objective
SYSTEMS, INC.

ASNI1C

ASN.1 Compiler
Version 7.3

C/C++ Users Guide
Reference Manual

Objective Systems, Inc. version 7.3 — January 2019

The software described in this document is furnished under a license agreement and may be used only in accordance
with the terms of this agreement.

Copyright Notice
Copyright ©1997-2019 Objective Systems, Inc. All rights reserved.

This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its entirety and
that the copyright and this notice are included.

Author’s Contact Information

Comments, suggestions, and inquiries regarding ASN1C may be submitted via electronic mail to info@obj-sys.com.

Table of Contents

L OVENVIEIW OF ASNILC ..ottt ettt e et e ettt e et ettt e et ettt e et e tb i r e e e e ab e et enb e aees 1
2. USING the COMPITES ... ettt e et e et e e e e e e ab s 2
Running ASNIC from the Command-liNeuuiiiiiiiioii e e 2
Compiling and Linking Generated COUEuiiiirtieieii ettt 19
Porting Run-time Code to Other PlalfOrmScoouuiiiiiii e e 20
Compiler ConfigUIation FilEi i et e s 21
ComPIler Error REPOMINGc.uuieeitieeeeit ettt ettt ettt et ettt e et ettt e et e eaa e e e eaa e e ennen s 32
3. ASNIC GUI USEIS GUITE ... eeeeetieeeeet ettt ettt ettt ettt e et e et e e e aaa e e e enan s 34
L@ Lot - P 34
Crealing @ PIOJECTvuuei ittt ettt e et et et e e et e e e e aee 38
EdItiNG SChEMES ..ot ettt e e ettt e e et et e e e e tb e e e enb e aeee 38
1600]07] 11 112 o [O UP PP UP PPN 39
F0 1= g = o PP UPPPPTPPPPIN 39
o) (o] ST SPP PP RPPPTRP 40
PrOJECE WINGOW ...ttt ettt e et e ettt e e et e e e e eaa s 41
ASNLL TTEE WINUOW ..ttt ettt ettt ettt e et e et et e et et e e e ena e e e eaanas 41

ErrOr LOG WINOOW ... ceiiieeeeeie ettt ettt ettt ettt e e et et e e et et e e e eeba e eeene 42
PrOJECT SEILINGS ...t eeti ettt ettt ettt e e e e 42

4. ASN.L TO CICH+ MBPPINGS - eetuneeeetieeetett ettt e et e et e et et e e et et e e et et e et et e e et et e et e b reeeeraa s 54
TYPE IM@DIDINGS - ettt ettt ettt e ettt e et e e ettt e ettt e e e et et oo ettt b e et e e e et e a b e et e e e e e ebb e e e era e aeee 54
BOOLEAN .ottt et e e nas 54
INTEGER ...ttt et ettt e ettt e ettt e e ettt e e e e ab e e e erb e eeee 54

BIT STRING ..ottt ettt et et et e et r e e e et e e e nbe e e ennans 56
OCTET STRING ...ttt ettt r et e e et e e et et e e e e eaa s 60
ENUMERATED ..ottt ettt ettt e et e et e e e eae s 62
N PP PPTT PP 64
OBJECT IDENTIFIER ...ttt ettt e s 64
RELATIVE-ROID ...ttt ettt ettt e et e et e e et eeeeea s 64
RE A L ettt 65
SEQUENCE ...ttt et e ettt e et e et a e e et e e et et e e e et aee 65

S SO TPPPT TP PR 70
SEQUENGCE OF ..ottt ettt ettt e et et e e e b e e eeaans 70

ST O e e e e e et et e et e e e e e aee 75
CHOICE ..o ittt ettt e ettt e ettt e et e e et e a e eeeat e een 75
1007 o I Y/ oL PP PP 78
CaraCter SIING TYPES vttt ettt ettt e et e et et e e e ena e e eenens 79
BELLLCRS L aTo T Y o= PP PPT P TPPPPTRRPPIN 80
EXTERNAL oottt ettt enaans 81
EMBEDDED PDV ...ttt 81
ParamMELEriZEO TYPES . .eevu ettt ettt e s 82
VAU MBPPINGS ...ttt ettt e ettt ettt e et e e e et ettt e b et e e e e naa s 83
BOOLEAN VAU ...ttt e e e e et e e e ene s 84
INTEGER VEIUE ...ttt ettt eeenan s 84
REAL VEIUE ...ttt ettt ettt e et e et e e e e e ene 85
Enumerated Value SPECITICAIIONcouuuniiiiiiii e 85
Binary and Hexadecimal StiNg ValUEcoouuiiiiiii e 85
CharaCter SIING VAIUE ... oottt 86
Object Identifier Value SPeCifiCationcoouuiiiiiiiieeii e 86
CoNSIIUCIE TYPE VAIUBS ...ttt ettt ettt e et et e eeeat e e enaa e eeees 86
Table Constraint REIAEd SITUCIUIEScoveiiieeiii ettt e e e eeees 89
Unions Table Constraint MOGE]oouuiiiiiiii e 89

ASNIC

Legacy Table Constraint MOGE]ccuuiiiiiiiiie e e e e e e e e e eees 95
5. XSD t0 C/CH+ TYPE MBPPINGS ..uevtneiiinieiieeeti et e e e e st e e et e e et e e et e e et e e et e e et e e eta e eanneeateeetnaeennaaenes 104
DS D IS Lo =T I o 1= PN 104
DS D I 001070 = G 1Y 0= 105

DS o B = o (U= oo P 105

DG o 1 | USRS 106
XSO:C0ICE ANA XSA:UNTON .uuiiieiii ittt et e e e e e 106

[RT= o1= L o T C o U1 o 1= 107
REPEAIING EIEIMENTS ...t e e 108

DG o b 1 PP 109

DG o b 0P UPPRTRRUPPRN 109
XML Attribute DeClar@lionsiiiiiiniiiiii e et e eees 110
XSA:ANYATIFIOULE «.oe e e et e et ees 111
XSA:SIMPIECONTENT ..t e et e et e et e e et e e e et 112

XSA: COMPIEXCONTENT ...ttt et e e et e et e e e et e e eaaan s 113
SUDSHITULION GIOUPS vttt ettt ettt e e et e et e e e et e e e eaa e e eaaans 114
6. Generated C/CH+ SOUCE COUReeuuieiiiii ettt ettt e et e e e et e e e eae s 116
<=0 [(0 I T = S 116
Generated C SOUICE FIIES ...t et e et e et e e 118
Maximum LiNES PEr FIlE ... e 119

Use of the -maxcfiles OPLioncooeuiiiii e 119
CTc 0c 1= O =P 120
Generated C/C++ files and the -compat OPtiONccoviuiieiiii e 121
Considerations When Using C++ Standard Libraryooooovuuiiiiiiiiiniie e 122
Generated BUIl FIlES et e et 123
Generated MaKEFIE .. .o e 123
Generated VCH+ ProJeCt FIlESccouiiiiii e 124
7. Generated Encode/Decode Function and MethodSoooiuiiiiiiiiic e 125
Encode/Decode FUNCLION PrOtOLYPESc.uuuniiiiiieieii et e e e e aeeaens 125
Generated C++ Control Class DEfiNItIONooieeuiiiiiiii e 126
BER/DER 0r PER Class DEfINITIONoiiiiiiiiiiii e 126
XER Class DEfINITIONuiiiiiiii ettt e et e e e e e eees 127
Generated MEINOOSouuiiii et 127
Generated Information Object Table SLUCIUIESiiiiiii e 128
Simple FOrmM CoOe GENEIELIONceietieeiii ettt et e et e e et e e e 129
Unions Table FOrm Code GENEIaLIONccuuueiiiiiiee ittt 129
Legacy Table FOrm Code GENEFatioNcocuuuieiiiiii ettt 131
Additional Code Generated with the -tableS OptioNncoouviiiiiiiiii e 131
Genera Procedure for Table Constraint ENCOINGuviiiiiiiiiiiiieei e 133
Genera Procedure for Table Constraint DeCOINGc.uuuieiiiiiiieiiiiie e 136
Genera Procedures for Encoding and DECOOINGccuvuriiiiiinieiiiiiieeeii e et 139
Populating Generated Structure Variables for ENcodingooovuviiiiiiiiiiiiiicci e 139
Accessing Encoded Message COMPONENTSueiiiruneeiiiiie et e et et e et e et eeaenes 140
Generation of Sample ApPliCation PrOgramsooeuuiiiiiii et 141
Generation of Programs from TeMPIBLESccuuuiiiiii e eaaans 142
8. Memory Management iN ClCH ... iiu e et e e e e e et e e e e e et e e et e e et s e eanaeeaeaeeennaenanaaes 143
The ASNLIC Default MemOry MaNBOEYc.uuiiiieiiieeiiiii e e et eaeaa s 143
High Level Memory Management AP ... e 143
Built-in Compact MemOry ManagEMENTuuiiiirieiiiii ettt e e e et eera s 145
Built-in Static Block Memory Managementoooeiueieiiiiiieeeie e e e e e e 145
Low Level Memory Management APl 146
CH+ MemMOry ManaQEMENToeeeei ettt e e et et et e e et e e et e e e e eenaees 146
IMIBIMOTY SECUFITY .. eeeti ettt ettt ettt ettt ettt e e e et e e et e et et e e e et e e e eba e eas 148

ASNIC

S LSRNV =g To YA O o 148
A= (ol o] I o (= PP 148
9. Generated BER FUNCHIONSu.iiiiii ettt e et e e ettt e e e e et s e e e et s e e e et aeeeeneaeaeees 149
Generated BER ENCOUE FUNCHIONSuiiiiiiieiiii ettt e et e e e e e eeeens 149
Generated C Function Format and Calling Parameters..........ccooeviiviiiiiiiie i 149
Generated C++ Encode Method Format and Calling Parameterscoeevviviiiieeiiiieciineeeieeee, 153
Generated BER Streaming ENcode FUNCLIONSoiiiiiii e e e e e e 157
Generated Sreaming C Function Format and Calling Parameters...........cccoeevvieviiiievieeeineens 157
Generated Streaming C++ Encode Method Format and Calling Parameters............ccooeevvveennnn. 160
Generated BER DeCOUE FUNCLIONSuiiiiiiiieeeiiiie ettt e et e et e e et e e et e e e e e s 163
Generated C Function Format and Calling Parameterscoevevvieeiiiiiii i eee e, 164
Generated C++ Decode Method Format and Calling Parametersccooevivviiieciiiieiiieecinees 168
BER Decode Performance Enhancement TEChNIQUESuiiiieiiiiiiii e e e e e e e e e e aa e 172
Dynamic Memory ManagEMENLccuuieiuueiiieeiiie et e e st e e et e e et eeat e e et e eatn e s e st eeaneaanaees 172
(0010 To 0o I 1= 0=l T o [173
(D= o0 0 (ST o oY 173
Using Initialization FUNCLIONScuuiiiiiciie e e e e e e e e e e et e e e e eaaaeees 174
BER/DER Deferred DECOUINGuuiiiuiieiiiiei e et e e e e e e e e e e e e e et e e et e e et e e e eaannaees 174
Generated BER Streaming Decode FUNCHIONScivuiiii e ee e e e e e e e e e e e e 175
Generated Streaming C Function Format and Calling Parameters..........coocovveviiiiiiiiieviieecieeen, 176
Generated Streaming C++ Decode Method Format and Calling Parameters.............ccooccvvveevnnnneen. 180
10. Generated PER FUNCLIONSuiiiiiiiee et e et e e e et e e e et r e e e et e e e e st e e e eaennes 184
Generated PER ENCOOE FUNCHIONSuuiiiiiiiiei ettt e et e e e et e e e et e e e eatn e eeeee 184
Generated C Function Format and Calling Parametersc.ovvvviiieiiii i 184
Generated C++ Encode Method Format and Calling Parameters..........coocoevevvieeiiiieviiieecnneeen, 184
Populating Generated Sructure Variables for ENCOdiNgccccvviiiiiiiiiiiiiiiiccieece e, 185
Procedure for Calling C ENCOdE FUNCLIONSccuuiiiiiiiiie e e e ee e e s e e e e 185
Encoding a Series of PER Messages Using the C Encode FUNCLIONScoovevviiiiieiiieeinnns 187
Procedure for Using the C++ Control Class Encode Methodccoceviiiiiiiiiiieiin e 188
Encoding a Series of PER Messages using the C++ Interfacec.occoeeeiiiiiin i, 191
Generated PER DeCOOE FUNCLIONSc.uuiiiiiiiiieeiiiii e e e e e e e e e e e e et e e e et e e e e st e e e eaennes 192
Generated C Function Format and Calling Parametersc.oovvvviieiiiiciii e 192
Generated C++ Decode Method Format and Calling Parametersccooeviviiiiiiiiiiciiieecieees 192
Procedure for Calling C Decode FUNCHIONSccouuiiiiiiiiii e e e 193
Procedure for Using the C++ Control Class Decode Methodccooovviiiiiiiiiiiciin e, 194
Decoding a Series of Messages Using the C++ Control Class Interface...........cccoeevviiviiiiieinne, 196
Performance Considerations; Dynamic Memory Managementccoeeuuveviieviineeiineeeiieenneennns 197
Generated Unaligned PER (UPER) FUNCHIONScuuiiiiiiiiee e e e e e e e e e e e e e e aneeeen 197
T L A I o 1 o 197
11. Generated Octet Encoding Rules (OER) FUNCHIONSoiiuiiiiiicii e e e e e e e e eane s 199
Generated OER ENCOOE FUNCLIONSuuiiiiiiie et e e e e e e et e e e e aaa s 199
Generated C Function Format and Calling Parameterscoovevviieiiiiiiiieeie e, 199
Generated C++ Encode Method Format and Calling Parameters..........cocccoeveviieeviiieviineecineeenn, 200
Populating Generated Sructure Variables for ENCOdingcouoviiiiiiiiiiiiiiiiccin e 200
Procedure for Calling C ENCOde FUNCLIONSccuuiiiiiiiiii e 200
Procedure for Using the C++ Control Class Encode Methodccocovviiiiiiiiiiieiin e 202
Generated OER DECOUE FUNCLIONSoviviiiiiiii et e et e et e e et e e e et s e e eanaaeeeeeens 204
Generated C Function Format and Calling Parameterscooveviiieeiiiiiiii e ee e 204
Generated C++ Decode Method Format and Calling Parametersccoocvieiiiieeiiiieiiieeeieees 204
Procedure for Calling C Decode FUNCLIONSccvuniiiiieiii e e e e e 205
Procedure for Using the C++ Control Class Decode Methodccoocviiiiiiiiiiiiiiincceeeen, 207
Decoding a Series of Messages Using the C++ Control Class Interface............ccoeevviiiiiiieiin, 208
Performance Considerations; Dynamic Memory Managementccoceuueeviieviiieeiineeeiieennennnns 209
12. Generated Medical Device Encoding Rules (MDER) FUNCLIONSccouiiiiiiiiiieccii e 210

ASNIC

Generated MDER ENCOOE FUNCLIONSuiiiiiiiiiiiie et e et e et e e e e e 210
Generated C Function Format and Calling Parametersoocvviiviiiieiiiecie e, 210
Procedure for Calling C ENcode FUNCHIONSoiiiiiiiiii e e e 210
Encoding a Series of Messages Using the C Encode FUNCLIONScccovveiiiieiiiieciii e, 212

Generated MDER DeCOUE FUNCLIONScovvvuieiiiiiieeeiii e e et e ettt e e ettt s e e e et e e e et s e e e eatn s e e eesennaeaee 212
Generated C Function Format and Calling Parametersccoveviiieeiiiiiii e ee e, 212
Procedure for Calling C Decode FUNCLIONScovuiiiiiiiii e e e 213
Decoding a Series of Messages Using the C Decode FUNCLIONScocevviiiiiiiiiiieciii e 214

TWO-PASE MESSAGING ...euvuiiiniiiiieti e ettt et e e e e et e e et e e et e e et e e et e e et r e e st e ean e eatnaeetnaeetnaaeanaeannaees 214
TWO-PhESE ENCOOING ...cvuiiiiicii e e e e e e e e et e et e e et e e aan s 215
TWO-PhESE DECOUINGivinieiieeie e e e e e e e e e e e e e e e e e et e e et e e eaaaeeaes 217

13. Generated XML FUNCLIONSuiiiiiiiiei sttt e et e e et s e e et e e e e et e e e e et s 219

L@ N T ST SPUTTSPPRN 219

Differences between OSys-XER and XER (BASIC-XER)cuiiiiiiiiiiiiiiiieeieie e e e 220

EXTENDED-XER ...ttt e ettt e e r e e e et e e e ee bt r e e e eatt s e e e eate e e eestenaaaees 220
How to Generate Code for EXTENDED-XERccccuiiiiiiiiiiiiiiiie e 221
Supported Instructions and Brief SUMMArYcooviiiiiiiiiiie e e e 221
[T 00T = 1o PP 221
Working with generated EXTENDED-XER COUEuuviiiiiiiiiieiie e 221

Generated XML ENCOOE FUNCHIONSuiiiiiiiiiee ittt e e et e e e et e e e eei e e e eetanaeeees 222
Generated C Function Format and Calling Parameterscoevevvieeiiiiiii i eee e, 222
Procedure for Calling C ENCOde FUNCLIONSccvuiiiiiiiiii e e e 223
Generated C++ Encode Method Format and Calling Parameters..........cccoocvveviiiiiiiiieviineeinenns 224
Procedure for Using the C++ Control Class Encode Methodccooovviiiiiiiiiiciinec e, 224

Generated XML DeCOUE FUNCLIONSuuuiiiiiiieiiiie ettt e et e e et e e et s e e e et aeeeaane s 226
Generated C Function Format and Calling Parametersc.coveviiieeiiiiiiii e eee e, 226
Procedure for Calling C Decode FUNCHIONScouuiiiiiiiii e e e e 226
Generated C++ Decode Method Format and Calling Parameterscooovviveiiiieiiineciineeennnn, 228
Procedure for Using the C++ Control Class Decode Methodccooovviiiiiiiiiinciecee, 229

14. Generated JER (JSON Encoding RUIES) FUNCLIONSoiiiniiiiiiiiie e e e e 231

Generated JSON ENCOOE FUNCLIONSuuiiiiiiiiiiiiiis ettt e et e et e e e e 231
Generated C Function Format and Calling Parameterscoooviiiiiiiiiiii e 231
Procedure for Calling C Encode FUNCHIONSoiiiiiiiiiiciie e e 232
ENCOdiNG @ SEri€S Of IMESSAgES ...uuiviniiii et e et e e e e e e e e e e et e e et e e e ean s 232
Generated C++ ENcoding MEthOScoouiiiiiiiiii e e 233
Encoding a Series of Messages using the C++ Control ClasS.........cccoveviiieiiiiiiiiiecii e, 233

