through and the appropriate event handling callback function
invoked whenever a defined event is encountered.

The implementation is now complete. The program can now be compiled and run. When this is done, the resulting
output is as follows:

enpl oyee = {
nane = {
gi venNane = {
"John"
}
initial = {
" pr
}
fam | yName = {
"Smth"
}

This can certainly be improved. For one thing it can be changed to print primitive values out in a “name = value’
format (i.e., without the braces). But this should provide the general idea of how it is done.

Example 2: An Error Handler

Despite the addition of things like extensibility and version brackets, ASN.1 implementations get out-of-sync. For
situations such as this, the user needs some way to intervene in the parsing process to set things straight. This is
faulttolerance — the ability to recover from certain types of errors.

The error handler interface is provided for this purpose. The concept is simple. Instead of throwing an exception and
immediately terminating the parsing process, auser defined callback functionisfirst invoked to allow the user to check
the error. If the user can fix the error, al he or she needs to do is apply the appropriate patch and return a status of 0.
The parser will be none the wiser. It will continue on thinking everything isfine.

This interface is probably best suited for recovering from errorsin BER or DER instead of PER. The reason is the
TLV format of BER makes it relatively easy to skip an element and continue on. It is much more difficult to find
these boundaries in PER.

Our example can be found in the cpp/sample_ber/errorHandler subdirectory. In this example, we have purposely
added a bogus element to one of the constructs within an encoded employee record. The error handler will be invoked
when this element is encountered. Our recovery action will simply beto print out awarning message, skip the element,
and continue.

Asbefore, thefirst step isto create a class derived from the Asn1ErrorHandler base class. This classis asfollows:

cl ass MyErrorHandl er : public AsnlErrorHandl er {
publi c:

/1 The error handler callback method. This is the nethod
/1 that the user must override to provide custom zed
/1 error handling..

virtual int error (OSCTXT* pCtxt, ASNLICCB* pCCB, int stat);
b

Simple enough. All we are doing is providing an implementation of the error method.

259

Event Handler Interface

Implementing the error method requires some knowledge of the run-time internals. In most cases, it will be necessary
to somehow alter the decoding buffer pointer so that the same field isn't looked at again. If this isn’t done, an
infinite loop can occur as the parser encounters the same error condition over and over again. The run-time functions
xd_NextElement or xd_OpenType might be useful in the endeavor as they provide a way to skip the current element
and move on to the next item.

Our sample handler corrects the error in which an unknown element is encountered within a SET construct. Thiswill
causetheerror statusASN_E NOTINSET to be generated. Whenthe error handler seesthisstatus, it printsinformation
on the error that was encountered to the console, skipsto the next element, and then returns an O status that allows the
decoder to continue. If some other error occurred (i.e., statuswas not equal to ASN_E_NOTINSET), then the original
status is passed out which forces the termination of the decoding process.

The full text of the handler is as follows:

int MyErrorHandler::error (OSCTXT* pCtxt, ASNLCCB* pCCB, int stat)
{

/1 This handler is set up to ook explicitly for ASN_E_NOTI NSET
/1 errors because we know the SET mi ght contain some bogus el ements..

if (stat == ASN_E NOTI NSET) {
/] Print information on the error that was encountered

printf ("decode error detected:\n");
rtErrPrint (pCixt);
printf ("\n");

/1 Skip el ement
xd_Next El enent (pCtxt);
/1 Return an OK status to indicate parsing can continue

return O;

}

el se return stat; // pass existing status back out

}

Now we need to register the handler. Unlike event handlers, only asingle error handler can be registered. The method
to do this in the message buffer class is setErrorHandler. The following two lines of code in the reader program
register the handler:

MyEr r or Handl er error Handl er;

decodeBuf fer. set Error Handl er (&errorHandl er);

The error handlers can be as complicated as you need them to be. Y ou can use them in conjunction with event handlers
in order to figure out where you are within a message in order to look for a specific error at a specific place. Or you
can be very generic and try to continue no matter what.

Example 3: A Pure Parser to Convert PER-encoded Datato XML

A pure-parser is created by using the -notypes option along with the -events option. In this case, no backing data types
to hold decoded data are generated. Instead, parsing functions are generated that store the data internally within local

260

Event Handler Interface

variables inside the parsing functions. This data is dispatched to the callback functions and immeditely disposed of
upon return from the function. It isup to the user to decide inside the callback handler what they want to keep and they
must make copies at that time. The result is a very fast and low-memory consuming parser that is idea for parsing
messages in which only select parts of the messages are of interest.