Generated JSON DeCOUE FUNCHIONS . ..eiiiiieeiiiii e et ettt e e e e et e e e e et e e e eataeeeeaenseeeenes 234
Generated C Function Format and Calling Parametersccovevviieeiiii i e e, 234
Procedure for Calling C Decode FUNCHIONSccuuiiiiiiciiii e e e 234
Decoding a Series of Messages Using the C Decode FUNCLIONScocvvvieiiiiiiiiiicie e, 235
Generated C++ ENcoding MEthOScoouiiiiiiiiii e e 236
Decoding a Series of Messages using the C++ Control ClasS...........ccovvevviieiiiieiiii e 236

15. Generated 3GPP Layer 3 (BGL3) FUNCLIONS ... ccuuiiiiieii e e e e e e e e e e et e et e e e e aaaas 237

Generated 3GPP Layer 3 ENCOdE FUNCHIONSc.uiiiiiiiii e e e e e e e e 237
Generated C Function Format and Calling Parameterscooveviiieeiiiiiiii e ee e 237
Populating Generated Sructure Variables for ENCOdingcouoviiiiiiiiiiiiiiiiccin e 238
Procedure for Calling C ENCOde FUNCLIONSccvuiiiiiiiiii e 238

Generated 3GPP Layer 3 Decode FUNCLIONSivviiiiiieiie e e e e e e e e e e e e e eaens 239
Generated C Function Format and Calling Parametersccovevviieeiiiiiiiiecee e e, 239
Procedure for Calling C Decode FUNCLIONSccvuniiiiieiii e e e e e 240

L O B R I T o o = o PPN 243

[111 Lo P 243

LS N T I = o= = 4 PP 243
[= O PPUPPPTTSPPN 243

Vi

ASNIC

LN = 0= S P UPTTPTPP 243
Y7o o L1 PP 244
LaDEIS 8N REFEIENCES .. .ieiviiiiiiii e e e e e et e e e et e e e e aen s 244
L2 TS T 1 oo P 245
LIS S T o PPN 246
F N L= g 0 1o o PSP 246
(@00 gTor= 1< o= 10 o PR 246
L d 070] 0 1 PR 247
(e[o o PP 248
101257 o 1o PSPPI 248
S a0 o1 === T U 248
0T F= g o o] (===)1 248

Y=o T o O Nt (o T N 250
g1 [0 o [' o PR 250
(€1 gTc = I oo o 1= PP 251
Mapping CSN.1 name t0 ASN.L identifierccuuiiiii e 251
Mapping CSN.1 name t0 ASN.L tYPErEfErENCE ... cuvniii e e e e e aans 252
ASN.L [dentifier ASSIGNIMENT ...t e e e e e e e e et e e et e e e ta e e et e eeaneeeens 252
CSNIString Mapping PrOCEAUIEciueiiiii et e e e e e e e e e e st e e e eanaees 253
Alternation Mapping PrOCEAUIEcciuuiiii e e e e e e e e et e et e e e e e et 253

(D<= 0= | PP 257
Concatenation MappinNg ProCEAUNEcouuiiiii e e e e e e eaa s 258
(00 1= 1= Y, = o o] oo P 260
INEErSECHION PrOCEAUIES eiieiiie ettt e et e e et e e e e et r e e e e et r e e e eetereeeeatnnaeeaetnnaeeees 261

Intersection ANAlYSIS PrOCEOUIEiiue i e e e e e e e e e et e e e e e e e aanees 261

Intersection MappPinNg PrOCEAUIEiiiiiiiiii e e e e e e e e e e e e e e e e e et e e et eeaneees 262
) (= = 1Y/ =0 o1 oo PN 262
R = (= 1o =l 1Y/ ="o] 11 o 263
IS 0o 1Y = o T 263

S @011 1T aTo @S N 0 264
2 TS o PP 264
UsiNg CSN.1 and ASN.L TOGEINEYceviiiii e e e e e e e e e e e e e eaans 264
Tips 0N WOrking With CONLL ... oo e e e e e e e et e e e eaeas 265

o g (1 = 1Y PP 265

RIS =00 IO o= () PP 266

Problems With NAIMIEScoeiiii et e et e e et e e eaeenas 267

ST =55 1 o SN 267

User DEfINEd FUNCLIONSuiiiiiiiie ettt e s e e et s e e et e e e e et e e e e s 267
CSNLL 10 ASN.L EXBMPIE .. eetiiiiiiiii ettt e ettt e et e e et e e e e et r e e e et n e e e et aeeeannn s 268

19. Additional Generated FUNCHIONScoiuuiiieiiiii et e et e et e e et e e e e et e e e e eaa s 272
Generated [Nitialization FUNCHIONSuuiiiiiiiie e e e et et e e 272
Generated Memory Free FUNCLIONSooiiiiiii e e e e e e e e e e et e e e e eees 272
Generated Print FUNCLIONSuiiiiiiiei e et e et et r e et r e e e et r e e e et e e e eateneeesenns 273

Print t0 Sandard OULPULuiiiiiiii e e e e e e e e e e e e et e e e eanaas 273

T (o T oo P 274

L AT AR (O TS (== T o SRR 274

[0L o 1 1= PSP 275
Generated COMPAre FUNCLIONSuiiiii e e e e e e e e e e e e et e e et e et e e aa e e et e e eaaaeeenaas 276
Generated COPY FUNCHIONSuuiiii e e e e e e e e e e et e e e e e et e e e e et e e eaneeeanees 277
Generated TESE FUNCHIONS ... ciieviiee it e et e e e et e e e et e e e et e e e e et e e e e att e e e eetenaeeeetnaeeees 279

20. Event Handler INEEITACEuiieeii ettt e et s e et n e e et s e e e aea e e e eenen 281
HOW T WWOTKS L.t e e e et e e et e e e et n e e e et e e e e eaen s 281
L[0T (o T U E N L PP 282

21, IMPORT/EXPORT Of TYPES .ittttuiettittieetiii e ettt e e ettt s e e e et s e e e et s e e e eat s e e e ettt e e eett e eeeettnaeeeentnaeeeees 289

Vii

ASNIC

22. ROSE and SNMP MaCIO SUPPOITccvueiiieiiieeiie et e e et e e et e e st e e et e e st e e et s e st e e eaa e e et eesteestnaeeanaeenes 290
ROSE OPERATION and ERRORiiiiiiiiiiiiiiie et e et e et e e et e e 290
SNIMP OBJIECT-TY PE oottt ettt e et e e ettt e e e et e e e e et e e e eett e e e aertaeeeetenaeaaes 293

F NS\ (O iy o G oo L=~ PP 294
Code GENEration ErTOr MESSAgEScivuuiiiieeii e et e et e e e e e e e e et e e et e e et e e e et e e et e e et e eeaneeanaees 294
General RUNTIME EITOr IMESSAgESvvueiiiieeii e et et e e e e e e e e et e e et e e et e e et e e et e e at e e et e eeannas 296
ASN.1-SPECITIC SLALUS IMESSAOES ... evvuiiiteiiieeiai ettt e e et e e e e e e e e et e e et e e et eeat e e et e e et e eett e eanaeannaees 303

viii

List of Tables

16.1. CSN.1 Operations from highest to |oWest PreCedenCe.ooeuuiiiiiiiiiiiei e 246

List of Examples

S 20 01 =1 o o PP 264
S T 117 1 g = o PP 264
S T ol 1010 40 o= o} PPN 265
T84, COMMONLASINIL ..ottt ettt et e e et et e e et et e e et et e e et et e e ea e et e e e e e e et eenaneenataanss 265
S O NIt I oo = PP 268
18.6. The reSUITING ASN.L ...oeiiiiii ettt ettt e et et e e et et e e e e ab e e et rb e e e eaaa s 269

Chapter 1. Overview of ASN1C

The ASN1C code generation tool transates an Abstract Syntax Notation 1 (ASN.1) or XML Schema Definitions
(XSD) source file into computer language source files that allow ASN.1 data to be encoded/decoded. This release of
the compiler includes options to generate code in four different languages: C, C++, C#, or Java. Thismanual discusses
the C and C++ code generation capabilities. The ASN1C Java User’s Manual discusses the Java code generation
capability. The ASN1C C# User’s Manual discusses the C# code generation capability.

Each ASN.1 module that is encountered in an ASN.1 source file results in the generation of the following two types
of C/C++ languagefiles:

1. Aninclude (.h) file containing C/C++ typedefs and classes that represent each of the ASN.1 productions listed in
the ASN.1 sourcefile, and

2. A set of C/C++ source (.c or .cpp) files containing C/C++ encode and decode functions. One encode and decode
function is generated for each ASN.1 production. The number of files generated can be controlled through
command-line options.

Thesefiles, when compiled and linked with the ASN.1 low-level encode/decode function library, provide acomplete
package for working with ASN.1 encoded data.

ASN1C works with the version of ASN.1 specified in ITU-T international standards X.680 through X.683 (ISO/IEC
8824). It generates code for encoding/decoding data in accordance with the following encoding rules:

» Basic Encoding Rules (BER), Distinguished Encoding Rules (DER), or Canonical Encoding Rules (CER) as
published in the ITU-T X.690 and 1SO/IEC 8825-1 standards.

» Packed Encoding Rules (PER) as published in the ITU-T X.691 and ISO/IEC 8825-2 standards. Both aligned and
unaligned variants are supported viaa switch that is set at run-time.

» XML Encoding Rules (XER) as published in the ITU-T X.693 and 1SO/IEC 8825-3 standards.

* Octet Encoding Rules (OER) as published in the ITU-T X.696 and 1 SO/IEC 8825-7:2014 standards. Support isalso
maintained for the older NTCIP 1102:2004 standard.

» JSON Encoding Rules (JER) as published in the ITU-T X.697 and | SO/I EC 8825-8:2018 standards.
* Medical Device Encoding Rules (MDER) as published in the ISO/IEEE 11073 standards.

Additional support for XML is provided in the form of an option to generate an equivalent XML Schema Definitions
(XSD) file for a given ASN.1 specification. Encoders and decoders can then be generated using the -xml option to
format or parse XML documents that conform to this schema. This level of support is closer to the W3C definition
of XML then isthe ITU-T X.693 XER definition. It is possible to compile an XML schema definitions (XSD) file
and generate encoders/decoders that can generate XML in compliance with the schema as well as binary encoders/
encoders that implement the ASN.1 binary encoding rules.

ASNIC is capable of parsing all ASN.1 syntax as defined in the standards. It is capable of parsing advanced syntax
including Information Object Specificationsasdefined inthe ITU-T X.681 standard aswell as Parameterized Typesas
defined in ITU-T X.683. The compiler isalso capable of using table constraints asdefined in ITU-T X.682 to generate
single-step encoders and decoders that can encode or decode multi-part messages in asingle function call.

ASN1C also contains a special command-line option - -asnstd x208 - that allows compilation of deprecated features
from the older X.208 and X.209 standards. These include the ANY data type and unnamed fields in SEQUENCE,
SET, and CHOICE types. The compiler can also parse type syntax from common macro definitions such asthe ROSE
OPERATION and ERROR macros.

Chapter 2. Using the Compiler
Running ASN1C from the Command-line

The ASN1C compiler distribution contains command-line compiler executables as well as a graphical user interface
(GUI) wizard that can aid in the specification of compiler options. This section describes how to run the command-
line version; the next section describes the GUI.

To test if the compiler was successfully installed, enter asnlc with no parameters as follows (note: if you have not
updated your PATH variable, you will need to enter the full pathname):

asnlc
Y ou should observe the following display (or something similar):
ASN1C Conpiler, Version 7.3.x
Copyright (c) 1997-2019 (Objective Systenms, Inc. All R ghts Reserved.
Usage: asnlc <fil ename> <options>

<fil enane> ASN. 1 or XSD source filenane(s). Miltiple filenanes
may be specified. * and ? wldcards are all owed.

| anguage options:

-C generate C code

-C++ generate C++ code

-c++11 generate C++ code that uses C++11 features
-c# generate C# code

-java generate Java code

-cldc generate Java ME CLDC conpati bl e code

-xsd [<fil ename>] generate XML schenma definitions

encodi ng rul e options:

- ber gener ate BER encode/ decode functions

-cer generate CER encode/ decode functions

-der gener ate DER encode/ decode functions

- oer generate COER encode/ decode functions

- coer generate canoni cal CER encode/ decode functions
- nder gener ate MDER encode/ decode functi ons

- per gener ate PER encode/ decode functions

- uper generate unal i gned PER encode/ decode functions
- xer generate XER encode/ decode functions

-xm generate XM encode/ decode functions

-json generate JSON encode/ decode functi ons

-39l 3 generate 3GPP | ayer 3 encode/ decode functions

basi c options:
-asnl [<file>] generate pretty-printed ASN.1 source code
-asnstd <std> set standard to be used for parsing ASN. 1
source file. Possible values - x208, x680, m xed
(default is x680)

Using the Compiler

-client

- conpact

- conpat

-config

<ver si on>

<file>

- depends

-events

generate sanple socket witer client program
generate conpact code

generate code conpatible w th previous

conpil er version. <version> format is

X.X (for example, 5.3)

specify configuration file

conpile main file and dependent | MPORT itens
generate code to invoke SAX-like event handl ers

-gen-fromtenplate <file> generate a programfroma tenplate

-genjrt

key

generate Java _Rtkey.java runtime |icense

-genlic [<fil ename>] generate runtine license file

- genTest

-ht
-1 <dir
-1 ax

ectory>

-l axsynt ax

-1ist
-al |l ow
- noCont

anbi g-t ags
ai ni ng

- nodat est anp

- nodecode

- noencode

- nol ndef Len
-noOhj ect Types
- noOpenkExt

- not ypes
-noxm ns

-0 <dir
-libdir
-bindir
-objdir
-prjdir

ectory>
<di rectory>
<di rectory>
<di rectory>
<di rectory>

[<filename>] generate sanple test functions

generate HTM. marked-up version of ASN. 1

set inport file directory

do not generate constraint checks in code

do not do a thorough ASN. 1 syntax check

generate listing

al | ow anbi guous tags in input specifications

do not generate inline type for CONTAI NI NG <t ype>

do not put date/time stanmp in generated files

do not generate decode functions

do not generate encode functions

do not generate indefinite length tests

do not gen types for itenms enbedded in info objects

do not generate open extension el ements

do not generate type definitions

do not generate XM. nanespaces for ASN. 1 nodul es

set output file directory (also '-srcdir <dir>")

set output libraries directory

set output binary directory

set output object directory

set the output project directory; this automatically
sets sane defaults for the library directory
(lib), binary directory (bin), source directory
(src), and object directory (obj)

- par am <name>=<val ue> create types from paramtypes using given val ue
-pdu <type>

-usepdu <type>

-print
-prifm

[<fil enane>]

designate <type> to be a Protocol Data Unit (PDU)
(<type> may be "all" to select all type definitions)
specify a Protocol Data Unit (PDU) type for which
sampl e reader/witer prograns and test code has to
be generated

generate print functions

details | bracetext format of output generated by print

-shor t nanes

-strict

- synt axcheck

-r eader
-server
-trace

- [no] Uni queNames

-war ni ngs

-witer

reduce the I ength of conpiler generated names
strict standards conformance and constraint checking
do syntax check only (no code generation)
gener ate sanpl e reader program
gener ate sanpl e socket reader server program
add trace diag nsgs to generated code
resol ve nane cl ashes by generating uni que nanes
def aul t =on, use -noUni queNanes to di sable
out put conpil er warni ng messages
generate sanple witer program

Using the Compiler

C/ C++ code generation options:

-array
-arraySi ze <size>

use arrays for SEQUENCE OF/ SET OF types
specify the size of the array variable

-conpare [<fil enane>] generate conparison functions

-copy [<fil enanme>]
-cppNs <nanespace>

generate copy functions
add a C++ nanespace to generated code (C++ only)

-default-int-type <val ue> specify the default integer type for

-dynam cArray

-1 i nkedLi st

-hfile <fil enane>
-cfile <fil enane>

- genBi t Macr os

- genFree

- hdr Guar dPf x <pf x>

-maxcfiles

-max!l i nes <nunp

-noBi t Str 32

- noEnumConvert

-nolnit

-oh <directory>

- per | ndef

- perPadBi t Strings

unconstrained integers: {int8, uint8, int1l6,
uint16, int32, uint32, int64, uint64, string}
use dynam c arrays for SEQUENCE OF/ SET OF types
use linked-1ists for SEQUENCE OF/ SET OF types
C or C++ header (.h) filenane
(default is <ASN. 1 Modul e Nane>. h)
C or C++ source (.c or .cpp) filenane
(default is <ASN. 1 Modul e Nane>. c)
generate nanmed bit set, clear, test nmacros
generate nenory free functions for all types
add prefix to header guard #defines in .h files
generate separate file for each function
set limt of number of lines per source file
(default value is 50000)
do not use BitStr32 type for small bit strings
do not generate conversion functions for enunerated
items (BER/ CER/ DER/ PER only)
do not generate initialization functions
set output directory for header files
add support for PER indefinite (fragmented) |engths
pad bit strings that contain other types to octet
boundary

-prtToStrm [<fil ename>] generate print-to-stream functions
-hexStrFmt <hexAsciiDunp | formattedHexDunp | hexstring>

-static
-stream
-strict-size

-t abl e- uni ons
-use-enumtypes

- X64

change the output format for hexadeci mal strings
fromthe default (hexAsciiDunp) to renove ASCI

out put (formattedHexDunp) or to use a single line
(hexstring)

generate static elenments (not pointers)

generate stream based encode/ decode functi ons
strictly interpret size constraints

generate union structures for table constraints

use generated enumtypes in code instead of integers
generate code for 64-bit architectures

C/ C++ makefil e/ project options:
-genhMake [<fil enane>] generate makefile to conpile generated code
-genhMakeDLL [<fil enane>] generate makefile to build DLL
-genMakelLi b [<fil enane>] generate makefile to build static library

-make [<fil enanme>]

same as -genMake as descri bed above.

-nmake [<fil enane>] generate Wndows nnake file (sane as -genhMake -w32)

-vcproj

- bui | ddl |
-dll, -usedll
-m

[<version>] generate Visual Studio project files.