Another use case for pure-parser functions is validation. These functions can be used to determine if a PER message
is valid without going through the high overhead operation of decoding. They can be used on the front-end of an
application to reject invalid messages before processing of the messages is done. In some cases, this can result in
significantly increased performance.

An example of a pure-parser can be found in the cpp/sample_per/per2xmlEH directory. This program uses a pure-
parser to convert PER-encoded data into XML. The stepsin creating an event handler are the same as in Example 1
above. Animplementation of the Asn1NamedEventHandler interface must be created. ThisisdoneinthexmlHandler.h
and xmlHandler.cpp files. A detailed discussion of this code will not be provided here. What it does in a nutshell
is adds the angle brackets (< >) around the element names in the startElement and endElement callbacks. The data
callbacks simply output atextual representation of the data asthey do in the print handler case.

The only difference in reader.cpp from the other examples is that:

1. Thereisno declaration of an employeevariableto hold decoded databecause no typefor thisvariablewasgenerated,
and

2. TheParsemethodisinvoked instead of the Decode method. Thisisthe generated method definition for apureparser.
If one examines the generated class definitions, they will see that no Encode or Decode methods were generated.

Compiling and running this program will show the encoded PER message written to stdout as an XML message. The
resulting message is also saved in the message.xml file.

261

Chapter 16. IMPORT/EXPORT of Types

ASNIC alows productions to be shared between different modules through the ASN.1 IMPORT/EXPORT
mechanism. The compiler parses but ignores the EXPORTS declaration within a module. As far as it is concerned,
any type defined within amoduleis available for import by another module.

When ASN1C sees an IMPORT statement, it first checks its list of loaded modules to see if the module has aready
been loaded into memory. If not, it will attempt to find and parse another source file containing the module. Thelogic
for locating the sourcefile is as follows:

1. Theconfiguration file (if specified) ischecked for a<sourceFile> element containing the name of the sourcefilefor
the module. Note that the <oid> configuration item can be used to distinguish modules that have the same names
but different object identifiers.

2. If thiselement is not present, the compiler looks for afile with the name <M oduleName>.asn where module name
is the name of the module specified in the IMPORT statement.

In both cases, the —| command line option can be used to tell the compiler where to ook for the files.

The other way of specifying multiple modulesisto include them all within asingle ASN.1 sourcefile. It ispossibleto
have an ASN.1 source file containing multiple module definitions in which modules IMPORT definitions from other
modules. An example of this would be the following:

Modul eA DEFI NI TIONS ::= BEG N
| MPORTS B From Mbdul eB;

A::=B

END

Modul eB DEFINITIONS ::= BEG N
B ::= I NTEGER

END

This entire fragment of code would be present in asingle ASN.1 sourcefile.

262

Chapter 17. ROSE and SNMP Macro
Support

The ASN1C compiler has aspecial processing mode that contains extensions to handle itemsin the older 1990 version
of ASN.1 (i.e. the now deprecated X.208 and X.209 standards). This mode is activated by using the -asnstd x208
command-line option.

Although the X.208 and X.209 standards are no longer supported by the ITU-T, they are still in usetoday. Thisversion
of ASN1C contains logic to parse some common MACRO definitions that are still in widespread use despite the fact
that MACRO syntax was retired with this version of the standard. The types of MACRO definitionsthat are supported
are ROSE OPERATION and ERROR and SNMP OBJECT-TY PE.

ROSE OPERATION and ERROR

ROSE stands for ""Remote Operations Service Element" and defines a request/response transaction protocol in which
requests to a conforming entity must be answered with the result or errors defined in operation definitions. Variations
of thisare used in a number of protocolsin use today including CSTA and TCAP.

The definition of the ROSE OPERATION MACRO that is built into the ASN1C is as follows:

OPERATI ON MACRO :: =
BEG N
TYPE NOTATI ON
VALUE NOTATI ON

Paraneter Result Errors LinkedQperations
val ue (VALUE | NTEGER)

Par aret er = ArgKeyword NanedType | enpty

Ar gKeywor d = "ARGUVMVENT" | " PARAMETER'

Resul t = "RESULT" ResultType | enpty

Errors = "ERRORS" "{"ErrorNanmes"}" | enpty

Li nkedQOper ati ons = "LINKED" "{"LinkedQOperationNanmes"}" | enpty

Resul t Type = NanedType | enpty

Err or Nanes = ErrorList | enpty

ErrorList = Error | ErrorList "," Error

Error = val ue(ERROR) -- shall reference an error val ue
| type -- shall reference an error type

-- if no value is specified

Li nkedQper ati onNames ::= COperationList | enpty

Oper ati onLi st = Qperation | OperationList "," Operation
Operation = val ue(OPERATION) -- shall reference an op val ue
| type -- shall reference an op type
-- if no value is specified
NamedType = identifier type | type
END

This MACRO does not need to be defined in the ASN.1 specification to be parsed. In fact, any attempt to redefine this
MACRO will beignored. Its definition is hard-coded into the compiler.