<version> is 2017, 2015 (default), 2013, 2012, 2010,
2008, 2005, 2003, vc6 (Wndows only).

generate nmakefile/project to build DLL

generate nakefile/project to use DLL's

generate nakefile/project to use nultithreaded |ibs

Using the Compiler

- W32 generate VS nmake file for Wndows 32-bit O S
- w64 generate VS nmake file for Wndows 64-bit O S
- spaceopt add conpil ation setings for space optim zation
-ti meopt add conpilation setings for tine optimzation

Java options:

- conpare generate equal s and hashcode net hods
-copy generate cl one nethods
-dirs out put Java code to nodul e name dirs
-genbui I d generate build script
- genant generate ant build.xm script
- genmaven generate Maven pom xm
-gengradl e generate Gradle build.gradle
- genj sour ces generate <modul ename>.nk for list of java files
- get set generate get/set nethods and protected nmenber vars
-noevent s di sabl e generation of event handl er code. Also

di sabl es el enent tracking for error handling.
- pkgnhane <t ext> Java package name
- pkgpf x <text> Java package prefix
-tabl es generate table constraint functions
- gennet adat a generate nethods for accessing ASN. 1 neta data

i ke val ue range constraints and optional elenments
- sax generate code using the old SAX XM. parser API
-xm pul | generate code using Xm Pull XM parser APl (default)
- st ax generate code using St AX XM parser API

C# options:

- conpare generate Equal s and Hashcode net hods
-nspfx <text> C# namespace prefix
-nanmespace <text> C# namespace nane
-dirs out put C# code to nmodul e nanme dirs

-csfile <filename> generate one .cs file or one per nodule (*.cs)

-cskeyfile <name> have generated makefiles or Visual Studio project
files sign the assenbly with the indicated strongly
naned key (.snk) file

- gencssour ces gener ate <modul ename>.nk for list of C# files
- genhhake generate nakefile to build generated code
-tabl es generate table constraint functions

-vcproj [version] generate Visual Studio C# project files.
[version] is 2012, 2010 (default), 2008, 2005.
(W ndows only)

- gennet adat a generate nethods for accessing ASN. 1 netadata such
as val ue range constraints and optional elenents
- sax generate code using the old SAX XM. parser API

(default is to use Xm Reader XM. parser API)

XSD options:
-appinfo [<itens>] generate applnfo for ASN.1 itens
<itens> can be tags, enum and/or ext
ex: -appinfo tags, enum ext
default = all if <items> not given
-attrs [<itens>] generate non-native attributes for <items>
<itens> is same as for -appinfo
-targetns [<nanespace>] Specify target nanmespace

Using the Compiler

<nanespace> i s nanespace URI, if not given
no target nanmespace declaration is added

-useAsnlXsd reference types in asnl.xsd schem

i cense options:
-li ckey <key> set |icense key val ue
@file> read |icense key value fromfile
-1 i cdeact deactivate existing |icense
-licinstall <file>install license file

To use the compiler, at aminimum, an ASN.1 or XSD source file must be provided. The source file specification can
be a full pathname or only what is necessary to qualify the file. If directory information is not provided, the user's
current default directory is assumed. If afile extension is not provided, the default extension ".asn" is appended to
the name. Multiple source filenames may be specified on the command line to compile a set of files. The wildcard
characters ‘*’ and ‘%’ are also allowed in source filenames (for example, the command asnlc *. asncode> will
compileall ASN.1filesinthe current working directory). It isalso possibleto providealist of sourcefilesby adding all
file specifications to atext file, one per ling, and then providing the path to the text file prefixed with an '@’ character.

The source file(s) must contain ASN.1 productions that define ASN.1 types and/or value specifications. This file
must strictly adhere to the syntax specified in ASN.1 standard ITU-T X.680. The -asnstd X208 command-line option
should be used to parse files based on the 1990 ASN.1 standard (x.208) or that contain references to ROSE macro
specifications.

The following table lists all of the command line options and what they are used for. The options are shown in
alphabetical order. Notethat the Javaand C# options are not shown here. They are shown intheir respective documents.

Option Argument Description

-3013 None This option is used to generate code for encoding and
decoding 3GPP Layer 3 messages. Support is primarily
provided for Non-Access Stratum (NAS) messagetypesas
defined in 3GPP TS 24.007, 24.008, 24.301 (LTE-NAS),
and 24.501 (NAS Protocol for 5GS). As of this release,
only the C language is supported.

-alow-ambig-tags None This option suppresses the check that is done for
ambiguous tags within a SEQUENCE or SET type within
a specification. Special code is generated for the decoder
that assigns values to ambiguous elements within a SET
in much the same way as would be done if the elements
were declared to be in a SEQUENCE. This option used to
be called -noAmbigTag.

-applnfo <items> This option only has meaning when generating an XML
schema definitions (X SD) file using the -xsd option.

It instructs the compiler to generate an XSD application
information section (<appinfo>) for certain ASN.1-only
items. The items are specified as a comma-delimited list.
Valid values for items are tags, enum, and ext.

<items> is an optional parameter. If it is not specified,
it is assumed that application information should be
produced for al three item classes: ASN.1 tags, ASN.1
enumerations, and extended elements.

Using the Compiler

Option Argument Description

-array none This option specifies that an array type will be used for
SEQUENCE OF/SET OF constructs.

-arraySize <size> This option specifies the default size of static array

variables. Thiswill be overridden by the value of a SIZE
constraint on the given type, if it exists.

-asnl <filename> Thisoption causes pretty-printed ASN.1 to be generated to
the given file name or to stdout if no filename was given.
Besides the obvious use of providing neatly formatted
ASN.1 source code, the option isal so useful for producing
ASN.1 source code from XML schema document (XSD)
files as well as producing trimmed specifications when
<include> or <exclude> configuration directives are used.

-asnstd x208 This option selects the version of ASN.1 syntax to be
X680 parsed. ‘x680" (the default) refers to modern ASN.1 as
mixed specified in the ITU-T X.680-X.690 series of standards.

‘x208' refers to the now deprecated X.208 and X.209
standards. This syntax alowed the ANY construct aswell
as unnamed fields in SEQUENCE, SET, and CHOICE
congtructs. This option aso alows for parsing and
generation of code for ROSE OPERATION and ERROR
macros and SNMP OBJECTTY PE macros. The ‘mixed’
option is used to specify a source file that contains
modules with both X.208 and X.680 based syntax.

-attrs <items> This option only has meaning when generating an XML
schema definitions (X SD) file using the -xsd option.

It instructs the compiler to generate non-native attributes
for certain ASN.1-only items that cannot be expressed in
XSD. The items are specified as a comma-delimited list.
Valid values for items are tags, enum, and ext.

<items> is an optional parameter. If it is not specified,
it is assumed that application information should be
produced for al three item classes: ASN.1 tags, ASN.1
enumerations, and extended elements.

-ber None This option is used to generate encode/decode functions
that implement the Basic Encoding Rules (BER) as
specified in the X.690 ASN.1 standard.

-bindir <directory> This option is used in conjunction with the -genMake
option to specify the name of the binary executable
directory to be added to the makefile. Linked executable
programs will be output to this directory.

-bitMacros None This option is used to generate additional macros to set,
clear, and test named bits in BIT STRING constructs.
By default, only bit number constants are generated. Bit
macros provide slightly better performance because mask
values required to do the operations are computed at
compile time rather than runtime.

-C None Generate C source code.

Using the Compiler

Option Argument Description

-C# or -csharp None Generate C# source code. Seethe ASN1C C# User’ sGuide
for more information and options for generating C# code.

-ct+ or -cpp None Generate C++ source code.

-c++11 or -cppll None Generate code that uses C++11 features. Thisincludesthe

useof std::string for character strings, std::list for lists, and
std::array for static arrays. For more information, refer to
the sections on type mappingsfor SEQUENCE OF and for
character strings. See also the section on Considerations
When Using C++ Sandard Library features.

-cer None This option is used to generate encode/decode functions
that implement the Canonical Encoding Rules (CER) as
specified in the X.690 ASN.1 standard.

-cfile [<filename>] This option allows the specification of a C or C++ source
(.c or .cpp) file to which all of the generated encode/
decode functions will be written. If not specified, the
default isto writeto aseriesof .c or .cpp files based on the
ASN.1 module name(s) of the documents being compiled.

-client [<filename>] This option causes a simple client sample program to
be generated that will connect to a server, encode and
send a message, and then wait for a response. Once the
response is received, it will be printed and the program
will terminate.

The template code that is used for the server is located
in the server.cpp in the templates directory and may be
modified to produce different behavior.

Note that as of this release, only C++ client programs are
supported.

-coer [<standard>] This option is used to generate encode/decode functions
that implement the Octet Encoding Rules (OER) such that
encodings are canonical and decodings are expected to be
canonical. If no argument is specified, the x696 standard
(ITU-T X.696 / ISO/IEC 8825-7:2014) will be used. If
"ntcip" is specified as an argument, then the NTCPIP
standard will be used. The -oer option generates OER
functions without the canonical enforcement.

-compact None This option is used to generate more compact code at
the expense of some constraint and error checking. This
is an optimization option that should be used after an
application is thoroughly tested.

-compat <versionNumber> Generate code compatible with an older version of
ASN1C. The compiler will attempt to generate code more
closely aligned with the given previous release of the
compiler.

<versionNumber> is specified as x.x (for example, -
compat 5.2)

Using the Compiler

Option

Argument

Description

-config

<filename>

Thisoption is used to specify the name of afile containing
configuration information for the source file being parsed.
A full discussion of the contents of a configuration fileis
provided in the Compiler Configuration File section.

-cppns

<namespace>

This option is used to add a C++ namespace hame to
generated C++ files.

-default-int-type

<value>

This option is used to specify the default integer type for
unconstrained integers. Values may be: int8, uint8, int16,
uintle, int32, uint32, inté4, uint64, and string.

-depends

None

This option is used to generate a full set of header and
source files that contain only the productions in the main
file being compiled and items those productions depend
on from IMPORT files.

-der

None

This option is used to generate encode/decode functions
that implement the Distinguished Encoding Rules (DER)
as specified in the X.690 ASN.1 standard.

el

None

When used in conjunction with the -genMake command-
line option, the generated makefile uses dynamically-
linked libraries (DLLsin Windows, or .so filesin UNIX)
instead of statically-linked libraries.

-dynamicArray

none

This option specifies that a dynamic array type is to be
used for SEQUENCE OF/SET OF constructs.

-gen-from-template

<filename>

This option is used to generate an application program
from atemplatefile. A template fileisaprogram file with
placeholders for items generated by the compiler such as
include files and type names.

-genbuild

None

This option is used to generate a build script when
producing Java source code. The generated build script is
either abatch file (Windows) or a shell script (UNIX).

-genCompare
-compare

[<filename>]

This option allows the specification of a C or C++ source
(.cor .cpp) fileto which generated compare functionswill
be written. Compare functions allow two variables of a
given ASN.1 type to be compared for equality.

The <filename> argument to this option is optional.
If not specified, the functions will be written to
<modulename>Compare.c where <modulename> is the
name of the module from the ASN.1 sourcefile.

-genCopy
-copy

[<filename>]

This option allows the specification of a C or C++ source
(.c or .cpp) file to which generated copy functions will
be written. Copy functions allow a copy to be made of
an ASN1C generated variable. For C++, they cause copy
constructors and assignment operators to be added to
generated classes.

The <filename> argument to this option is optional.
If not specified, the functions will be written to

Using the Compiler

Option

Argument

Description

<modul ename>Copy.c where <modulename> isthe name
of the module from the ASN.1 sourcefile.

-genFree

None

This option instructs the compiler to generate a memory
free function for each ASN.1 production. Normally,
memory isfreed within ASN1C by using the rtixMemFree
run-time function to free all memory at once that is held
by acontext. Generated free functions allow finer grained
control over memory freeing by just allowing the memory
held for specific objects to be freed.

-genMake

[<filename>]

This option instructs the compiler to generate a portable
makefile for compiling generated C or C++ code. If used
with the -w32 command-line option, a makefile that is
compatiblewith the Microsoft Visual Studio nmake utility
is generated; otherwise, a GNU-compatible makefile is
generated.

Note that the -nmake option may be used instead of
the -make -w32 combination to produce a Visual Studio
makefile.

-genMakeDL L

[<filename>]

This option instructs the compiler to generate a portable
makefile for compiling the generated C or C++ code into
aDynamic Link Library (DLL).

-genMakelLib

[<filename>]

This option instructs the compiler to generate a portable
makefile for compiling the generated C or C++ code into
adtatic library file.

-genPrint
-print

[<filename>]

This option allows the specification of a C or C++ source
(.c or .cpp) file to which generated print functions will be
written. Print functions are debug functions that allow the
contents of generated type variablesto bewritten to stdout.

The <filename> argument to this option is optional.
If not specified, the print functions will be written to
<modul ename>Print.c where <modulename> is the name
of the module from the ASN.1 sourcefile.

-genPrtToStr
-prtToStr

[<filename>]

This option dlows the specification of a C or C++
source (.c or .cpp) fileto which generated " print-to-string"
functions will be written. "Print-to-string" functions are
similar to print functions except that the output is written
toauser-provided text buffer instead of stdout. Thismakes
it possible for the use to display the results on different
output devices (for example, in atext window).

The <filename> argument to this option is optional.
If not specified, the functions will be written to
<modul ename>Print.c where <modulename> is the name
of the module from the ASN.1 sourcefile.

-genPrtToStrm
-prtToStrm

[<filename>]

This option allows the specification of a C or C++ source
(.c or .cpp) file to which generated "print-to-stream"
functions will be written. "Print-to-stream” functions are
similar to print functions except that the output is written

10

Using the Compiler

Option

Argument

Description

to auser-provided stream instead of stdout. The stream is
in the form of an output callback function that can be set
within the run-time context making it possible to redirect
output to any type of device.

The <filename> argument to this option is optional.
If not specified, the functions will be written to
<modulename>Print.c where <modulename> is the name
of the module from the ASN.1 sourcefile.

-genTables
-tables

[<filename>]

This option is used to generate additional code for the
handling of table constraints as defined in the X.682
standard. See the Generated Information Object Table
Structures section for additional details on the type
of code generated to support table constraints. Note:
An aternaitve option for C/C++ is -table-unions which
generates union structures for table constraints. These are
generally easier to work with then the legacy void pointer
approach used in this option.

-genTest

[<filename>]

This option allows the specification of a C or C++ source
(.cor .cpp) fileto which generated "test” functions will be
written. "Test" functions are used to populate an instance
of a generated PDU type variable with random test data.
This instance can then be used in an encode function call
to test the encoder. Another advantage of these functions
is that they can act as templates for writing your own
population functions.

The <filename> argument to this option is optional.
If not specified, the functions will be written to
<modulename>Test.c where <modulename> is the name
of the module from the ASN.1 sourcefile.

-hdrGuardPrefix

[<prefix>]

This option allows the specification of a prefix that will
be used in the generated #defines that are added to header
files to make sure they are only included once.

-hexStrFmt

hexAsciiDump
formattedHexDump
hexstring

Setting the hex string format allows users to change
how OCTET STRINGs and uninterpreted open types
are printed. The default behavior is to output a
formatted dump with hex and printable ASCII characters
side-by-side: this is the hexAscii Dunp option.
f or mat t edHexDunp removes the ASCIlI component,
and hexst ri ng removes additional formatting, so that
the hex content is printed in asingle string prefixed by Ox.

-hfile

[<filename>]

This option allows the specification of a header (.h)
file to which al of the generated typedefs and function
prototypes will be written. If not specified, the default is
<modulename>.h where <modulename> is the name of
the module from the ASN.1 source file. If the specified
file doesn't end in .h, the .h extension will be added.

-html

None

Thisoption is used to generated HTML markup for every
compiled ASN.1 file. This markup contains hyperlinks to

11

Using the Compiler

Option

Argument

Description

all referenced items within the specifications. One HTML
fileisgenerated for each corresponding ASN.1 sourcefile.

<directory>

Thisoption is used to specify adirectory that the compiler
will search for ASN.1 source files for IMPORT items.
Multiple - qualifiers can be used to specify multiple
directories to search. It is aso possible to provide a list
of import directories by adding all directory specifications
to atext file, one per line, and then providing the path to
the text file prefixed with an '@' character (for example,
-l @incdirs.txt).

-java

None

Generate Java source code. See the ASN1C Java User’s
Guide for more information on Java code generation.

-json

None

This option is used to generate encode/decode functions
that implement the Javascript Object Notation (JSON)
Encoding Rules (JER) as specified in the X.697 ASN.1
standard.

None

This option instructs the compiler to not generate code to
check constraints. When used in conjunction with the -
compact option, it produces the smallest code base for a
given ASN.1 specification.

-laxsyntax

None

This option instructs the compiler to not do a thorough
syntax check when compiling a specification and to
generate code even if the specification contains non-fatal
syntax errors. Use of the code generated in this case can
have unpredictable results; however, if a user knows that
certain parts of a specification are not going to be used,
this option can save time.

-libdlir

<directory>

This option is used in conjunction with the -genMake
option to specify the name of the library directory to be
added to the makefile.

-licdeact

None

Thisoption is used to deactivate any existing licenses that
may be in place. This includes the deletion of al license
files and other artifcats.

-licinstall

<filename>

This option is used to install a given osydlic.txt or RLM
license file. It will ensure any old licenses are first
deactivated before copying the file to the proper location.
Thisistherecommended way toinstall alicensefilerather
than copying it to one of the known seatch paths.

-lickey

<key-value> or @<file>

This option is used to enter a license key value that was
provided to the user to enable the compiler for either
evaluation or permanent use. The @<file> option can be
used to read the key value from atext file.

-linkedL st

none

This option specifies that a linked-list type is to be used
for SEQUENCE OF/SET OF constructs.

-list

None

Generate listing. This will dump the source code to the
standard output device asiit is parsed. This can be useful
for finding parse errors.

12

Using the Compiler

Option

Argument

Description

-maxcfiles

None

Maximize number of generated C files. This option
instructsthe compiler to generate aseparate .c filefor each
generated C function. In the case of C++, a separate .cpp
file is generated for each control class, type, and C
function. This is a space optimization option - it can lead
to smaller executable sizes by allowing the linker to only
link in the required program maodule object files.

-maxlines

<number>

This option is used to specify the maximum number
of lines per generated .c or .cpp file. If this number is
exceeded, anew fileisstarted witha"_n" suffix where"n"
is a sequential number. The default value if not specified
is 50,000 lines which will prevent the VC++ "Maximum
line numbers exceeded" warning that is common when
compiling large ASN.1 sourcefiles.

Note that this number is approximate - the next file
will not be started until this number is exceeded and
the compilation unit that is currently being generated is
complete.

-mder

None

This option is used to generate functions that implement
the Medical Device Encoding Rules (MDER) as specified
in the IEEE/ISO 11073 standard.

-mt

None

When used in conjunction with the -genMake command-
line option, the generated makefile uses multi-threaded
libraries.

-nmake

[<filename>]

This option instructs the compiler to generate a Visual
Studio compatible makefile. It is equivalent to using the -
genMake -w32 combination of command-line options.

-noContaining

None

This option suppresses the generation of inline code to
support the CONTAINING keyword. Instead, a normal
OCTET STRING or BIT STRING typeisinserted aswas
donein previous ASN1C versions.

-nodecode

None

Thisoption suppressesthe generation of decode functions.

-noencode

None

This option suppresses the generation of encode functions.

-nolndefLen

None

Thisoptioninstructsthe compiler to omit indefinite length
tests in generated decode functions. These tests result in
the generation of a large amount of code. If it is known
that an application only uses definite length encoding, this
option can result in amuch smaller code base size.

-nolnit

None

This option is used to suppress the generation of
initialization functions. A variable of agenerated structure
can always be initidized by memset’ing the variable to
zero. However, thisisnot usually the most efficient way to
initializeavariable becauseif it containslarge byte arrays,
a significant amount of processing is required to set all
bytes to zero (and they don’t need to be). Initialization
functions provide asmart alternative to memset’ing in that
only what needs to be set to zero actualy is.

13

Using the Compiler

Option Argument Description

Note that previous versions of ASN1C did not generate
initialization functions by default. The -genlinit switch has
been deprecated in favor of -nolnit.

-noEnumConvert None This option suppresses the generation of utility functions
in C and C++ that assist in converting enumerated values
to strings and vice versa. XER and XML encodings are
unaffected by this option, since conversions are necessary
for encoding and decoding.

-noObjectTypes None This option suppresses the generation of application
language types corresponding to ASN.1 types embedded
within information object definitions.

-noOpenExt None This option suppresses addition of an open extension
element (extEleml) in constructsthat contain extensibility
markers. The purpose of the element is to collect any
unknown items in a message. If an application does not
care about these unknown items, it can use this option to
reduce the size of the generated code.

-notypes None This options suppresses the generation of type definitions.
It is used in conjunction with the -events options to
generate pure parser functions.

-noxmins None This option suppresses the insertion of XML namespace
entries in generated XML documents. This includes
xml ns attributes and prefixed names.

-nouniquenames None This option suppresses the automatic generation of unique
names to resolve name clashes in the generated code.
Name clashes can occur, for example, if two modules are
being compiled that contain a production with the same
name. A unique name is generated by prepending the
module name to one of the productions to form a name of
the form <module>_<name>.

Note that name collisions can also be manually resolved
by using the typePrefix, enumPrefix, and valuePrefix
configuration items (see the Compiler Configuration File
section for more details).

Previous versions of ASN1C did not generate unique
names by default. The compiler option -uniquenames has
been deprecated in favor of -nouniquenames.

-0 <directory> This option is used to specify the name of a directory to
which al of the generated files will be written.

-objdir <directory> This option is used in conjunction with the -genMake
option to specify the name of the object file directory to be
added to the makefile. Compiled object fileswill be output
to this directory.

-oer <standard> This option is used to generate encode/decode functions
that implement the Octet Encoding Rules (OER). If no
argument is specified, the x696 standard will be used.
If "ntcip" is specified as an argument, then the NTCIP

14

Using the Compiler

Option Argument Description
standard will be used. Also see the description of the -coer
option.

-oh <directory> This option is used to specify the name of a directory to

which only the generated header files (*.h) will bewritten.

-param <name>=<value> This option is used to instantiate all parameterized types
within the ASN.1 modules that are being compiled with
the given parameter value. In this declaration, <name>
refers to the dummy reference in a parameterized type
definition and <value> refersto an actual value.

-pdu <typeName> Designate given type name to be a "Protocol Definition
Unit" (PDU) type. Thiswill cause a C++ control classto
be generated for the given type. By default, PDU typesare
determined to be typesthat are not referenced by any other
types within a module. This option allows that behavior
to be overridden.

The "al" keyword may be specified for <typeName> to
indicate that al productions within an ASN.1 module
should be treated as PDU types.

-per None This option is used to generate encode/decode functions
that implement the Packed Encoding Rules (PER) as
specified in the ASN.1 standards.

-perindef None This option is used to generate encode/decode functions
that implement the Packed Encoding Rules (PER) as
specified in the ASN.1 standards including support for
indefinite (fragmented) lengths.

-pridir <directory> Thisoptionisused to create an automatic project directory
structure. If no other directories are specified on the
command line, sane defaults are chosen for generated
libraries (lib), binaries (bin), sources (src), and objects
(obj). This may be useful for those who want a well-
defined logical structure to their output without code
generation and build artifacts in the top-level directory.

-prtfmt bracetext Sets the print format for generated print functions. The
details details option causesaline-by-linedisplay of all generated
fieldsin a generated structure to be printed. The bracetext
option causes a more concise printout showing only the
relevant fields in a C-like brace format. As of release
version 6.0, bractext isthe default (details was the default
or only option in previous versions).

-reader None This option causes a simple reader sample program to be
generated that will read encoded data from afile and then
decode and print the contents.

-server [<filename>] This option causes a simple server sample program to be
generated. This program will listen for a connection on
a given port. When a connection request is received, the
connection will be established and the program will read
a complete message from the client. It will then send a
response to the client and terminate.

15

Using the Compiler

Option Argument Description

The template code that is used for the server is located
in the server.cpp in the templates directory and may be
modified to produce different behavior.

Note that as of thisrelease, only C++ server programs are
supported.

-shortnames None Generate a shorter form of an element name for a deeply
nested production. By default, all intermediate names are
used to form names for elements in nested types. This
can lead to very long names for deeply nested types.
This option causes only the production name and the last
element name to be used to form a generated type name.

-spaceopt None Causes space optimization options to be included in the
generated makefile.
-static None This has the same effect as specifying the global

<storage> dtatic </storage> configuration item. The
compiler will insert static elements instead of pointer
variablesin some generated structures.

-stream None This option is used to generate stream-based encoders/
decoders instead of memory buffer based. This makes it
possible to encode directly to or decode directly from a
source or sink such as afile or socket. In the case of BER,
it will also cause forward encoders to be generated which
will use indefinite lengths for all constructed elementsin

amessage.

Notethat stream and memory-buffer based encode/decode
functions cannot be used/combined in any way. The two
are mutually exclusive. If the -stream option is selected,
then only stream-based run-time functions can be used

with the generated code.

-strict None This option is used to enable strict checking for
conformance to ASN.1 standards and validation of
constraints.

-strict-size None This option causes strict interpretation of size constraints

to be enabled. This may result in the generation of
more optimized code as unnecessary size variable holders
are eiminated. For example, a declaration of OCTET
STRING (SIZE(10)) will result in the generation of a 10
byte static array rather than a structure with a count field
and array.

-syntaxcheck None This option is used to do a syntax check of the ASN.1
source files only. No code is generated.

-table-unions None This option is used to generate union structures for table
constraints in C/C++ instead of void pointers as is done
when the -tables option isused. These are generally easier
to use asthey present all optionsin a user-friendly way.

-targetns <namespace> This option only has meaning when generating an XML
schema definitions (XSD) file using the -xsd option.

16

Using the Compiler

Option Argument Description

It alows gpecification of a target namespace.
<namespace> is a namespace URI; if it is not provided,
no target namespace declaration is added to the generated

XSD file.

-timeopt None Causes time optimization options to be included in the
generated makefile.

-trace None This option is used to tell the compiler to add trace

diagnostic messages to the generated code. These
messages cause print statements to be added to the
generated code which print entry and exit information
for the generated functions; this can help with isolating
encode/decode problems to a given function. This option
also enableshit tracing for PER messages. PER hit tracing
helps identify how the PER encoder/decoder is treating
all of the bitsin an encoding. This option is a debugging
option that should only be used when debugging, since it
adversely affects performance.

-uper None This option is used to specify the generation of code to
support the unaligend variant of the Packed Encoding
Rules (PER). This provides for dightly more compact
code than the -per option because alignment checks are
removed from the generated code.

-use-enum-types None This option is used to specify that generated enumerated
types are to be used directly in the code as opposed to
integer types. The advantages of integer types are @) they
are of a known size, and b) they can store unknown
identifiersthat may be received for extensible enumerated
types. However, the direct use of enumerated types makes
it easier to inspect variables using the debugger in various
IDE's.

-usepdu <PDU type name> This option is used to specify the name of the Protocol
Data Unit (PDU) type to be used in generated reader and
writer programs.

-VCproj This option is used to generate Visual C++- or Visual
vc6 Studio-compatible project files to compile generated
2003 source code. This is a Windows-only option. By passing
2005 one of thelisted years, the compiler will generate a project
2008 that links against libraries provided for those versions of
2010 Visual Studio or Visual C++. For example, specifying
2012 2010 will generate a project that links against libraries in
2013 the* _vs2010 directory. Not specifying ayear will cause
2015 the compiler to link against libraries compiled for Visual
2017 Studio 2015.

A custom build ruleis generated that del etes the generated
source files and then invokes ASN1C to regenerate them
when arebuild isdone. Doing aclean operation will cause
the generated source filesto be del eted; asubsequent build
will regenerate them.

17

Using the Compiler

Option Argument Description

For Visual C++ 6.0 project filesyou can seethisbuild rule
by locating the first ASN.1 file under the Source Files for
the project, right clicking it, choosing Settings... and then
choosing the Custom Build tab.

For al other Visual Studio project files the procedure to
see the custom rule is very similar to that for Visual C+
+ 6.0, except that you choose Properties when you right
click on the first ASN.1 file, and then click on Custom
Build Step or Custom Build Tool on the left.

-w32 None This option is used with makefile and/or Visual Studio
project generation to indicate the generated file is to be
used on a Windows 32-hit system. In the case of makefile
generation, thiswill cause a makefile to be generated that
is compatible with the Visual Studio nmake utility.

-w64 None This option is similar to the -w32 option documented
above except that it specifies a Windows 64-bit system.

-warnings None Output information on compiler generated warnings.

-writer None This option causes a simple writer sample program to be
generated that will encode a binary message and write it
to afile.

-X64 None Generate C/C++ code that is compatible with 64-bit

architectures. Themain changeisthe use of thesize ttype
(abstracted to OSSIZE) for size-related variables. Note
that it is safe to use this option on 32-bit systems as well.

-xer None This option is used to generate encode/decode functions
that implement the XML Encoding Rules (XER) as
specified in the X.693 ASN.1 standard. The -xsd option
can be used in conjunction with this option to generate a
schema describing the XML format.

-xml None This option is used to generate encode/decode functions
that encode/ decode data in an XML format that is
more closely aligned with World-Wide Web Consortium
(W3C) XML schema. The -xsd option can be used
in conjunction with this option to generate a schema
describing the XML format.

-xsd [<filename>] This option is used to generate an equivalent XML
Schema Definition (XSD) for each of the ASN.1
productions in the ASN.1 source file. The definitions are
written to the given filename or to <modulename>.xsd
if the filename argument is not provided. There are
two supported mappings from ASN.1 to XSD, one
corresponding to the -xml option and one corresponding
tothe-xer option. Thedefault isto follow the -xml variant.
If the -xer option is given, then that variant is followed.

18

Using the Compiler

Compiling and Linking Generated Code

C/C++ source code generated by the compiler can be compiled using any ANSI standard C or C++ compiler. The only
additional option that must be set isthe inclusion of the ASN.1 C/C++ header file include directory with the— option.

When linking a program with compiler-generated code, it is necessary to include the ASN.1 run-time libraries. It is
necessary to include at least one of the encoding ruleslibraries (asnlber, asnlper, etc.) aswell asthe common run-time
functions library (asnirt). See the ASN1C C/C++ Run-time Reference Manual for further details on these libraries.

For static linking on Windows systems, the name of thelibrary filesareasnlber_a.lib, asnlper_a.lib, or asnixer_a.lib
for BER/DER/CER, PER, XER, or XML respectively, and asnlrt_a.lib for the common run-time components. On
UNIX/Linux, thelibrary names arelibasnlber.a, libasnlper.a, libasnlxer.a, libasnixml.a and libasnirt.a. Thelibrary
filesarelocated in the lib subdirectory. For UNIX, the —L switch should be used to point to the subdirectory path and -
lasnlber, -lasnlper, -lasnlxer, -lasnlxml and/or -lasnlrt used to link with the libraries. For Windows, the -LIBPATH
switch should be used to specify the library path.

There are several other variations of the C/C++ run-time library files for Windows. The following table summarizes
what options were used to build each of these variations:

Library Files Description

Static libraries. These are built without the -MD (dynamic link libraries)
option. They may be used to produce statically linked application programs.

asnlber _a.lib
asnljson_a.lib
asninder _a.lib
asnloer _a.lib
asnlper _a.lib
asnilrt_a.lib
asnlrt3gpp_a.lib
asnlxer _a.lib
asnixm a.lib

asnlber.lib
asnljson.lib
asnlnder.lib
asnloer.lib
asnlper.lib
asnlrt.lib
asnlrt3gpp.lib
asnlxer.lib
asnlxm .lib

DLL libraries. Theseareused to link against the DLL versions of the run-time
libraries (for example, asnlrt.dll, etc.). Note that the version of theselibraries
in the SDK package have a 'd' suffix after the library name to denote that
these are the debug version of the libraries. The deployment rel ease packages
contain libraries without the 'd" suffix (i.e. non-debug libraries).

asnlbernd_a.lib
asnlj sonnd_a. |
asnindernd_a. |
asnloernd_a.lib
asnlpernd_a.lib
asnirtnd_a.lib

b
b

asnlxernd_a. |
I

ib
asnixm nd_a.lib

asnlrt3gppnd_a.lib

DLL-ready multi-threaded libraries. These libraries were built with the—-MD
option. They allow linking additional object modulesin with the ASN1C run-
time modules to produce larger DLLs.

For dynamic linking on UNIX/Linux, ashared object version of each run-timelibrary isincludedin thelib subdirectory.
Thisfile typically has the extension .so (for shared object) or .dl (for shared library). See the documentation for your
UNIX compiler to determine how to link using these files.

19

Using the Compiler

See the makefile in any of the sample subdirectories of the distribution for an example of what must be included to
build a program using generated source code.

Porting Run-time Code to Other Platforms

The run-time source version of the compiler includes ANSI-standard source code for the base run-time libraries. This
code can be used to build binary versions of the run-time librariesfor other operating environments. Included with the
source code is a portable makefile that can be used to build the libraries on the target platform with minimal changes.
All platform-specific items are isolated in the platform.mk file in the root directory of the installation.

The procedure to port the run-time code to a different platform is as follows (note: this assumes common UNIX or
GNU compilation utilities are in place on the target platform).

1. Create a directory tree containing a root directory (the name does not matter) and lib, src, rt*src, and build_lib
subdirectories (note: in these definitions, * isawildcard character indicating there are multiple directories matching
this pattern). The tree should be as follows:

lib rtsrc STC build lib

rthersre

2. Copy thefilesending in extension ".mk" from the root directory of the installation to the root directory of the target
platform (note: if transferring from DOS to UNIX or vice-versa, FTP the filesin ASCII mode to ensure lines are
terminated properly).

3. Copy all filesfrom the src and the different rt* src subdirectories from theinstallation to the src and rt* src directories
onthetarget platform (note: if transferring from DOSto UNIX or vice-versa, FTPthefilesin ASCII modeto ensure
lines are terminated properly).

4. Copy the makefile from the build_lib subdirectory of the installation to the build_lib subdirectory on the target
platform (note: if transferring from DOS to UNIX or vice-versa, FTP the filesin ASCII mode to ensure lines are
terminated properly).

5. Edit the platform.mk filein the root subdirectory and modify the compilation parametersto fit those of the compiler
of the target system. In general, the following parameters will need to be adjusted:

a. CC: C compiler executable name
b. CCC: C++ compiler executable name
c. CFLAGS : Flagsthat should be specified on the C or C++ command line

The platform.w32 and platform.gnu files in the root directory of the installation are sample files for Windows 32
(Visual C++) and GNU compilersrespectively. Either of these can be renamed to platform.mk for building in either
of these environments.

6. Invoke the makefilein the build_lib subdirectory.

If all parameters were set up correctly, the result should be binary library files created in the lib subdirectory.

20

Using the Compiler

Compiler Configuration File

In additionto command line options, configuration commands can be used to apply specific compiler optionsto specific
itemswithin aschema. These options can be applied to specific modules, productions, and elementsaswell asglobally.

Configuration items may be specified in one or two ways (or a combination of both):
» Using specia comments embedded directly in an ASN.1 file, or
» Using an external XML configuration file

A simple form of XML is used as the format for the configuration items. XML was chosen because it is fairly well
known and provides anatural interface for representing hierarchical data such as the structure of ASN.1 modules and
productions.

In the case of embeddeding directivesdirectly inthe ASN.1 sourcefile, the directive isincluded asa comment directly
before the item to which it isto be applied. For example:

BackupBear er CapCct et G oup5 :: = SEQUENCE ({
octet5 BearerCapCctet5,
- - <end3GExt El em name="octet5. ext"/ >
oct et 5a Bearer CapCct et 5a

}

In this case, the end3GEXt El emconfiguration item would be applied to the oct et 5a element.

An external configuration file would target the item to which the directive is to be applied by specifying module,
production, and element in an XML hierarchy. An example of thisis as follows:

<asnlconfi g>
<nmodul e nanme="TS24008| ES” >
<producti on nanme="BackupBear er CapCct et G oup5” >
<el enent name="oct et 5a” >
<end3GExt El em nane="octet5. ext"/ >
</ el ement >
</ producti on>
</ modul e>
</ asnlconfig>

At the outer level of the markup is the <asnlconfi g> </asnlconfi g> tag pair. Within this tag pair, the
specification of global itemsand modul es can be made. Global itemsareapplied to al itemsin all modules. An example
would bethe <st or age> qudlifier. A storage class such as dynamic can be specified and applied to al productions
in al modules. This will cause dynamic storage (pointers) to be used for any embedded structures within all of the
generated code to reduce memory consumption demands.

The specification of a module is done using the <nbdul e></ nodul e> tag pair. This tag pair can only be nested
within the top-level <asnlconf i g> section. The moduleisidentified by using the required <nanme></ nane> tag
pair or by specifying the name as an attribute (for example, <nodul e nane=" MyModul e" >). Other attributes
specified within the <nodul e> section apply only to that module and not to other modules specified within the
specification. A complete list of all module attributesis provided in the table at the end of this section.

The specification of an individual production is done using the <pr oduct i on></ pr oduct i on> tag pair. This
tag pair can only be nested within a<nodul e> section. The production isidentified by using the required <name></
name> tag pair or by specifying the name as an attribute (for example, <pr oduct i on name="MyPr od" >). Other
attributes within the production section apply only to the referenced production and nothing else. A complete list of
attributes that can be applied to individual productionsis provided in the table at the end of this section.

21

Using the Compiler

When an attribute is specified in more than one section, the most specific application is always used. For example,
assume a<t ypePr ef i x> qualifier is used within a module specification to specify a prefix for all generated types
in the module and ancther one is used to a specify a prefix for asingle production. The production with the type prefix
will be generated with the type prefix assigned to it and all other generated types will contain the type prefix assigned
at the module level.

Valuesin the different sections can be specified in one of the following ways:

1. Using the <nanme>val ue</ name> form. This assigns the given value to the given name. For example, the
following would be used to specify the name of the "H323-MESSAGES" module in a module section:

<nane>H323- MESSAGES</ nane>

2. Flag variables that turn some attribute on or off would be specified using a single <nane/ > entry. For example,
to specify agiven production isaPDU, the following would be specified in a production section:

<i sPDU >

3. An attribute list can be associated with some items. Thisis normally used as a shorthand form for specifying lists
of names. For example, to specify alist of type namesto be included in the generated code for a particular module,
the following would be used:

<i ncl ude types="TypeNanel, TypeNane2, TypeNane3"/ >
The following are some examples of configuration specifications:
<asnlconfi g><st orage>dynani c</ st orage></ asnlconfi g>

This specification indicates dynamic storage should be used in all places where its use would result in significant
memory usage savings within all modules in the specified sourcefile.

<asnlconfi g>
<nodul e>
<nane>H323- MESSAGES</ nane>
<sour ceFi | e>h225. asn</ sourceFi | e>
<typePrefix>H225</typePrefi x>
</ nodul e>

</ asnlconfi g>

This specification appliesto module ‘ H323-MESSAGES' in the source file being processed. For IMPORT statements
involving thismodule, it indicates that the sourcefile*h225.asn’ should be searched for specifications. It aso indicates
that when C or C++ types are generated, they should be prefixed with ‘H225'. This can help prevent name clashes if
one or more modules are involved and they contain productions with common names.