The compiler uses this definition to parse types and values out of OPERATION definitions. An example of an
OPERATION definition is as follows:

| ogi n OPERATI ON
ARGUMENT SEQUENCE { usernane | A5String, password [A5String }

263

ROSE and SNMP Macro Support

RESULT SEQUENCE { ticket OCTET STRI NG wel coneMessage | A5String }
ERRORS { authenticationFailure, insufficientResources }
=1

In this case, there are two embedded types (an ARGUMENT type and a RESULT type) and an integer value (1) that
identifies the OPERATION. There are also error definitions.

The ASN1C compiler generates two types of items for the OPERATION:

1. It extractsthe type definitions from within the OPERATION definitions and generates equivalent C/C++ structures
and encoders/decoders, and

2. It generates value constants for the value associated with the OPERATION (i.e., the value to the right of the "::='
in the definition).

The compiler does not generate any structures or code related to the OPERATION itself (for example, code to encode
the body and header in a single step). The reason is because of the multi-layered nature of the protocal. It is assumed
that the user of such a protocol would be most interested in doing the processing in multiple stages, hence no single
function or structure is generated.

Therefore, to encode the login example the user would do the following:

1. At the application layer, the Login ARGUMENT structure would be populated with the username and password
to be encoded.

2. The encode function for Login_ ARGUMENT would be called and the resulting message pointer and length would
be passed down to the next layer (the ROSE layer).

3. At the ROSE layer, the Invoke structure would be populated with the OPERATION value, invoke identifier, and
other header parameters. The parameter.numocts value would be populated with the length of the message passed
in from step 2. The parameter.data field would be populated with the message pointer passed in from step 2.

4. The encode function for Invoke would be called resulting in a fully encoded ROSE Invoke message ready for
transfer across the communications link.

The following is a picture showing this process:

Application Layer Populate specific message structure (Login. ARGUMENT) and encode.
* Encoded message pointer and length
g Populate ROSE header message structure (Invoke) and encode.
R(.]BE La\"E‘I‘ 0] ck\._ : L- L‘L k .._L”- C L.' __UL s LL:._-ULL - B
. Open type structure contains message pointer and length from previous step.

* Final encoded message

On the decode side, the process would be reversed with the message flowing up the stack:

1. At the ROSE layer, the header would be decoded producing information on the OPERATION type (based on the
MACRO definition) and message type (Invoke, Result, etc..). Theinvokeidentifier would also be available for use
in session management. In our example, we would know at this point that we got alogin invoke request.

264

ROSE and SNMP Macro Support

2. Based on the information from step 1, the ROSE layer would know that the Open Type field contains a pointer
and length to an encoded Login ARGUMENT component. It would then route this information to the appropriate
processor within the Application Layer for handling this type of message.

3. TheApplication Layer would call the specific decoder associated with the Login. ARGUMENT. It would then have
available to it the username/password the user is logging in with. It could then do whatever applicationspecific
processing is required with thisinformation (database lookup, etc.).

4. Finadly, the Application Layer would begin the encoding process again in order to send back a Result or Error
message to the Login Request.

A picture showing thisis as follows:

Application Layer Call specific function to decode Login. ARGUMENT and process data.

4 Encoded message pointer and length

Decode ROSE header message structure (Invoke).
Open type structure contains message pointer and length of encoded

Login. ARGUMENT.

+ Encoded ROSE message

Thelogin OPERATION also contains references to ERROR definitions. These are defined using a separate MACRO
that is built into the compiler. The definition of this MACRO is as follows:

ROSE Layer

ERROR MACRO :: =
BEGA N

TYPE NOTATI ON Par amet er

VALUE NOTATI ON val ue (VALUE | NTECER)

Par anet er .. = "PARAMETER' NanedType | enpty

NanedType identifier type | type

END

In this definition, an error is assigned an identifying number as well as on optional parameter type to hold parameters
associated with the error. An example of areference to this MACRO for theaut hent i cati onFai | ur e errorin
the login operation defined earlier would be as follows:

applicationError ERROR
PARAVETER SEQUENCE {
errorText | A5String

The ASN1C compiler will generate a type definition for the error parameter and a value constant for the error value.
The format of the name of the type generated will be "<name> PARAMETER" where <name> is the ERROR name

265

ROSE and SNMP Macro Support

(applicationError in this case) with the first |etter set to uppercase. The name of the value will simply be the ERROR
name.

SNMP OBJECT-TYPE

The SNMP OBJECT-TYPE MACRO is one of severa MACROs used in Management Information Base (MIB)
definitions. It is the only MACRO of interest to ASN1C because it is the one that specifies the object identifiers and
data that are contained in the MIB.

The version of the MACRO currently supported by this version of ASN1C can be found in the SMI Version 2 RFC
(RFC 2578). The compiler generates code for two of the items specified in this MACRO definition:

1. The ASN.1 typethat is specified using the SYNTAX command, and
2. The assigned OBJECT IDENTIFIER vaue
For an example of the generated code, we can look at the following definition from the UDP MIB:

udpl nDat agr ams OBJECT- TYPE
SYNTAX Count er 32
MAX- ACCESS read-only
STATUS current
DESCRI PTI ON
"The total nunber of UDP datagrams delivered to UDP users."
o= { udp 1}

In this case, a type definition is generated for the SYNTAX element and an Object Identifier value is generated for
the entire item. The name used for the type definition is "<name> SYNTAX" where <name> would be replaced
with the OBJECT-TY PE name (i.e., udplnDatagrams). The name used for the Object Identifier value constant is the
OBJECTTY PE name. So for the above definitions, the following two C items would be generated:

t ypedef Counter32 udpl nDat agr ans_SYNTAX;

ASN1OBJI D udpl nDat agrans = {
81

{1, 3 6, 1, 2, 1, 7, 1}
}o

266

Appendix A. Runtime Status Codes

This appendix describes status code messages returned by the ASN1C C/C++ runtime libraries. When deploying
applications linked against optimized runtime libraries, ASN1C by default does not include a stacktrace; instead only
an error codeis provided. These codes are described more fully in this appendix.

The descriptions are derived from the contents of rt xsrc/ rt XErr Codes. h andrt src/ asnlErr Codes. h.
Users may always look at these two files or the documentation generated from them for a fully updated list of error
messages and their descriptions.

ASN1C Error Messages

Thefollowing table describes error messages that ASN1C may report during the course of code generation, not during
runtime. These include syntax errors, import warnings, type resolution failures, and others.

Users should note that there are severa classes of status messages in this list: errors (ASN- E messages), warnings
(ASN- Wmessages), and informational notices (ASN- | messages).

Error Code

Error Description

ASN-E-NOTY PE

No type was defined for the referenced element in a SEQUENCE or
SET.

ASN-E-UNDEFTYPE

Thetypereferenced was not defined within the context of thismodule.

ASN-E-NOTAG

The object must be tagged in this context. This usually occurs when
context-specific tags are required to disambiguate elements in a
SEQUENCE or SET.

ASN-W-DUPLICATE

The referenced type or value was previously defined.

ASN-W-DUPLTAG

The referenced tag was previoudly defined in a CHOICE or SET; this
happens when an contextual tag is provided more than once.

ASN-E-UNRECTYP

The type described is not recognized by the compiler.

ASN-E-MULTDEF

A choice tag has multiple definitions.

ASN-E-UNDEFVAL

The referenced value is not defined or cannot be found.

ASN-E-INVTYPNAM

Invalid type name. Thisisaparsing failure; all type names must begin
with an uppercase letter.

ASN-E-UNDEFTAG

The referenced type must be tagged in this context.

ASN-E-UNKNOWN

Undocumented error occurred in routine. A status value is provided
with this error message to help locate the cause of the failure.

ASN-I-NOCASE

A case statement for the named object was not generated.

ASN-E-IMPFILOPN

The compiler was unable to open the named import file.

ASN-E-IMPFILPAR

The compiler was unable to parse the named imported module.

ASN-E-IMPNOTFOU

The named type was not found in the import module as specified in
the IMPORT statement.

ASN-E-INVCNSTRNT

Invalid constraint specification.

ASN-W-INVOBINAM

Invalid object name. The object name must begin with a lowercase
etter.

ASN-E-SETTOOBIG

Set contains more than 32 elements.

ASN-E-DUPLCASE

This tag was used in a previous switch case statement.

267

Runtime Status Codes

Error Code

Error Description

ASN-E-AMBIGUOUS

Thisindicatesageneral ambiguity inthe specification such asmultiple
embedded extensible elements.

ASN-E-VALTYPMIS

This indicates the value specified does not match the type it is
associated with.

ASN-E-RANGERR

This indicates the value is not within defined range for its associated
type.