The following tables specify the list of attributes that can be applied at all of the different levels: global, module, and
individual production:

Global Level

These attributes can be applied at the global level by including them within the <asnlconfi g> section:

Name Values Description

<events></events> defaultVValue keyword. This configuration item isfor use with Event Handling as
described in alater section in this document. It is used to
include a special event that is fired when a PER message

22

Using the Compiler

Name

Values

Description

is being parsed. This event occurs at the location a value
should be present in the message but is not and a default
value has been specified inthe ASN.1 filefor the element.
In this case, the norma event sequence (startElement,
contents, endElement) is executed using the default value.

<includedir></includedir>

<Include directory>

This configuration item is used to specify a directory that
will be searched for IMPORT files. It is equivalent to the
-I command-line option.

<protocol></protocol >

<Protocol identifier>

Specifies a protocol identifier to be associated with the
ASN.1 specification set. For C/C++, thisspecifiesaprefix
that will be used with generated encode and decode
functions. Currently, this only applies to 3GPP Layer 3
functions.

<rootdir></rootdir>

<ASNIC root directory>

This configuration item is used to specify the root
directory of the ASN1C installation for makefileor Visual
Studio project generation. It is only needed if generation
of theseitemsis done outside of the ASN1C installation.

<storage></storage>

One of the following
keywords. dynamic, static,
list, array, dynamicArray,
std::list, std: : vector,
std::deque.

If dynamic , it indicates that dynamic storage (i.e.,
pointers) should be used everywhere within the generated
types where use could result in lower memory
consumption. These places include the array element for
sized SEQUENCE OF/SET OF types and all aternative
elements within CHOICE constructs.

If static, it indicates static types should be used in these
places. In general, static types are easier to work with.

If list, alinked-list type will be used for SEQUENCE OF/
SET OF constructs instead of an array type.

If array, an array type will be used for SEQUENCE OF/
SET OF constructs. The maxSize attribute can be used
in this case to specify the size of the array variable (for
example, <storage maxSize="12"> array </storage>).

If dynamicArray, a dynamic array will be used for
SEQUENCE OF/SET OF constructs. A dynamic array is
an array that uses dynamic storage for the array elements.

If std::array the result is the same as for array, except
that std::array will be used instead of aplain C/C++ static
array. You must specify -cppll on the command line to
use this option.

If one of std:list, std::vector, std::deque, then the
corresponding C++ Standard Library container class will
be used. Y ou must specify -cppl1 on the command lineto
use one of these options.

Module Level

These attributes can be applied at the module level by including them within a<nmodul e> section:

23

Using the Compiler

Name Values Description
<name> </name> module name This attribute identifies the module to which this section
applies. Either this or the <oid> element/attribute is
required.
<oid> module OID (object| This attribute provides for an aternate form of module
identifier) identification for the case when module name is not

unique. For example, a given ASN.1 module may have
multiple versions. A unique version of the module can be
identified using the OID value.

<codename> </codename>

C/C++, Java, or C# name

Thisitem specifies an alternate name for the module to be
used in generated code. By default, the module name is
usedintheformit appearsinthe ASN.1 specification with
hyphens converted to underscores.

<include types="names'
values="names'/>

ASN.1 type or value names
are specified as an attribute
list

By default, the compiler generates code for all types and
values within a specification. This item allows you to
explicitly list the ASN.1 types and/or values for which
code should be generated. This allows you to reduce the
size of the generated code base by selecting only a subset
of the types/values in a specification for compilation. If
a type or value is included that refers to other types or
values (for example, the element typesin a SEQUENCE,
SET, or CHOICE), dl of the referenced types or values
will be automatically included as well. However, if an
element is marked <notUsed/>, the referenced type is
not automatically included; if an element is marked
<notUsedDecode/>, the referenced type is included for
encoding only; if an element is marked <notUsedEncode/
>, the referenced typeisincluded for decoding only.

<include
encoders="names'/>

ASN.1 type names specified
as an attribute list.

This item allows a list of ASN.1 types to be included
in the generated code for which only encode functions
will begenerated. Automatic inclusion of referenced types
takes place as for <include type="names'/>, except that
theinclusion isfor encoding only.

<include
decoders="names'/>

ASN.1 type names specified
as an attribute list.

This item alows a list of ASN.1 types to be included
in the generated code for which only decode functions
will begenerated. Automatic inclusion of referenced types
takes place as for <include type="names'/>, except that
theinclusion isfor decoding only.

<include
memfree="names"/>

ASN.1 type names specified
as an attribute list.

This item allows alist of ASN.1 types to be included in
the generated code for which only memory free functions
will be generated.

ASN.1 module name(s)
specified as an attribute list.

Thisform of theinclude directivetellsthecompiler to only
include types and/or values in the generated code that are
imported by the given modul&(s).

<include importsFrom=
n narr]ell/>
<exclude types="names'

values="names'/>

ASN.1 type or values names
are specified as an attribute
list

This item allows a list of ASN.1 types and/or values
to be excluded in the generated code. By default, the
compiler generates code for all types and values within
a specification. This is generally not as useful as in
include directive because most typesin a specification are
referenced by other types. If an attempt ismade to exclude

24

Using the Compiler

Name Values Description
atype or value referenced by another item, the directive
will beignored.

<storage> </storage> One of the following|Thedefinitionisthesameasfortheglobal caseexcept that

keywords: dynamic, static,
list, array, dynamicArray,
std::list, std:: vector,
std::deque.

the specified storage typewill only be applied to generated
C and C++ types from the given module.

<sourceFile> </sourceFile>

source file name

Indicates the given module is contained within the given
ASN.1 source file. Thisis used on IMPORTS to instruct
the compiler where to look for imported definitions.

<prefix> </prefix>

prefix text

Thisisused to specify agenera prefix that will be applied
toall generated C and C++ names (note: for C++ types, the
prefix isapplied after thestandard ‘ ASN1T _’ prefix). This
can be used to prevent name clashes if multiple modules
areinvolved in acompilation and they all contain common
names.

<typePrefix> </typePrefix>

prefix text

Thisis used to specify a prefix that will be applied to all
generated C and C++ typedef names (note: for C++, the
prefix isapplied after thestandard ‘ ASNLT _’ prefix). This
can be used to prevent name clashes if multiple modules
areinvolved in acompilation and they all contain common
names.

<enumPrefix> </

enumPrefix>

prefix text

This is used to specify a prefix that will be applied to
al generated enumerated identifiers within a module.
This can be used to prevent name clashes if multiple
modulesareinvolved in acompilation. (note: thisattribute
is normally not needed for C++ enumerated identifiers
because they are already wrapped in a structure to allows
the type name to be used as an additiona identifier).

<vauePrefix>
valuePrefix>

</

prefix text

This is used to specify a prefix that will be applied to
all generated value constants within a module. This can
be used to prevent name clashes if multiple modules
are involved that use a common name for two or more
different value declarations.

<classPrefix>
classPrefix>

</

prefix text

This is used to specify a prefix that will be applied to
al generated items in a module derived from an ASN.1
CLASS definition.

<objectPrefix> </

objectPrefix>

prefix text

This is used to specify a prefix that will be applied to
al generated items in a module derived from an ASN.1
Information Object definition.

<objectsetPrefix>
objectsetPrefix>

prefix text

This is used to specify a prefix that will be applied to
al generated items in a module derived from an ASN.1
Information Object Set definition.

<noPDU/>

n/a

Indicates that this module contains no PDU definitions.
This is normaly true in modules that are imported
to get common type definitions (for example,
InformationFramework). This will prevent the C++

25

Using the Compiler

Name Values Description
version of the compiler from generating any control class
definitions for the types in the module.
<intCType> int8, uint8, intl6, uintl6,|Thisisused to specify aspecific Cinteger typebeused for
int32, uint32, int64, uint64,|al unconstrained integer types. By default, ASN1C will
string use the int32 (32-bit integer) type for al unconstrained
integers.
<arcCType> int32, inté4 Theisused to specify aspecific Cinteger type be used for
the arc types in Object Identifier definitions. By default,
int32 (32-bit integer arc values) are generated.
<namespace> </| namespace URI Thisis used to specify the target namespace for the given
namespace> module when generating XSD and/or XML code. By

default, the compiler will not include a targetNamespace
directive in the generated XSD code (i.e. all items will
not be assigned to any namespace). This option only has
meaning when used with the - xml / -xsd command line
options.

<hFile> </hFile>

C/C++ header filename

Thisis used to specify the name of a C/C++ header fileto
be used to store generated definitions for the module. By
default, the header file name is set to the ASN.1 name of
the module with '.h' appended to the end.

<dlias asnlname="name"
codename="name"/>

ASN.1 to computer
language name mapping

This item alows a name in the ASN.1 specification
being compiled to be mapped to an aternate name in
the generated computer language files. The primary use
is to alow shorter names to be used in places where a
combination of names may be very long. In this release,
the only names that can be used in the alias statement are
information object set names.

Production Level

These attributes can be applied at the production level by including them within a<pr oduct i on> section:

Name Values Description

<name> production name Thisattribute identifiesthe production (type) to which this
</name> section applies. It isrequired.

<addarg name="name" | Argument name, type, and|Thisitem addsan argument to the generated C encode and/

type="type" func="encode]
decode"/>

function specified using
attributes.

or decode function. The name and C type of the argument
are specified in the name and type attributes respectively.
The func attribute is optional and only required if the
argument should be added to either the encode or decode
function only. By default, the argument is added to
both the encode and decode function. This item is only
supported for C 3GPP layer 3 code generation.

<aligned/> n/a This item is used to specify that byte alignment is to be
doneafter encoding or decoding an instance of thetargeted
type. Thisitemisonly supported for C 3GPP layer 3 code
generation.

<cDecFuncName> </|<C source file name Thisitemisused to substitute the C source code contained

cDecFuncName> within the given file for what would have been generated

26

Using the Compiler

Name

Values

Description

for the C decode function for the given type. The current
include path is searched for the given filename. Thisitem
isonly supported for C 3GPP layer 3 code generation.

<cEncFuncName>
cEncFuncName>

</

<C source file name

Thisitem isused to substitute the C source code contained
within the given file for what would have been generated
for the C encode function for the given type. The current
include path is searched for the given filename. Thisitem
isonly supported for C 3GPP layer 3 code generation.

<ctype>

int8, uint8, intl6, uintl6,
int32, uint32, int64, uint64,
string, chararray

Thisisused to specify aC integer or character string type
be used in place of the default definition generated by
ASN1C.

In the case of integers, ASN1C will normally use the
smallest integer type available based on the value or value
range constraint onthe INTEGER and if the INTEGER is
unconstrained, the int32 (32-bit integer) type will be used.
Thisitem allows that behavior to be overridden. Note that
if asigned integer type is specified for an INTEGER that
is constrained to be non-negative, ASN1C will coerce the
type into an unsigned integer type (e.g. int8 would be
coerced into uint8). For very largeintegers, 'string' is used
to specify achar* representation.

For character string, ASN1C will use a character string
pointer (char*) by default. The'chararray' item can be used
on strings with size constrains to specify a static character
array variable be used.

<displayFormat

lower, upper, ipv4, ipv6,
imel, imsi, tbcd

This is used to specify an alternate stringified
representation for binary data. It is only applicable to
OCTET STRING types. By default, OCTET STRING
data is displayed in hexadecimal text format. The lower
and upper qualifiers also result in hexadecimal text
format, but forcelower or upper case charactersto be used.
Theipv4 and ipv6 qualifiers cause the date to be formatted
as an IP address. Theimei, imsi, and tbed qualifiers treat
the data as being encoded in TBCD format with dlight
differences in each format type.

<enumPrefix>
enumPrefix>

</

prefix text

This is used to specify a prefix that will be applied to
all generated enumerated identifiers within a module.
This can be used to prevent name clashes if multiple
modulesareinvolved in acompilation. (note: thisattribute
is normally not needed for C++ enumerated identifiers
because they are already wrapped in a structure to allows
the type name to be used as an additional identifier).

<format> </format>

base64, hex, xmllist

This is used to set format options specific to XER
encoding. The base64 or hex aternative is used to set
the output format that binary data in OCTET STRING
variables is displayed in in XML markup. The xmllist
aternativeis used with SEQUENCE OF or SET OF types
to denote that items should be displayed in XML space-

27

Using the Compiler

Name Values Description

separated list format as opposed to a using a separate
element for each list item.

<is3GExtList pre-eol="0|1"|n/a This item specifies that this production will be modelled
post-eol="0|1"/> as a 3G extended list. This can only be applied to
SEQUENCE OF productions. It is used in 3G layer
3 messages when the extension of a repeating type is
controlled by an extension bit that occurs either before
or after the record. If the pre-eol attribute (short for
"preceding end-of -list") isspecified, it indicate abit before
the record signals whether another record follows. The
value (0 or 1) indicates which bit value signal end-of-list.
The post-eol attribute is the same except that it indicates
the control bit follows after the record. Thisitem is only
supported for C 3GPP layer 3 code generation.

<is3GMessage/> n/a This item specifies that this production represents a
3G layer 3 message type as opposed to a 3G layer 3
information element (IE). Thisitem is only supported for
C 3GPP layer 3 code generation.

<isBiglnteger/> n/a This item specifies that this production will be used to
store an integer larger than the C or C++ int type on
the given system (normally 32 hits). A C string type
(char*) will be used to hold atextual representation of the
value. This qualifier can be applied to either an integer
or constructed type. If constructed, all integer elements
within the constructed type are flagged as big integers.

<isOpenType/> n/a Thisitem is used to indicate that any element of this type
will be decoded as an open type (i.e. skipped). Refer to
the section on deferred decoding for further information.
Note that this variable can only be used with BER, CER,
or DER encoding rules.

<isPDU/> n/a This item is used to indicate that this production
represents a Protocol Data Unit (PDU). This is defined
as a production that will be encoded or decoded from
within the application code. This attribute only makes
a difference in the generation of C++ classes. Control
classes that are only used in the application code are only
generated for types with this attribute set.

<isTBCDString/> n/a Thisitem is used to indicate that this production is to be
encoded and decoded as a telephony binary coded string
(TBCD). Thisis typeis not part of the ASN.1 standards
but is a widely used encoding format in telephony

applications.
<length fixed-|n/a Thisitem isused to configure alength field inan OCTET
size="number"/> STRING type for 3GPP layer 3 messages. By default, a

length field isasingle byte, but there are occasions where
the field width may be different. This allows a fixed-size
encoded field width to be specified. The most common
values are 0 (no length field) or 2.

28

Using the Compiler

Name

Values

Description

<noDecoder/>

n/a

Indicates that no decode function should be generated for
this production. Thisitem is only supported for C 3GPP
layer 3 code generation.

<noEncoder/>

n/a

Indicates that no encode function should be generated for
this production. Thisitem is only supported for C 3GPP
layer 3 code generation.

<setvar name="name"
value="value"/>

n/a

Thisitem is used within encode and decode functions to
set a given variable within a generated structure to the
given value. Normally it is used in conjunction with the
‘addarg' configuration item to set avariable to value of an
additional argument passed into a function. Thisitem is
only supported for C 3GPP layer 3 code generation.

<storage> </storage>

One of the following
keywords: dynamic, static,
list, array, dynamicArray,
std::list, std: : vector,
std:: deque.

The definition is the same as for the global case except
that the specified storage type will only be applied to the
generated C or C++ type for the given production.

<typePrefix> </typePrefix>

prefix text

Thisis used to specify a prefix that will be applied to all
generated C and C++ typedef names (note: for C++, the
prefix isapplied after thestandard * ASN1T_’ prefix). This
can be used to prevent name clashes if multiple modules
areinvolved in acompilation and they all contain common
names.

Element Level

These attributes can be applied at the element level by including them within an <el enent > section:

func="encode|decode"/>

specified using attributes.

Name Values Description

<name> element name Thisattributeidentifiesthe element withinaSEQUENCE,

</name> SET, or CHOICE construct to which this section applies.
Itisrequired.

<addarg name="name" | Argument name, function|Thisitem addsanargument tothegenerated C encode and/

or decode function that is invoked to encode or decode
the element. The name attribute specified the value to be
passed. The func attribute is optional and only required
if the argument should be added to either the encode or
decode function only. By default, the argument is added
to both the encode and decode function. Thisitem isonly
supported for C 3GPP layer 3 code generation.

<aligned/> n/a This item is used to specify that byte alignment is to be
done after encoding or decoding thiselement. Thisitemis
only supported for C 3GPP layer 3 code generation.

<cDecSrcName> </|<C source file name Thisitemisused to substitute the C source code contained

cDecSrcName> within the given file for what would have been generated

for decoding the element. The code in this case is not a
completefunction but rather asnippet to beinserted within
a larger function. The current include path is searched

29

Using the Compiler

Name

Values

Description

for the given filename. Thisitem is only supported for C
3GPP layer 3 code generation.

<cEncSrcName> </

CEncSrcName>

<C source file name

Thisitem isused to substitute the C source code contained
within the given file for what would have been generated
for encoding the element. The code in this case is not a
completefunction but rather asnippet to beinserted within
a larger function. The current include path is searched
for the given filename. Thisitem is only supported for C
3GPP layer 3 code generation.

<ctype>

int8, uint8, intl6, uintl6,
int32, uint32, int64, uint64,
string, chararray

Thisis used to specify a specific C type be used in place
of the default definition generated by ASN1C.

For integer types, the options are the same as at the
production level.

For character string types, ‘chararray' is used to specify a
static character array instead of a character pointer type
(char*). This can only be done if the string type contains
asize constraint.

<end3GExtElem
name="element name"/>

<Element name> attribute

Thisitem is used to delimit a group of optional elements
that start with an 'ext’ boolean element. A common
pattern in the specification of 3GPP IE's is to include an
extension bit to signal the presence or absence of group
of elements (these normally comprise asingle octet). This
is essentially an aternative way to specify an optional
element group in ASN.1. Thisitem is only supported for
C 3GPP layer 3 code generation.

<iei format="t|tv[tIv"
length="length"/>

IEl hex value

Thisitem isused to indicate an element is part of the non-
imperative part 3GPP layer 3 message. These are optional
elementswith single bytetags. Thetag isthelEl hex value
specified at the value of the item. The format attribute
specifiesif theitemisatag (t), tag/value(tv), or tag/length/
value (tlv). The length attribute is only required if format
if tv to specify the length of the value. Thisitem is only
supported for C 3GPP layer 3 code generation.

<inline/>

n/a

This item is used to indicate that code generated for a
nested item within a constructed type should be expanded
inline rather than pulled out to create a separate new type.

<is3GExtList pre-eol="0J1"
post-eol="0|1"/>

n/a

Thisitem specifies that this element will be modelled asa
3G extended list. This can only be applied to elements of
type SEQUENCE OF. It is used in 3G layer 3 messages
when the extension of arepeating typeis controlled by an
extension bit that occurs either before or after the record.
If the pre-eal attribute (short for "preceding end-of-list") is
specified, itindicate abit before the record signal swhether
another record follows. The value (0 or 1) indicateswhich
bit value signal end-of-list. The post-eol attribute is the
same except that it indicates the control bit follows after
the record. Thisitem is only supported for C 3GPP layer
3 code generation.

30

Using the Compiler

Name Values Description

<is3GLength n/a This item is used to mark an element as a 3GPP length
bitFieldSize="nbits" field element. Normally this an element with the name
units="bitslbytes"/> 'length’ of type INTEGER that is the first element in a

SEQUENCE. Thisindicates special processing should be
done on the element. On encode, any value populated
in this field will be ignored and the actual length of the
encoded data will be calculated and populated in this
field after encoding is complete. On decode, this element
is used to determine when end of message occurs. The
‘bitFieldLength’ attribute is used to specify thefield sizeif
it not an even octet (8 bits). The 'units attribute specifies
theunitsstored in thelength field (bitsor bytes). Thisitem
isonly supported for C 3GPP layer 3 code generation.

<is3GVarLenList n/a This item specifies that this element will be modelled
lengthElem="name"/> as a 3G variable length list. This can only be applied to
elements of type SEQUENCE OF. It isused in 3G layer
3 messages when a length element is used to determine
the number of itemsin the list. The 'lengthElem’ attribute
specifiesthe element within the structure that containsthis
count. Thisitemisonly supported for C 3GPPlayer 3 code
generation.

<isBiglnteger/> n/a This item specifies that this element will be used to
store an integer larger than the C or C++ int type on
the given system (normally 32 bits). A C string type
(char*) will be used to hold atextual representation of the
value. This qualifier can be applied to either an integer
or constructed type. If constructed, all integer elements
within the constructed type are flagged as big integers.

<isOpenType/> n/a This flag variable specifies that this element will be
decoded asan open type (i.e. skipped). Refer to the section
on deferred decoding for further information. Note that
this variable can only be used with BER, CER, or DER
encoding rules.

<length fixed- | n/a Thisitem isused to configure alength field in an OCTET
size="number"/> STRING type for 3GPP layer 3 messages. By default, a
length field isa single byte, but there are occasions where
the field width may be different. This allows a fixed-size
encoded field width to be specified. The most common
values are 0 (no length field) or 2. This item is only
supported for C 3GPP layer 3 code generation.

<notUsed/> n/a This flag variable specifies that this element will not be
used at al in the generated code. It can only be applied
to optional elements within a SEQUENCE or SET, or to
elements within a CHOICE. Its purpose is for production
of more compact code by allowing users to configure out
items that are of no interest to them.

<notUsedDecode/> n/a Similar to the notUsed flag, except that rather than
indicating the element is not used at al, it indicates the
element is not used for decoding (i.e. it is still used for
encoding). This can be useful for reducing the amount of

31

Using the Compiler

Name Values Description

generated code, when used in conjuction with aproduction
level <include/> (which see). It signals that the element's
type does not require adecode function for the sake of this

element.
<notUsedEncode/> n/a The encoding complement to <notUsedDecode/>
<perEncoding> </| hex data This variable allows a user to substitute a known binary
perEncoding> PER encoding for the given element. This encoding will

be inserted into the encoded data stream on encoding and
skipped over on decoding. Its purpose is the production
of more compact and faster code for PER by bypassing
run-time cal cul ations needed to encode or decode variable

data.
<selector element="name"|n/a This item is used to configure an element within a
value="value'/> CHOICE in a3GPP layer 3 message. It specifiesthevalue

of another element within the container type which selects
this element. The 'element’ field specifies the name of
the element within the container type and 'value' specifies
the value. are 0 (no length field) or 2. This item is only
supported for C 3GPP layer 3 code generation.

<setvar name="name" |n/a This item is used within encode and decode functions to
value="value"/> set a given variable within a generated structure to the
given value. Normally it is used in conjunction with the
‘addarg' configuration item to set avariable to value of an
additional argument passed into a function. Thisitem is
only supported for C 3GPP layer 3 code generation.

<storage> </storage> One of the following|The definition isthe same as for the global case except
keywords: dynamic, static, |that the specified storage type will only be applied to the
list, array, dynamicArray,|generated C or C++ type for this element.

std::list, std: : vector,
std:: deque.

Compiler Error Reporting

Errors that can occur when generating source code from an ASN.1 source specification take two forms: syntax errors
and semantics errors.

Syntax errors are errors in the ASN.1 source specification itself. These occur when the rules specified in the ASN.1
grammar are not followed. ASN1C will flag these types of errors with the error message ‘ Syntax Error’ and abort
compilation on the source file. The offending line number will be provided. The user can re-run the compilation with
the*-I’ flag specified to seethelineslisted asthey are parsed. This can be quite helpful in tracking down asyntax error.

The most common types of syntax errors are as follows:

« Invalid caseonidentifiers: modul e name must begin with an uppercase |l etter, productions (types) must begin with an
uppercase |etter, and element names within constructors (SEQUENCE, SET, CHOICE) must begin with lowercase
letters.

 Elements within constructors not properly delimited with commas: either a comma is omitted at the end of an
element declaration, or an extra commais added at the end of an element declaration before the closing brace.

32

Using the Compiler

« Invalid special characters: only letters, numbers, and the hyphen (-) character are allowed. The use of the underscore
character () inidentifiersisnot allowedin ASN.1, butisallowed in C. Since C doesnot allow hyphensinidentifiers,
ASNI1C converts all hyphensin an ASN.1 specification to underscore charactersin the generated code.

Semantics errors occur on the compiler back-end as the code is being generated. In this case, parsing was successful,
but the compiler does not know how to generate the code. These errors are flagged by embedding error messages
directly inthe generated code. The error messages always begin with anidentifier with the prefix ‘%A SN-’, so asearch
can be done for this string in order to find the locations of the errors. A single error message is output to stderr after
compilation on the unit is complete to indicate error conditions exist.

33

Chapter 3. ASN1C GUI Users Guide
Quick Start

In this section, we will demonstrate running ACGUI, creating a new ASN.1 schema, and compiling it to C for BER
data. The processis similar for other languages.

First, start ACGUI. Y ou may see the window below asking you to activate alicense key.

d

License Type
® Key () File

License Key:

Activate Deactivate

License file not found.

If you are using a proxy server, enter it below (myproxyhost:8765):

HTTP_PROXY: |

Skip

If you see thiswindow, and it's not showing a current license key, you can right click in the text box and paste in your
license key. Then click the Activate button to unlock ASN1C.

In some cases, however, the window will appear and show a current license key. In these cases the key being shown
isprobably expired. Y ou need to deactivate the current key first by clicking the Deactivate button. Then you can right
click in the text box and paste in your current license key. Then click the Activate button to unlock ASN1C.

If you have an osydlic.txt license file in alocation where the GUI doesn't ook, you can click the Import button to find
that file and use it to unlock ASN1C instead of activating a key.

If you click the Skip button, you can expore the features of the GUI, but you will not be able to generate any code.

34

ASN1C GUI Users Guide

Should you ever need to activate adifferent license key even though you have acurrent one (for example, you purchase
ASNI1C before your evaluation key expires), you should deactivate the existing license first. This deactivation can be
done from the GUI by choosing Tools...Options and then clicking on the License tab. Y ou will see awindow similar
to thisone:

License General
License Type
kKey File
License Key:
3T ALOjh AU +aQg8c 6mY BbuEQxrBxyAydBbMhSmia/
d5ERStenx 3GANsSMC 13MUPWNySBGOP iImPhax Skallidg==
Activate Deactivate
License expiration date: Tue Jan 30 14:37:39 2013
If you are using a proxy server, enter it below (myproxyhost:8765):
HTTP_PROXY:
Restore Defaults oK Cancel

Click the Deactivate button to deactivate the existing license. Y ou can then do the same sequence to bring up the
window again and activate your new key.

Once the program is running, we'll create a new project to store all of our settings. To do this, select "Project->New
Project..." from the menus.

35

ASN1C GUI Users Guide

O ASNIC Settings PRl

Output | Function Generation Constraints and Debugging Code Modifications I Java | Build Options

Application Language Type

) Mone C CH++ C# @ Java

Additional Translations

[7] Generate HTML files for input ASN, 1 Generate equivalent XML schema [] Pretty-print ASM. 1

Encoding Rules

[T BER. 7] cER [oER FER UPER 150N XER XML MDER [C] OER 7] coer

Output Directory compiler
Project Directory

Input Options
[Perform a lax syntax check [Allow ambiguous tags

Java Code Organization

Output code to directories based on module names

Class directory

[Save][Cancel]

Inthefirst tab, "Output", under "Application Language Type", select "C". Below that, under "Encoding Rules', select
"BER". Finally, choose an output directory for the generated files. Once the settings are correct, click "Save". These
settings can be changed at any time by selecting " Project->Project Settings..." from the menus.

Next, we'll create anew schemafilefor our project. Click the"New" button in thetoolbar or select "File->New Schema
File" from the menus. A dialog box will be shown to provide a name for the new file. Once entered, the file will be
added to the project window under "Schema/ASN.1 files* and its empty contents will be shown in the editor.

36

ASN1C GUI Users Guide

File Edit Project Tools Help

O » B v [€« »

New Gpen Remove Savefile Vaiidate Compie Previous Error MextError

Project Bl testasn* £ | o o
Untitled || 4 yhiodule DEFINITIONS 5= BEGIN
2

4 Schema/ASN1 files
testasn® JEND
Include Directories
Configuration files

> Generated Items

Error Log g X

Clear Save Log

File Line Column Message

Now we need to write our schema between the "DEFINITIONS ::= BEGIN" and "END" statementsin the file. Enter
something like:

MySequence ::= SEQUENCE {
i ngredi ent PrintableString,
count | NTECER,
units PrintableString

When you are satisfied with the schema you've created, click the "Validate" button to make sure there are no errors.
Since the new schema file hasn't been saved yet, ACGUI will ask if it should be. Save the new file and ACGUI will
then validate it. If the schema has errors, the log at the bottom of the window will show them. Otherwise, it is safe
to move on.

Since we've already set up our project, we can click the "Compil€" button to generate code according to our project
settings. If al goes well, the project window will show alist of generated files under "Generated Items" in the section
for the selected language. If there were any errors, they will be shown in the log.

37

ASN1C GUI Users Guide

File Edit Project Tools Help
L
OB x) = C
%
New Open Remove Savefle Vaidate Compie PreviousErar NextEro
Project B[test.asn 6 ‘ | s Tree & x
C/work/asnlc/testacpral || q hyhiodule DEFINITIONS := BEGIN
4 Schema/ASM1 files 2 4t MyModule
test.asn 3 MySequence -= SEQUENCE { 4 1 Types
Include Directories 4 ingredient PrintableString, 4 B MySequence
Configuration files 5 CUunIINTEGER . ® ingredient
4 Generated Items 6 units PrintableString & count
4 C/Cs files ! * units
MyMadule.c 8
MyModuleh BEMND
MyModuleDec.c
MyModuleEnc.c
rtkey.h
C# files
Java files
KSD files
Text Browser
Error Log J X
File Line Column Message
Q1 Parsing ASN.1 definitions..
3 2 MyModuleh Writing C type definitions to file MyModule.h.
@ 3 MyModuleEnc.c Writing C encode functions to file MyModuleEnc.c.
@ 4 MyModuleDec.c Writing C decode functions to file MyModuleDec.c.
3 5 MyModule Writing C global variables to file MyMedule.c.
Q6 Code was successfully generated in C:/work/asnlc

At this point, project settings can be changed and schema files can be edited as needed.

Creating a Project

Since there are alarge number of options available in the code generation process, ACGUI allows settings to be saved
in project files for reuse. Project files can be created, opened, and saved from the "Project” menu. If no project fileis
explicitly used, adummy project will beimplicitly created and can be saved to afile at alater time.

Project assets, such as ASN.1 schemas and generated source files, are visible in the "Project" window. Project
settings can be changed via the Project Settings window, accessible by selecting "Project->Project Settings..." from
the menubar.

Editing Schemas

The central area of the ACGUI window is dedicated to editing ASN.1 schema definition files. To create a new file,
click the "New" button in the toolbar or select "File->New Schema File" in the menus. To open an existing schema
file, either click the "Open" button in the toolbar or select "File->Open File..." from the menus. In both cases, the file
will be added to the project and the editor will show it. Clicking on an ASN.1 schemafile name in the project window
will aso display that filein atab in the editor.

At any point during editing, the schema can be saved and checked for proper syntax by clicking the "Validate" button
in the toolbar.

38

ASN1C GUI Users Guide

Compiling

Once aproject has been created and schemas added, the schemas may be compiled. Thisassumesthat atarget language
has been selected in the project. Click the "Compile" button or select "Tools->Compile" from the menus. If any files
have unsaved changed, a dialog box will be displayed prompting the user to save them. Once saved, the compiler will
run, generating source code and related files. From here, changes can continue to be made to the schemaand to project
settings and recompilation done as needed.

Interface

File Edit Project Tools Help

Project 8

O x @ v [&€« »

Mew Open Remove Savefle Valdate compile Previous Error Next Error

Untitled
4 Schema/ASN files
ACSE-Lasn
InformationFramework.asn
UsefulDefinitions.asn
Include Directories
Configuration files
» Generated ems

UsefulDefnitions.asn [| InformabonFramework.asn [| acsgt.esn [|

1

2 UsefulDefinitions {jointiso-tu-t ds(3) module(1) usefulDefinitions(0) 3}
3 DEFINITIONS ==

4 BEGIN

S@womam;

11 1D := OBJECT IDENTIFIER
13 s 10 2= {jointiso-itu-t ds(B)}
14

15
16 module 10 = {ds 1}
17

18 serviceElement D = {ds 2}
20 applicationContext D = {ds 3}
?Z attribute Type |0 == {ds 4}

gz attributeSyntax (D = {ds 5}

25
26 objectClass D= {ds B}
27

28

29 algorithm ID:={ds 8}

30

31 abstractSyntax D 2= {ds 9}
32

i3

34
AR daalneratinnalAtribote 0 =

ASN.1Tree =3

Text | Browser

Error Log

> %= ACSE-L
4 % InformationFramewark
> I Types
4 6 Values
id-at-aliasedEntryName
id-at-objectClass
id-mr-distinguishedNameha...
id-mr-objectldentifieriatch
> 1 Information Object Classes
» %2 Information objects
> %2 Information object sets
> B UsefulDefinitions

2 File Line Column Message

Q1 Parsing ASN.1 definitions..
Q2 Validation was successful

39

ASN1C GUI Users Guide

Editor

| UsefulDefinitions.asn E | InformationFramework. asn | ACSE-1.asn |
1 S
2 UsetulDefinitions {jointiso-itu+t ds(b) module(1) usefulDefinitions(0) 3}
3 DEFINITIONS =
4 BEGIN

m

[mn B = R g

9
10
11 1D = OBJECT IDENTIFIER
12
13 dz= 1D 2= {joint-iso-tu-t ds(B)}
14
15
16 module D @={ds 1}
17
18 serviceElement ID = {ds 2}
19
20 applicationContext 1D = {ds 3}
21
22 aftribute Type [0 = {ds 4}
23
24 aftributeSyntax [0 = {ds &}
2h
26 ohjectClass D = {ds B}
27
28
249 algorithm 1D 2= {ds 8}
30
31 abstractzyntax D o= {ds 9}
32
33
34
AR dsaloeratinnalAtribute 0 =
Text Browser

The central part of the ACGUI window is the schema editor. From here, schema files can be viewed and edited. To
begin editing an ASN.1 schema, create a new file or open an existing file via the toolbar or menu. The file will be
added to the current project and shown in the editor.

The editor window is also used to display a schemabrowser for navigating avalidated schema. To display the browser
after validating a schema, click on anitemin the ASN.1 Tree window. The browser will display ahyperlinked version
of the schema, centered on the definition of the selected item. Clicking the names of other defined typesin the browser
will cause their definitions to be shown.

By default, documents are displayed in tabs in the editor. Tabs "Text" and "Browser" at the bottom of the window
are for schema editing and hyperlinked schema browsing, respectively. At the top of the "Text" tab, each schemafile
currently being edited has atab.

Alternatively, ACGUI can display documentsin separate subwindows. To changethis, select "Tools->Options..." from
themenus. Inthe " General" tab of the optionswindow, change " Openfiles’ from"Intabs' to"In MDI windows'. Click
"OK" and restart ACGUI. Now, open files will be displayed as separate windows within the main ACGUI window.
Thisoption is useful for viewing two files simultaneously, for example.

40

ASN1C GUI Users Guide

Project Window

Project

=]

3

Untitled
4 Schema/asiM.] files

ACSE-1.3zn
InformationFramework.asn
LsefulDefinitions.asn

Include Dhrectories
Configuration files
4 Generated ltems

C/C++ files
C#files
lava files
K5D files

The project window allows the user to interact with project assets.

Schema/ASN.1 files

Include directories

Configuration file
Generated Items

Clicking on a schema file or configuration file in the project window will open that file in the editor. A right-click
context menu isalso provided for schemarfiles, include directories, and configuration file for adding or removing these

import definiti

assets from the project.

ASN.1 Tree Window

ASM.1Tree

- &

9

=]

ACSE-1

InformationFramework
-5
b=

Types

Values

% id-at-aliasedEntryMame
id-at-objectClass

id-mr-distinguishedMameMa...

id-mr-objectldentifierfatch
Information Object Classes
Information chjects
Information cbject sets
UsefulDefinitions

Files containing the current project's ASN.1 schema definitions.

Directories containing auxiliary ASN.1 schemafiles. The current project's schemamay
ons from modules defined in an included directory.

An ASN1C compiler configuration file.

A listing of the files generated by the compiler, separated by target language.

»

41

ASN1C GUI Users Guide

Once a schema has been validated or compiled in ACGUI, the ASN.1 Tree window provides an interactive view of
the ASN.1 typesdefined init. At thetop level of the tree, the modules of the schema are shown. Each of these modules
can be expanded to reveal branches for the types, values, information objects, etc. defined in each of them. Clicking
on any node of the tree will show the relevant ASN.1 definition in a built-in browser in the editor window.

Error Log Window

Error Log g X

Clear Save Log

File Line Column Message

Q1 Parsing ASN.1 definitions..
Validation was successful

The Error Log window displays messages related to schema validation and compilation. Whenever a schema is
successfully validated or compiled, the Error Log will report a success. If an error occurs, an error message will be

displayed.

In many cases, an error will be associated with a particular portion of the schema being compiled. In these cases,
clicking on an error will open the schema editor to the location that the error occurred. If more than one error is
reported, clicking the"Next Error" and "Previous Error" buttons in the toolbar will move the editor window to the part
of the schemawhere the next or previous error occurred.

When the reported errors are no longer needed, they can be cleared by clicking the "Clear" button in the Error Log
window.

Project Settings

The project settings window is where details such as encoding rules, target language, and code features to generate
are modified.