ASN-E-VALPARSE

This indicates a general failure to parse a value definition. 1t would
be raised, for example, if afloating point number was used as part of
a SIZE constraint.

ASN-E-INVRANGE

This indicates an invalid range specification, for example when the
lower bound is greater than the upper bound.

ASN-E-IMPORTMOD

This indicates that the specified import module object was not found.

ASN-E-NOTSUPP

This indicates that the requested functionality is not supported by the
compiler. Most often the error israised when generating test code for
complex value definitions.

ASN-E-IDNOTFOU

This indicates the compiler was unable to look up the specified
identifier.

ASN-E-NOFIELD

Thisindicates that the specified field could not be found in the named
class.

ASN-E-DUPLNAME

This indicates the specified name is aready defined.

ASN-W-UNNAMED

Thiswarning is rai sed when specifications use unnamed fields. These
fields not allowed in X.680, but ASN1C supports them for purposes
of backwards compatibility with X.208.

ASN-E-UNDEFOBJ

This indicates that the named object is not defined within context of
the requested module.

ASN-E-ABSCLSFLD

Thisindicatesthat the specified field isabsent in an information object
definition.

ASN-E-UNDEFCLAS

This indicates that the specified class is not defined within context of
the module that usesit.

ASN-E-INVFIELD

Thisindicates the specified classfield isnot valid; it must be defined.

ASN-E-UNDEFOSET

Thisindicates that ASN1C was unable to find the specified object set
in the context of the module in which it's used.

ASN-E-INVVALELM

Aninvalid value was supplied for an element in atype.

ASN-E-MISVALELM

This indicates that a non-optional element is missing a value when it
should have one.

ASN-E-INVLIDENT

This indicates that an invalid identifier was specified in an
enumeration.

ASN-E-FILNOTFOU

Thisindicates that the requested file was not found.

ASN-E-INVSIZE

This indicates that an invalid size specification for a type was
provided; check size constraints for base types.

ASN-E-UNRESOBJ

This indicates that the specified information object could not be
resolved within the context of the named module.

ASN-E-TOOMANY

Thisindicates that too many sub-elements for the specified type were
provided.

268

Runtime Status Codes

Error Code

Error Description

ASN-E-LOOPDETECTED

This indicates a loop was detected in the course of code generation;
typicaly thisis raised during test code generation.

ASN-E-INVXMLATTR

This indicates that the specified attribute type must be a simple type.

ASN-E-INTERNAL

This indicates that internal structures used for generating code are
inconsistent.

ASN-E-NOPDU

Thisindicates that a PDU type was not found for generating a reader
or writer program.

General Status Messages

The following table contains both system and validation failures that may occur during program execution. These
failures do not arise from ASN.1-specific features (such as an invalid PER encoding), but instead comprehend such
failures as buffer overflows, invalid socket options, or closed streams.

Error Code Error Name

Description

0 RT_OK

Normal completion status.

2 RT_OK_FRAG

Message fragment return status. This is returned when a
part of amessageis successfully decoded. The application
should continue to invoke the decode function until azero
statusis returned.

-1 RTERR_BUFOVFLW

Encode buffer overflow. Thisstatus codeisreturned when
encoding into a static buffer and there is no space left for
the item currently being encoded.

-2 RTERR_ENDOFBUF

Unexpected end-of-buffer. This status code is returned
when decoding and the decoder expects more data to be
availablebut instead runsinto the end of the decode buffer.

-3 RTERR_IDNOTFOU

Expected identifier not found. Thisstatusisreturned when
the decoder is expecting a certain element to be present
at the current position and instead something different
is encountered. An example is decoding a sequence
container typeinwhich the declared elementsare expected
to bein the given order. If an element is encountered that
is not the one expected, this error is raised.

-4 RTERR_INVENUM

Invalid enumerated identifier. Thisstatusisreturned when
an enumerated value is being encoded or decoded and
the given value is not in the set of values defined in the
enumeration facet.

-5 RTERR_SETDUPL

Duplicate element in set. Thisstatus codeisreturned when
decoding an ASN.1 SET or XSD xsd:all construct. It is
raised if a given element defined in the content model
group occurs multipletimesin theinstance being decoded.

-6 RTERR_SETMISRQ

Missing required element in set. This status code is
returned when decoding an ASN.1 SET or XSD xsd:all
construct and all required elements in the content model
group are not found to be present in the instance being
decoded.

269

Runtime Status Codes

Error Code

Error Name

Description

-7

RTERR_NOTINSET

Element not in set. This status code is returned when
encoding or decoding an ASN.1 SET or XSD xsd:al
construct. When encoding, it occurs when a value in the
generated _order member variable is outside the range of
indexes of items in the content model group. It occurs on
the decode side when an element is received that is not
defined in the content model group.