42

ASN1C GUI Users Guide

Output tab

O ASNIC Settings PRl

Output | Function Generation Constraints and Debugging Code Modifications

Application Language Type

@ MNone

(]
(]
I+
+
g
£

) Java
Additional Translations

[7] Generate HTML files for input ASN, 1 [7] Generate equivalent XML schema [] Pretty-print ASM. 1

Encoding Rules

s
el
=]
m
)
R
m
el

BER UPER 150N XER XML MDER OFR COER

Output Directory Browse
Project Directory Browse
Input Options

[Perform a lax syntax check [Allow ambiguous tags

[Save]l Cancel]

The"Output” tab contains optionsfor selecting atarget language, encoding rules, output directory. In order to compile
a schema, atarget language must be selected under "Application Language Type".

"Additional Trandations" contains several options for generating transformed versions of the input schema, such as
HTML or pretty-printed.

"Encoding Rules* allows for one or more encoding rule set to be selected for generated code.
"Input Options" affect how strict the compiler is when parsing the ASN.1 schema.

Depending on the target language selected, additional options are shown.

43

ASN1C GUI Users Guide

C/C++ Qutput Options
(@ Output code to .cf.h files based on module names
() Output all code to a single .cf.h file .C h

(7 Output each generated function to its own source fille

Max lines per file: |

Ohject directory |

|
| Browse
Libraries Directary | | Browse
Binaries Directory Browse
| |

For C or C++ target languages, " C/C++ Output Options' controls how generated codeis distributed across sourcefiles.

C# Code Organization
[] Output code to directories based on module names

Code generation option: |One .cs file per type ™ | File name:

Binaries Directory | | Browse

Libraries Directory | | Browse

For C#, "C# Code Organization" controls how generated code is distributed across source files and how files are
organized into directories.

Java Code Organization

[output code to directories based on module names

Class directary | | Browse

For Java, "Java Code Organization" allows generated code to be organized into directories based on the ASN.1 module
for which they were generated. Alternatively, generated files will be placed directly into the output directory.

ASN1C GUI Users Guide

Function Generation tab

D ASN1C Settings ? x

Qutput Eunction Generation Constraints and Debugging Code Modifications CjC++ Build Options
Generated Function Types

Printing Functions
Encoding

Decoding [] standard Output [Streaming [] string
] comparison
Col
[copy Print Format (®) Bracetext () Details
[] stream
Specify PDU Types
(® Default (unreferenced types) O Al () selected

nter PDU type names

Sample Program Generation

[] specify a PDU for the sample programs

[] Generate test code to populate data structures with random data at run-time

[] Generate test code to populate data structures with random hard-coded values at compile time
|:| Generate reader sample program |:| Generate writer sample program

|:| Generate dient sample program |:| Generate server sample program

[] Generate program from template

C/C++ Generated Functions
Generate Initialization Functions
|:| Generate Memory Free Functions

[] Generate Mamed Bit Macros

Save Cancel

The "Function Generation" tab provides settings for what functionality to include in generated code. Options under
"Generated Function Types" provide granular control of what functions to generate. The printing functions allow for
various printing schemes to be generated, such as print-to-string and print-to-standard-output, and how the printed
data should be formatted.

The "Specify PDU Types" area provides options for telling ASN1C what productions to choose as PDUSs.

"Sample Program Generation" allows simple encoding and decoding programs, which demonstrate using the generated
code, to be generated. The sample writer program can optionally encode randomly-generated test data.

Depending on the target language selected, additional options may be shown here.

45

ASN1C GUI Users Guide

C/C++ Generated Functions
Generate Initialization Functions
|:| Generate Memory Free Functions

] Generate Mamed Bit Macros

For C and C++, additional functionsfor memory management and macrosfor dealing with named bitsin BIT STRINGs
can be generated. Initialization functions are generated by default. They may be turned off in the window.

Java Function Options
[] Generate getter and setter methods
[] Generate metadata methods

For Java, get and set methods can be generated for members of generated classes. It isalso possible to generate methods
that can fetch certain types of metadata (for example, if an element is optional). A similar option exists for C#.

46

ASN1C GUI Users Guide

Constraints and Debugging tab

'

Qutput Function Generation Constraints and Debugging Code Modifications C# Build Cptions
Constraints
|:| Do not generate code supporting contents constraints
[] Do not generate constraint checks
[] Enable strict constraint checks
[] Generate code to handle table constraints

Debugging and Event Handling

[[] Generate code to invoke event handler callback functions
|:| Do not generate type structures

[] add tracing diagnostic messages to code

[] Enable output of compilation warning messages

Save Cancel

The "Constraints and Debugging” tab holds settings related to constraint handling, event handling, and logging in
generated code. Under "Constraints', varioustypes of constraint checks can be added or removed from generated code.

In "Debugging and Event Handling", settings for adding debug tracing and event hooks are available. In addition
to enabling event callbacks, generation of type structures can also be disabled, in which case generated decode
functionality will simply call user-created event handlers and not perform its own decoding operation.

47

ASN1C GUI Users Guide

Code Modifications tab

'

Output Function Generation Constraints and Debuaging Code Modifications C# Build Options
Space Optimizations
|:| Generate compact code
[] Do not generate code to save/restore unknawn extensions
[] Do not generate types for items embedded in information objects
[] Do not generate XML namespaces for ASM. 1 modules
[[] Generate shart form of type names

Other Options

Automatically create unigue names for duplicate items
[] Do not add date stamp to generated files

[] Generate code for dependent type definitions

Save Cancel

Under the"Code Maodifications' tab are anumber of optionsfor generating simplified code. In " Space Optimizations®,
these mainly regard the removal of unwanted or unneeded functionality and shortening names of generated types.

"Other Options" provide several miscellaneous settings, including the option of generating code for types that have
been imported into the current schema.

Additional code modification options that are language-specific are shown in a separate tab next to the "Code
Modifications" tab. The lable on this tab will change based on the language selected. For C/C++, it isas follows:

48

ASNI1C GUI Users Guide

F A
@ ASNIC Settings [2 S

I_gulput I Function Generation Constraints and Debugging Code Modifications | CiC++ | Build Options

C/C++ Code Modifications

[7] add & header guard prefix

7] Add a C++ namespace

SEQUEMCE OF/SET OF use: @ default) linkedlist (O dynamicarray (O static array
|| Generate static member variables in choice constructs
[7] Use enumerated types instead of integers

[7] Generate fully qualified enumerated constants

|| pisable fixed sizing for small bit strings

[suppart indefinite PER lengths

[] Pad PER BIT STRING-tontained values

[”] Generate code compatible with 64-bit architectures

|| Generate code that uses C++11 features induding STL

[Save][Cancel]

In this case, code modifications include several settings for adjusting how ASN.1 types are mapped to native C/C+
+ types.

For C#, the tab is as follows:

49

ASN1C GUI Users Guide

| D
Qutput Function Generation Constraints and Debugging Code Modifications C= Build Options

C# Code Modifications
[] specify namespace

[] specify namespace prefix |

Save Cancel

Inthis, modificationsallow for mani pul ating the namespace into which codeis generated. The Javatab containssimilar
options.

Build Options tab

When a target language other than "None" is selected, an additional "Build Options" tab contains language
environment-specific settings for generating makefiles and build scripts.

For C or C++, the window is as follows:

50

ASNI1C GUI Users Guide

@ ASNIC Settings [2 S

I_gulput I Function Generation Constraints and Debugging I Code Modifications I CiC++ | Build Options

[T Generate Visual Studio Praject [Generate Makefiles
V5 2017 Windows (nmake)
Vs 2015 @ GNU
VS 2013
VS 2012
VS 2010
V5 2008 C/C++ Compile Optimization
V5 2005 @ Default
V5 2003 7 Space Optimization
@ vs 6.0 (1998)) Speed (Time) Optimization

[T Build Libraries
Generate static libraries
Generate shared libraries

Generate multi-threaded libraries

[Link applications using shared libraries

Link applications against 64-bit libraries

[Save][Cancel]

A makefile can be generated in either Windows or GNU format. For Windows, a Visual Studio project can also be
generated. Under "Build Libraries', which will generate the build script to build a library rather than an executable,
the desired variety of library can be selected.

"C/C++ Compile Optimization" allows for setting whether Space or Time optimization qualifiers should be added to
the C compilation command-line in the makefile.

For C#, the following options are displayed:

51

ASNI1C GUI Users Guide

F A
D ASNIC Settings [2 [

I_gulput I Function Generation I Constraints and Debugging I Code Modifications I C# | Build Ciptions

Build Options
[7] Generate a list of .cs files {in <modulename.mk)
[7] Generate a makefile
[7] Generate a Visual Studio Project
V5 2017
@ Vs 2015
V5 2013
V5 2012
V5 2010
V5 2008
V5 2005

[strongly named key file:

[Save][Cancel]

Similarly for C#, a makefile or Visual Studio project can be created, optionally including a*.mk file listing the files
generated. An option to specify astrongly named key file also exists.

For Java, the following is displayed:

52

ASN1C GUI Users Guide

9

Qutput Function Generation Constraints and Debugging Code Modifications Java Build Options

Build Options

[] Generate a list of .java files {in <modulename =, mk)
[] Generate an Ant build script
[] Generate a batch file or shell script

Save Cancel

Java can also provide a*.mk generated file list, as well as Ant build script and a batch or shell script.

53

Chapter 4. ASN.1 To C/C++ Mappings
Type Mappings
BOOLEAN

The ASN.1 BOOLEAN type is converted into a C type named OSBOOL. In the global include file 0sSysTypes.h,
OSBOOL isdefined to bean unsi gned char.

ASN.1 production:

<name> ::= BOCOLEAN
Generated C code:

t ypedef OSBOOL <nane>;
Generated C++ code:

t ypedef OSBOOL ASNLIT <nane>;

For example, if B : : = [PRI VATE 10] BOOLEAN was defined as an ASN.1 production, the generated C type
definition would bet ypedef OSBOOL B. Note that the tag information is not represented in the type definition.
It is handled within the generated encode/decode functions.

The only difference between the C and C++ mapping is the addition of the ASN1T__ prefix on the C++ type.

INTEGER

The ASN.1 INTEGER type is converted into one of several different C types depending on constraints specified on
the type. By default, an INTEGER with no constraints results in the generation of an OSINT32 type. In the global
include file osSysTypes.h, OSI NT32 isdefined to beani nt which isnormally asigned 32-hit integer value on most
computer systems.

ASN.1 production:

<nanme> ::= | NTEGER
Generated C code

typedef OSI NT32 <nane>;
Generated C++ code:

t ypedef OSI NT32 ASNLT_ <nane>;

Vaue range constraints can be used to alter the C type used to represent a given integer value. For example, the
following declaration from the SNMP SMI specification would cause an OSUINT32 type (mapped to a C unsigned
int) to be used:

Counter ::= [APPLI CATION 1] I MPLICI T I NTEGER (0. .4294967295)

Inthiscase, an OSI NT32 could not be used because all values within the given range could not be represented. Other
value ranges would cause different integer types to be used that provide the most efficient amount of storage. The
following table shows the types that would be used for the different range values:

54

ASN.1 To C/C++ Mappings

Min Lower Bound Max Upper Bound ASNI1C Type C Type

-128 127 OSI NT8 char (signed 8-bit int)

0 255 OSUI NT8 unsi gned char
(unsigned 8-bit number)

-32768 32767 OSI NT16 short (signed 16-bit int)

0 65535 OSUI NT16 unsi gned short
(unsigned 16-bit int)

-2147483648 2147483647 OSI NT32 i nt (signed 32-hit integer)

0 4294967295 OSUI NT32 unsi gned i nt (unsigned
32-hit integer)

The C typethat isused to represent a given integer val ue can a so be altered using the "<ctype>" configuration variable
setting. This allows any of the integer types above to be used for a given integer type as well as a 64-bit integer type.
The values that can be used with <ctype> are: byte, int16, uint16, int32, uint32, and int64. An example of using this
setting is as follows:

Suppose you have the following integer declaration in your ASN.1 sourcefile:
Myl nt Type ::= [APPLI CATI ON 1] | NTEGER

You could then have ASN1C use a 64-bit integer type for this integer by adding the following declaration to a
configuration file to be associated with this module:

<producti on>

<nanme>M/I nt Type</ nane>

<i nt CType>i nt 64</i nt CType>
</ producti on>

The <i nt CType> setting is also available at the module level to specify that the given C integer type be used for
all unconstrained integers within the module.

Large Integer Support

In C and C++, the maximum size for an integer type is normally 64 bits (or 32 bits on some older platforms). ASN.1
has no such limitation on integer sizes and some applications (security key values for example) demand larger sizes.
In order to accommodate these types of applications, the ASN1C compiler alows an integer to be declared a "big
integer" viaaconfiguration file variable (the <isBiglnteger/> setting is used to do this - see the section describing the
configuration file for full details). When the compiler detects this setting, it will declare the integer to be a character
string variable instead of a C int or unsigned int type. The character string would then be populated with a character
string representation of the value to be encoded. Supported character string representations are hexadecimal (strings
starting with 0x), octal (strings starting with 0o) and decimal (no prefix).

For example, the following INTEGER type might be declared in the ASN.1 sourcefile:
SecurityKeyType ::= [APPLI CATI ON 2] | NTEGER
Then, in aconfiguration file used with the ASN.1 definition above, the following declaration can be made;

<pr oduct i on>
<nanme>Secur it yKeyType</ nane>
<i sBi gl nt eger/ >

</ producti on>

Thiswill cause the compiler to generate the following type declaration:

55

ASN.1 To C/C++ Mappings

typedef const char* SecurityKeyType

The SecurityKeyType variable can now be populated with a hexadecimal string for encoding such as the following:
SecurityKeyType secKey = "O0xfd09874da875cc90240087cd12fd";

Note that in this definition the Ox prefix isrequired to identify the string as containing hexadecimal characters.

On the decode side, the decoder will populate the variable with the same type of character string after decoding.

There are also a number of run-time functions available for big integer support. This set of functions provides an
arbitrary length integer math package that can be used to perform mathematical operations as well as convert values
into variousstring forms. Seethe ASN1C C/C++ Common Run-time User'sManual for adescription of thesefunctions.

BIT STRING

The ASN.1 BIT STRING typeis converted into a C or C++ structured type containing an integer to hold the number
of bits and an array of unsigned characters ("OCTETS") to hold the bit string contents. The number of bits integer
specifies the actual number of bits used in the bit string and takes into account any unused bitsin the last byte.

The type definition of the contents field depends on how the bit string is specified in the ASN.1 definition. If asize
constraint is used, a static array is generated; otherwise, apointer variableis generated to hold adynamically allocated
string. The decoder will automatically allocate memory to hold aparsed string based on thereceived length of the string.

In the static case, the length of the character array is determined by adjusting the given size value (which represents
the number of bits) into the number of bytes required to hold the bits.

Dynamic Bit String
ASN.1 production:
<nanme> ::= BIT STRI NG
Generated C code;
t ypedef ASNLDynBit Str <nane>;
Generated C++ code:
typedef ASNLTDynBitStr ASNLT <nane>;

In this case, different base types are used for C and C++. The difference between the two is the C++ version includes
constructors that initialize the value and methods for setting the value.

The ASN1DynBItSr type (i.e., the type used in the C mapping) is defined in the asnltype.h header file as follows:

typedef struct ASNIDynBitStr {
OSUI NT32 nunbi ts;
const OSCCTET* dat a;

} ASNLDynBitStr;

The ASN1TDynBitStr type is defined in the asn1CppTypes.h header file as follows:

struct ASNLTDynBitStr : public ASNIDynBitStr {
/Il ctors
ASNATDynBitStr () : numbits(0) {}

56

ASN.1 To C/C++ Mappings

ASNLTDynBi t Str (OSUI NT32 _nunbits, OSOCTET* _data);
ASNLTDynBi t Str (ASNLDynBit Stré& _bs);
} ASNLTDynBit Str;

Note that memory management of the byte array containing the bit string data is the responsibility of the user. The
wrapper class does not free the memory on destruction nor deep-copy the data when a string is copied.

Static (sized) BIT STRING

ASN.1 production:
<name> ::= BIT STRING (SI ZE (<l en>))
Generated C code:

typedef struct {

OSUI NT32 nunbi ts;

OSCCTET dat a[<adj usted_I en>*];
} <name>;

If the -strict-size command-line option is used, the numbits component within thistype definition may be of adifferent
type (OSUINT8 or OSUINT16) or eliminated completely if the type is constrained to be a fixed-size.

Generated C++ code:

typedef struct <name> {

OSUI NT32 nunbi ts;

OSCCTET dat a[<adj ust ed_I en>*];

/] ctors

ASNLIT_<nane> ();

ASNLIT_<nane> (OSUI NT32 _nunbits, const OSOCTET* _data);
} ASNLT <nane>;

* <adjusted len> = ((<len> - 1)/8) + 1;

If the -strict-size command-line option is used, the numbits component within this type definition may be of adifferent
type (OSUINT8 or OSUINT16) or eliminated completely if the type is constrained to be afixed-size.

For example, the following ASN.1 production:
BS ::= [PRIVATE 220] BIT STRING (SI ZE (42))
Would trand ate to the following C typedef:

typedef struct BS {
OSUI NT32 nunbi ts;
OSOCTET dat a[6] ;
} BS;

In this case, six octets would be required to hold the 42 bits: eight in the first five bytes, and two in the last byte.

In the case of small-sized strings (less than or equal to 32 bits), a built-in type is used rather than generating a custom
type. This built-in typeis defined as follows:

typedef struct ASNLBitStr32 {
OSUI NT32 nunbi ts;

57

ASN.1 To C/C++ Mappings

OSOCTET dat a[4] ;
} ASNLBi t Str 32;

The C++ variant (ASN1TBItStr32) adds constructors for initialization and copying.

Note that for C++, ASN1C generates specia constructors and assignment operators to make populating a structure
easier. In this case, two constructors were generated: a default constructor and one that takes numbits and data as
arguments.

If the -strict-size command-line option is used, the numbits component would be eliminated since the type is
constrained to be a fixed-size.

Named Bits

Inthe ASN.1 standard, it is possible to define an enumerated hit string that specifies named constants for different bit
positions. ASN1C provides support for this type by generating symbolic constants and optional macros that can be
used to set, clear, or test these named hits. These symbolic constants equate the bit name to the bit number defined
in the specification. They can be used with the rtBitSet, rtBitClear, and rtBitTest run-time functions to set, clear, and
test the named bits. In addition, generated C++ code contains an enumerated constant added to the control class with
an entry for each of the bit numbers. These entries can be used in calls to the methods of the ASN1CBItSr class to
set, clear, and test bits.

The -genBitMacros command line option can be used to generate macros to set, clear, or test the named bitsin a bit
string structure. These macros offer better performance then using the run-time functions because all calculations of
mask and index values are done at compile time. However, they can result in alarge amount of additional generated
code.