RTERR_SEQOVFLW

Sequence overflow. This status code is returned when
decoding arepeating element (ASN.1 SEQUENCE OF or
XSD e ement with minmaxOccurs> 1) and moreinstances
of the element are received the content model group.

RTERR_INVOPT

Invalid option in choice. This status code is returned
when encoding or decoding an ASN.1 CHOICE or XSD
xsd:choice construct. When encoding, it occurs when a
value in the generated 't' member variable is outside the
range of indexes of items in the content model group. It
occurson the decode side when an element isreceived that
is not defined in the content model group.

-10

RTERR_NOMEM

No dynamic memory available. This status code is
returned when a dynamic memory allocation request is
made and an insufficient amount of memory is available
to satisfy the request.

-11

RTERR_INVHEXS

Invalid hexadecimal string. This status code is returned
when decoding ahexadecimal string value and a character
is encountered in the string that is not in the valid
hexadecimal character set ([0-9A-Fa-f] or whitespace).

-12

RTERR_INVREAL

Invalid real number value. This status code is returned
when decoding a numeric floating-point value and an
invalid character is received (i.e. not numeric, decimal
point, plus or minus sign, or exponent character).

-13

RTERR_STROVFLW

String overflow. This status code is returned when a
fixed-sized field is being decoded as specified by a size
constraint and the item contains more characters or bytes
then this amount. It can occur when a run-time function
is called with a fixed-sixed static buffer and whatever
operation is being done causes the bounds of this buffer
to be exceeded.

-14

RTERR_BADVALUE

Bad value. This status code is returned anywhere where
an API is expecting a value to be within a certain range
and it not within thisrange. An exampleisthe encoding or
decoding date values when the month or day value is not
within the legal range (1-12 for month and 1 to whatever
the max daysis for a given month).

-15

RTERR_TOODEEP

Nesting level too deep. Thisstatus codeisreturned when a
preconfigured maximum nesting level for elementswithin
acontent model group is exceeded.

-16

RTERR_CONSVIO

Constraint violation. This status code is returned when
constraints defined the schemaare violated. Theseinclude
XSD facets such as minmaxOccurs, minmaxLength,

270

Runtime Status Codes

Error Code Error Name Description
patterns, etc.. Also ASN.1 valuerange, size, and permitted
alphabet constraints.

-17 RTERR_ENDOFFILE Unexpected end-of-file error. This status code is returned

when an unexpected end-of-file condition is detected
on decode. It is similar to the ENDOFBUF error code
described above except that in this case, decoding isbeing
done from afile stream instead of from a memory buffer.

-18 RTERR_INVUTF8 Invalid UTF-8 character encoding. This status code is
returned by the decoder when an invalid sequence of bytes
is detected in a UTF-8 character string.

-19 RTERR_OUTOFBND Array index out-of-bounds. This status code is returned
when an attempt is made to add something to an array and
the given index is outside the defined bounds of the array.

-20 RTERR_INVPARAM Invalid parameter passed to a function of method. This
status code is returned by a function or method when it
doesaninitia check onthevaluesof parameterspassed in.
If aparameter is found to not have avalue in the expected
range, this error code is returned.

-21 RTERR_INVFORMAT Invalid value format. This status code is returned when a
value is received or passed into a function that is not in
the expected format. For example, the time string parsing
function expects a string in the form "nn:nn:nn" where
n's are numbers. If not in this format, this error code is
returned.

-22 RTERR_NOTINIT Context not initialized. This status code is returned when
the run-time context structure (OSCTXT) is attempted to
be used without having been initialized. This can occur
if rtxInitContext is not invoked to initialize a context
variable before usein any other API call. It can aso occur
is there is a license violation (for example, evaluation
license expired).

-23 RTERR_TOOBIG Valuewill not fit in target variable. This statusis returned
by the decoder when atarget variableis not large enough
to hold a a decoded value. A typical case is an integer
value that is too large to fit in the standard C integer
type (typically a 32-bit value) on a given platform. If this
occurs, it is usually necessary to use a configuration file
setting to force the compiler to use a different data type
for the item. For example, for integer, the <isBiglnteger>
setting can be used to force use of a big integer type.

-24 RTERR_INVCHAR Invalid character. This status code is returned when a
character is encountered that is not valid for a given data
type. For example, if aninteger valueisbeing decoded and
anon-numeric character is encountered, this error will be
raised.

-25 RTERR_XMLSTATE XML state error. This status code is returned when the
XML parser

271

Runtime Status Codes

Error Code

Error Name

Description

-26

RTERR_XMLPARSE

XML parser error. This status code in returned when the
underlying XML parser application (by default, this is
Expat) returns an error code. The parser error code or text
is returned as a parameter in is not in the correct state to
do acertain operation.

-27

RTERR_SEQORDER

Sequence order error. This status code is returned when
decoding an ASN.1 SEQUENCE or XSD xsd:sequence
construct. It is raised if the elements were received in
an order different than that specified the errInfo structure
within the context structure.

-28

RTERR_FILNOTFOU

File not found. This status code is returned if an attempt
is made to open afile input stream for decoding and the
given file does not exist.

RTERR_READERR

Read error. Thisstatus codeif returnedif aread IO error is
encountered when reading from an input stream associated
with aphysical device such as afile or socket.

-30

RTERR_WRITEERR

Write error. This status code if returned if awrite |O error
isencountered when attempting to output datato an output
stream associated with a physical device such as afile or
socket.

-31

RTERR_INVBASE64

Invalid Base64 encoding. This status code is returned
when an error is detected in decoding base64 data.

-32

RTERR_INVSOCKET

Invalid socket. This status code is returned when an
attempt is made to read or write from a scoket and the
given socket handle isinvalid. This may be the result of
not having established a proper connection before trying
to use the socket handle variable.

RTERR_INVATTR

Invalid attribute. This status code is returned by the
decoder when an attribute is encountered in an XML
instance that was not defined in the XML schema.

RTERR_REGEXP

Invalid regular expression. This status code is returned
when a syntax error is detected in a regular expression
value. Details of the syntax error can be obtained by
invoking rtxErrPrint to print the details of the error
contained within the context variable.

-35

RTERR_PATMATCH

Pattern match error. This status code is returned by the
decoder when avaluein an XML instance does not match
the pattern facet defined inthe XML schema. It canalsobe
returned by numeric encode functionsthat cannot format a
numeric valueto match the pattern specified for that value.

-36

RTERR_ATTRMISRQ

Missing required attribute. This status code is returned by
the decoder when an XML instance is missing a required
attribute value as defined in the XML schema.

RTERR_HOSTNOTFOU

Host name could not be resolved. This status code is
returned from run-time socket functions when they are
unable to connect to a given host computer.

272

Runtime Status Codes

Error Code

Error Name

Description

-38

RTERR_HTTPERR

HTTP protocol error. This status code is returned by
functions doing HTTP protocol operations such as SOAP
functions. It is returned when a protocol error is detected.
Details on the specific error can be obtained by calling
rtxErrPrint.

-39

RTERR_SOAPERR

SOAP error. This status code when an error is detected
when tryingto execute a SOAP operation.

RTERR_EXPIRED

Evaluation license expired. This error is returned from
evaluation versions of the run-time library when the hard-
coded evaluation period is expired.

RTERR_UNEXPELEM

Unexpected element encountered. This status code is
returned when an element is encountered in a position
where something else (for example, an attribute) was
expected.

RTERR_INVOCCUR

Invalid number of occurrences. This status code is
returned by the decoder when an XML instance contains
a number of occurrences of a repeating element that is
outside the bounds (minOccursmaxOccurs) defined for
the element in the XML schema.

RTERR_INVMSGBUF

Invalid message buffer has been passed to decode
or validate method. This status code is returned
by decode or vaidate method when the used
message buffer instance has type different from
OSMessageBufferlF::XMLDecode.

RTERR_DECELEMFAIL

Element decode failed. This status code and parameters
are added to the failure status by the decoder to allow the
specific element on which a decode error was detected to
be identified.

RTERR_DECATTRFAIL

Attribute decode failed. This status code and parameters
are added to the failure status by the decoder to allow the
specific attribute on which a decode error was detected to
be identified.

RTERR_STRMINUSE

Stream in-use. This status code is returned by stream
functionswhen an attempt is madeto initialize a stream or
create a reader or writer when an existing stream is open
in the context. The existing stream must first be closed
before initializaing a stream for a new operation.

RTERR_NULLPTR

Null pointer. This status code is returned when a null
pointer is encountered in a place where it is expected that
the pointer value isto be set.

RTERR_FAILED

General failure. Low level call returned error.

RTERR_ATTRFIXEDVAL

Attribute fixed value mismatch. The attribute contained a
value that was different than the fixed value defined in the
schemafor the attribute.

-50

RTERR_MULTIPLE

Multiple errors occurred during an encode or decode
operation. Seetheerror list within the context structurefor
afull list of all errors.

273

Runtime Status Codes

Error Code

Error Name

Description

-51

RTERR_NOTY PEINFO

This error is returned when decoding a derived type
definition and no information exists as to what type of
dataisin the element content. When decoding XML, this
normally means that an xsi:type attribute was not found
identifying the type of content.

-52

RTERR_ADDRINUSE

Address already in use. This status code is returned when
an attempt is made to bind a socket to an address that is
aready in use.

-53

RTERR_CONNRESET

Remote connection was reset. This status code is returned
when the connection is reset by the remote host (via
explicit command or a crash).

RTERR_UNREACHABLE

Network failure. This status code is returned when the
network or host is down or otherwise unreachable.

-55

RTERR_NOCONN

Not connected. This status code is returned when an
operation isissued on an unconnected socket.

-56

RTERR_CONNREFUSED

Connection refused. This status code is returned when an
attempt to communicate on an open socket is refused by
the host.

-57

RTERR_INVSOCKOPT

Invalid option. This status code is returned when an
invalid option is passed to socket.

RTERR_SOAPFAULT

This error is returned when the decoded SOAP envelope
isafault message.

-59

RTERR_MARKNOTSUP

This error is returned when an attempt is made to mark a
stream position on a stream type that does not support it.

-60

RTERR_NOTSUPP

Featureisnot supported. This status codeisreturned when
afeaturethat is currently not supported is encountered.

-61

RTERR_CODESETCONVFAIL

This status code is returned when transcoding from one
character set to another one (for example, from UTF-8 to
UTF-16) and a conversion error occurs.

ASN.1-specific Status Messages

The following table describes status messages that may arise during the course of encoding or decoding an ASN.1
message. The errors below indicate that while the system was able to read the data successfully, it was unable to

decode it properly.

Error Code Error Name Description

2 ASN_OK_FRAG Fragment decode success status. This is returned when
decoding is successful but only afragment of theitem was
decoded. User should repeat the decode operation in order
to fully decode message.

-100 ASN_E BASE Error base. ASN.1 specific errors start at this base number

to distinguish them from common and other error types.

(ASN_E_BASE)

ASN_E_INVOBJD

Invalid object identifier. This error code is returned when
an object identifier is encountered that is not valid.
Possiblereasonsfor being invalid includeinvalid first and

274

Runtime Status Codes

Error Code

Error Name

Description

second arc identifiers (first must be 0, 1, or 2; second must
be less than 40), not enough subidentifier values (must be
2 or more), or too many arc values (maximum number is
128).

(ASN_E_BASE-1)

ASN_E_INVLEN

Invalid length. This error code is returned when a length
valueis parsed that is not consistent with other lengthsin
aBER or DER message. Thistypically happens when an
inner length within a constructed type is larger than the
outer length value.

(ASN_E_BASE-2)

ASN_E_BADTAG

Bad tag value. Thiserror codeisreturned when atag value
is parsed with an identifier code that is too large to fit in
a 32-bit integer variable.

(ASN_E_BASE-3)

ASN_E_INVBINS

Invalid binary string. This error code is returned when
decoding XER data and a bit string value is received that
contains something other than '1' or '0' characters.

(ASN_E_BASE-4)

ASN_E_INVINDEX

Invalid table constraint index. This error code is returned
when avalueisprovidedtoindex into atable and thevalue
does not match any of the defined indexes.

(ASN_E_BASE-5)

ASN_E_INVTCVAL

Invalid table constraint value. This error code is returned
when a the value for an element in a table-constrained
message instance does not match the value for the element
defined in the table.

(ASN_E_BASE-6)

ASN_E_CONCMODF

Concurrent list modification error. This error is returned
from within alist iterator when it is detected that the list
was modified outside the control of the iterator.

(ASN_E_BASE-7)

ASN_E_ILLSTATE

Illegal state for operation. This error isreturned in places
where an operation is attempted but the object isnot in a
state that would allow the operation to be completed. One
exampleisin alist iterator class when an attempt is made
to remove a node but the node does not exist.

(ASN_E_BASE-8)

ASN_E_NOTPDU

This error is returned when a control class Encode or
Decode method is called on anon-PDU. Only PDUs have
implementations of these methods.

(ASN_E_BASE-9)

ASN_E_UNDEFTYP

Element type could not be resolved at run-time. This
error is returned when the run-time parser module is used
(Asn1RTProd) to decode atype at run-time and the type
of the element could not be resolved.

(ASN_E_BASE-10)

ASN_E_INVPERENC

Invalid PER encoding. This occurs when a given element
within an ASN.1 specification is configured to have an
expected PER encoding and the decoded value does not
match this encoding.

275