For example, the following ASN.1 production:

NanedBS ::= BIT STRING { bitOne(1), bitTen(10) }
Would trandate to the following if -genBitMacros was specified:

/* Nanmed bit constants */

#defi ne NanmedBS bit One 1

#defi ne SET_BS3_bi t One(bs) \
<code to set bit..>

#def i ne CLEAR BS3_bi t One(bs) \
<code to clear bit..>

#def i ne TEST_BS3_bit One(bs) \
<code to test bit..>

#defi ne NanmedBS bit Ten 10

#defi ne SET_BS3_bit Ten(bs) \
<code to set bit..>

#def i ne CLEAR BS3_bit Ten(bs) \
<code to clear bit..>

#defi ne TEST_BS3_bit Ten(bs) \

58

ASN.1 To C/C++ Mappings

<code to test bhit..>
/* Type definitions */

typedef struct ASNIT_NanedBS {
OSUI NT32 nunbi ts;
OSOCTET dat a[2] ;

} NanedBS;

The named bit constants would be used to access the data array within the ASN1T_NamedBStype. If bit macros were
not generated, the rtxSetBit function could be used to set the named bit bitOne with the following code:

NanmedBS bs;
menset (&bs, 0, sizeof(bs));
rtxSetBit (bs.data, 10, NanedBS_bit One);
The statement to clear the bit using rtxClearBit would be as follows:
rtxClearBit (bs.data, 10, NanedBS bitOne);
Finally, the bit could be tested using rtxTestBit with the following statement:

if (rtxTestBit (bs.data, 10, NanedBS bitOne) {
bit is set

}

Note that the compiler generated afixed length dataarray for this specification. It did this because the maximum size of
the string isknown dueto the named bits- it must only belarge enough to hol d the maximum valued named bit constant.

Contents Constraint

It ispossible to specify acontents constraint on aBIT STRING type using the CONTAINING keyword. Thisindicates
that the encoded contents of the specified type should be packed within the BIT STRING container. An example of
this type of constraint is as follows:

ContainingBS ::= BI T STRING (CONTAI NI NG | NTECER)

ASN1C will generate a type definition that references the type that is within the containing constraint. In this case,
that would be INTEGER,; therefore, the generated type definition would be as follows:

t ypedef OSI NT32 Cont ai ni ngBS;

The generated encoders and decoders would handle the extra packing and unpacking required to get thisto and from a
BIT STRING container. Thisdirect use of the containing type can be suppressed through the use of the -noContaining
command-line argument. In this case, anormal BIT STRING type will be used and it will be the users responsibility
to do the necessary packing and unpacking operations to encode and decode the variable correctly.

ASNI1CBItStr Control Class

When C++ code generation is specified, a control classis generated for operating on the target bit string. Thisclassis
derived from the ASN1CBItStr class. This class contains methods for operating on bits within the string.

Objects of this class can aso be declared inline to make operating on bits within other ASN.1 constructs easier. For
example, in a SEQUENCE containing a bit string element the generated type will contain a public member variable

59

ASN.1 To C/C++ Mappings

containing the ASNT type that holds the message data. If one wanted to operate on the bit string contained within
that element, they could do so by using the ASN1CBItStr classinline asfollows:

ASNICBi t Str bs (<segVar >. <el enent >);
bs.set (0);

In this example, <seqVar> would represent a generated SEQUENCE variable type and <element> would represent a
bit string element within this type.

See the section on the ASN1CBItSr class in the ASN1C C/C++ Common Run-time User's Manual for details on all
of the methods available in this class.

OCTET STRING

The ASN.1 OCTET STRING typeis converted into a C structured type containing an integer to hold the number of
octets and an array of unsigned characters (OCTETS) to hold the octet string contents. The number of octets integer
specifies the actual number of octets in the contents field.

The alocation for the contents field depends on how the octet string is specified in the ASN.1 definition. If asize
constraint isused, astatic array of that sizeisgenerated; otherwise, apointer variableisgenerated to hold adynamically
allocated string. The decoder will automatically allocate memory to hold a parsed string based on the received length
of the string.

For C++, constructors and assignment operators are generated to make assigning variables to the structures easier.
In addition to the default constructor, a constructor is provided for string or binary data. An assignment operator is
generated for direct assignment of a null-terminated string to the structure (note: this assignment operator copies the
null terminator at the end of the string to the data).

Dynamic OCTET STRING

ASN.1 production:
<name> ::= OCTET STRI NG
Generated C code:
typedef OSDynCct Str <nane>;
If the -x64 command-line option is specified, the 64-bit variant of this structure is used:
t ypedef OSDynCct Str64 <nane>;
Generated C++ code:
typedef ASN1TDynCct Str ASNLT_<nane>;

In this case, different base types are used for C and C++. The difference between the two is the C++ version includes
constructors, assignment operators, and other hel per methods that make it easier to manipulate binary data.

The OSDynOctStr type (i.e., the type used in the C mapping) is defined in the 0sSysTypes.h header file as follows:

typedef struct OSDynQct Str {
OSUI NT32 nunoct s;
const OSOCTET* dat a;

} ASNLDynCct Str;

60

ASN.1 To C/C++ Mappings

The ASN1TDynOctStr type is defined in the ASN1TOctSr.h header file. This class extends the C OSDynOctStr class
and adds many additional constructors and methods. See the C/C++ Common Run-time Reference Manual for a
complete description of this class.

Static (sized) OCTET STRING

ASN.1 production:
<nane> ::= OCTET STRING (SI ZE (<l en>))
Generated C code:

t ypedef struct {
OSUI NT32 nunoct s;
OSOCTET dat a[<l en>] ;
} <nane>;

If the -strict-size command-line option is used, the numocts component within thistype definition may be of adifferent
type (OSUINT8 or OSUINT16) or eliminated completely if the type is constrained to be a fixed-size.

If the -x64 command-line option is used, the numocts component within this type definition would be a size type
(OSSIZE) instead of an unsigned 32-bit integer type.

Generated C++ code:

typedef struct {
GSUI NT32 nunoct s;
OSCCTET dat a[<l en>];
/] ctors
ASNLT_<name> ();
ASNLT_<name> (OSUI NT32 _nunocts,
const OSCCTET* _data);
ASNLT_<name> (const char* cstring);
/1 assignment operators
ASNLT_<name>& operator= (const char* cstring);
} ASNLT_ <nane>;

If the -strict-size command-line option is used, the numocts component within this type definition may be of adifferent
type (OSUINT8 or OSUINT16) or eliminated completely if the type is constrained to be afixed-size.

If the -x64 command-line option is used, the numocts component within this type definition would be a size type
(OSSIZE) instead of an unsigned 32-bit integer type.

Contents Constraint

It is possible to specify a contents constraint on an OCTET STRING type using the CONTAINING keyword. This
indicates that the encoded contents of the specified type should be packed within the OCTET STRING container. An
example of thistype of constraint is as follows:

Cont ai ni ngOS :: = OCTET STRI NG (CONTAI NI NG | NTEGER)

ASNI1C will generate a type definition that references the type that is within the containing constraint. In this case,
that would be INTEGER; therefore, the generated type definition would be as follows:

typedef OSI NT32 Cont ai ni ngGCS;

61

ASN.1 To C/C++ Mappings

The generated encoders and decoders would handle the extra packing and unpacking required to get this to and from
an OCTET STRING container. This direct use of the containing type can be suppressed through the use of the -
noContaining command-line argument. In this case, a normal OCTET STRING type will be used and it will be the
users responsibility to do the necessary packing and unpacking operations to encode and decode the variable correctly.

ENUMERATED

The ASN.1 ENUMERATED type is converted into different types depending on whether C or C++ code is being
generated. The C mapping is either aC enum or integer type depending on whether or not the ASN.1 typeisextensible
or not. The C++ mapping addsastruct wrapper around thistypeto provide anamespace to aid in making the enumerated
values unique across all modules.

C Mapping
ASN.1 production:

<nane> ::= ENUMERATED (<idl>(<val 1>), <id2>(<val2>), ...)
Generated code :

typedef enum {
idl = val 1,
id2 = val 2,

} <name>_Root

t ypedef OSUI NT32 <name>;

The compiler will automatically generate anew identifier valueif it detects aduplicate within the source specification.
The format of this generated identifier is 'id_n' where id is the original identifier and n is a sequential number. The
compiler will output an informational message when this is done. This message is only displayed if the -warnings
qualifier is specified on the command line.

A configuration setting is also available to further disambiguate duplicate enumerated item names. Thisisthe "enum
prefix" setting that is available at both the module and production levels. For example, the following would cause the
prefix "h225" to be added to all enumerated identifiers within the H225 module:

<nodul e>

<name>H225</ nanme>

<enunPr ef i x>h225</ enunPr ef i x>
</ nodul e>

The -fgenum (fully-qualified enum) option may also be used to make C names unique. When specified, enumerated
identifiers will be automatically prefixed with the enclosing type name. In the specification above, each of the
identifiers would have the form "<name>_<id>". This can be useful in situations where common identifiers are often
repeated in different types. Thisis not a problem in C++ because the identifiers are wrapped in a struct declaration
which provides a namespace for the values (see the C++ section below for more details).

The -use-enum-types (use enumerated types) option causes the direct use of the generated enum type as the C type.
The general patterninthiscaseis.

typedef enum {
idl = val 1,
id2 = val 2,

62

ASN.1 To C/C++ Mappings

<nanme>_UNKNOWN
} <name>;

The advantages of the type generated in the former case are a) the integer typeis of a known size, and b) it can hold
unknown values. However, some users don't care about this and would prefer the second case which provide a more
debug friendly format for modern IDE's which can normally shown the symbolic value rather than the numeric.

For PER, unknown extension values are encoded by encoding an index into the sorted list of extension values.
This means that the value associated with an unknown extension value is itself unknown. Therefore, when the
ENUMERATED is represented as OSUI NT32 (i.e. - use- enum t ypes is not used), an unknown extension value is
represented for PER by the value ASN_K_EXTENUM

In addition to the generated type definition, helper functions are also generated to make it easier to convert to/from
enumerated and string format. The signatures of these functions are as follows:

const OSUTF8CHAR* <name>_ ToString (OSI NT32 val ue);
i nt <nane>_ToEnum (OSCTXT* pctxt, const OSUTF8CHAR* val ue, <nane>* pval ue);

The first function would be used to convert an enumerated value into string form. The second would do the opposite
- convert from string to enumerated.

C++ Mapping
ASN.1 production:

<nane> ::= ENUMERATED (<idl>(<val 1>), <id2>(<val2>), ...)
Generated code :

struct <name> {
enum Root {
idl val 1,
id2 val 2,

}
[enum Ext ({

extidl = extval 1,

}]...
P

t ypedef OSUI NT32 ASNLT_<nane>

The struct type provides a namespace for the enumerated elements. This allows the same enumerated constant names
to be used in different productions within the ASN.1 specification. An enumerated item is specified in the code using
the <name>::<id> form.

Every generated definition contains a Root enumerated specification and, optionally, an Ext specification. The Root
specification contains the root elements of the type (or al of the elementsiif it is not an extended type), and the Ext
specification contains the extension enumerated items.

The form of the typedef following the struct specification depends on whether or not the enumerated type contains
an extension marker or not. If amarker is present, it means the type can contain values outside the root enumeration.
An OSUINT32 is always used in the final typedef to ensure a consistent size of an enumerated variable and to handle
the case of unknown extension values.

63

ASN.1 To C/C++ Mappings

If the -use-enum-types (use enumerated types) command-line option is sel ected, the type generated for C++ isidentical
to what is generated for the C case documented above when this option is selected.

NULL

The ASN.1 NULL type does not generate an associated C or C++ type definition

OBJECT IDENTIFIER

The ASN.1 OBJECT IDENTIFIER typeis converted into a C or C++ structured type to hold the subidentifier values
that make up the object identifier.

ASN.1 production:

<nane> ::= OBJECT | DENTI FI ER
Generated C code:

t ypedef ASNLOBJI D <nane>;
Generated C++ code:

typedef ASNLITCbjId ASNLT_<name>;

In this case, different base types are used for C and C++. The difference between the two is the C++ version includes
constructors and assignment operators that make setting the value a bit easier.

The ASN1OBJID type (i.e., the type used in the C mapping) is defined in asnltype.h to be the following:

typedef struct {

OSUI NT32 numids; /* nunber of subidentifiers */

OSUI NT32 subi d[ASN_K_MAXSUBI DS] ; / * subi dentifier values */
} ASNLOBJI D

The constant ASN_K _MAXSUBI DS specifies the maximum number of sub-identifiers that can be assigned to avalue
of the type. This constant is set to 128 as per the ASN.1 standard.

The ASN1TObjld type used in the C++ mapping is defined in ASN1TObjld.h. This class extends the C ASN10BJID
structure and adds many additional constructors and helper methods. See the ASN1C C/C++ Common Run-time
Reference Manual for more details.

RELATIVE-OID

The ASN.1 RELATIVE-OID typeisconverted into aC or C++ structured typethat isidentical to that of the OBJECT
IDENTIFIER described above:

ASN.1 production:

<nane> ::= RELATIVE-Q D
Generated C code:

t ypedef ASNLOBJI D <nane>;
Generated C++ code:

typedef ASNLITCbjId ASNLT_<name>;

ASN.1 To C/C++ Mappings

A RELATIVE-OID isidentical toan OBJECT IDENTIFIER except that it does not contain therestriction on theinitial
two arc values that they fall within a certain range (see the X.680 standard for more details on this).

REAL

The ASN.1 REAL typeis mapped to the C type OSREAL. In the global include file 0sSysTypes.h, OSREAL is defined
to be adouble.

ASN.1 production:

ASN. 1 producti on:
Generated C code:

typedef OSREAL <name>;
Generated C++ code:

t ypedef OSREAL ASNLT <nane>;

SEQUENCE

This section discusses the mapping of an ASN.1 SEQUENCE type to C. The C++ mapping is similar but there are
some differences. These are discussed in the C++ Mapping of SEQUENCE subsection at the end of this section.

An ASN.1 SEQUENCE is a constructed type consisting of a series of element definitions. These elements can be of
any ASN.1 typeincluding other constructed types. For example, it is possible to nest a SEQUENCE definition within
another SEQUENCE definition as follows:

A ::= SEQUENCE {
X SEQUENCE {
al | NTEGER,
a2 BOOLEAN
}

y OCTET STRING (Sl ZE (10))
}

In this example, the production has two elements: x and y. The nested SEQUENCE x has two additional elements:
al anda2.

The ASNIC compiler first recursively pulls al of the embedded constructed elements out of the
SEQUENCE and forms new internal types. The names of these types are of the form <nanme>_<el enent -
nanel> <el ement name2>_ ... <el enment - nameN>. For example, in the definition above, two temporary
types would be generated: A x and Ay (A _vis generated because a static OCTET STRING maps to a C++ struct

type).
The general form is asfollows:
ASN.1 production:

<nane> ::= SEQUENCE ({
<el enent 1- nane> <el enent 1-type>,
<el enent 2- nane> <el enent 2-type>,

}
Generated C code:

65

ASN.1 To C/C++ Mappings

typedef struct {
<typel> <el enent 1- nane>;
<type2> <el enent 2- nane>;
} <name>;
- Or -
typedef struct {
} <tenmpNanel>
typedef struct {
} <tenmpNane2>
t ypedef struct {
<t enpNanel> <el enment 1- nanme>;
<t enpNane2> <el enent 2- nanme>;
} <nanme>;
The <t ypel> and <t ype2> placeholders represent the equivalent C types for the ASN.1 types <el enent 1-
t ype> and <el enment 2-t ype> respectively. This form of the structure will be generated if the internal types are
primitive. <t enpNane 1> and <t enpNamnme2> areformed using the algorithm described abovefor pulling structured
types out of the definition. Thisform is used for constructed elements and elements that map to structured C types.
The example above would result in the following generated C typedefs:

typedef struct A x {

OSI NT32 al;
OSBOOL a2;
}OAX;

typedef struct Ay {
OSUI NT32 nunoct s;
OSOCTET dat a[10] ;

} ALY,

typedef struct A {
A X X;
Ay y;

}A

In this case, elements x and y map to structured C types, so temporary typedefs are generated.

In the case of nesting levels greater than two, all of the intermediate element names are used to form the final name.
For example, consider the following type definition that contains three nesting levels:

X ::= SEQUENCE {
a SEQUENCE {
aa SEQUENCE { x | NTEGER, y BOOLEAN },
bb | NTEGER
}
}

66

ASN.1 To C/C++ Mappings

In this case, the generation of temporary types resultsin the following equivalent type definitions:

X-a-aa ::= SEQUENCE { x | NTEGER, y BOOLEAN }
X-a ::= SEQUENCE { aa X-a-aa, bb INTEGER }
X ::= SEQUENCE { X-a a }

Note that the name for the aa element type is X- a- aa. It contains both the name for a (at level 1) and aa (at level
2). The concatanation of all of the intermediate element names can lead to very long names in some cases. To get
around the problem, the -shortnames command-line option can be used to form shorter names. In this case, only the
type name and the last element name are used. In the example above, this would lead to an element name of X- aa.
The disadvantage of thisisthat the names may not always be unique. If using this option results in non-unique names,
an _n suffix is added where n is a sequential number to make the names unique.

It is possible to suppress the pulling out of nested types to form new types through the use of the <i nl i ne/ >
configuration item. Thiswill not work in all cases, however. It is at times necessary to use the si zeof operator on
an intermediate type to determine the size of a structure for memory allocations. If atemporary type is not created, it
will not be possible to determine this size. An error will be reported in this case.

Note that although the compiler can handle embedded constructed types within productions, it is generaly not
considered good style to define productions this way. It is much better to manually define the constructed types for
use in the final production definition. For example, the production defined at the start of this section can be rewritten
as the following set of productions:

X 1= SEQUENCE {
al | NTEGER,
a2 BOOLEAN
}
Y ::= OCTET STRI NG
A ::= SEQUENCE {
X X,
Yy
}

This makes the generated code easier to understand for the end user.
Unnamed Elements

Note

As of X.680, unnamed elements are not allowed: elements must be named. ASN1C till provides backward
compatibility support for this syntax however.

Inan ASN.1 SEQUENCE definition, the <element-name> tokens at the beginning of element declarationsare optional.
It is possible to include only a type name without afield identifier to define an element. This is normally done with
defined type elements, but can be done with built-in types as well. An example of a SEQUENCE with unnamed
elements would be as follows:

Anlnt ::= [PRIVATE 1] | NTEGER

Aseq ::= [PRI VATE 2] SEQUENCE ({
X | NTEGER,
Anl nt

}

67

ASN.1 To C/C++ Mappings

In this case, the first element (x) is named and the second element is unnamed.

ASNI1C handles this by generating an element name using the type name with the first character set to lower case.
For built-in types, a constant element name is used for each type (for example, alnt isused for INTEGER). Thereis
one caveat, however. ASN1C cannot handle multiple unnamed elementsin a SEQUENCE or SET with the same type
names. Element names must be used in this case to distinguish the elements.

So, for the example above, the generated code would be as follows:

typedef OSI NT32 Anlnt;

typedef struct Aseq {
OSI NT32 x;
Anl nt anlnt;

} Aseq;

OPTIONAL keyword

Elements within a sequence can be declared to be optional using the OPTIONAL keyword. This indicates that the
element is not required in the encoded message. An additional construct is added to the generated code to indicate
whether an optional element is present in the message or not. This construct is a bit structure placed at the beginning
of the generated sequence structure. This structure always has variable name 'm' and contains single-bit elements of
the form '<element-name>Present’ as follows:

struct ({
unsi gned <el enent - nanel>Present : 1,
unsi gned <el enent - nane2>Present : 1,

bomo

In this case, the elements included in this construct correspond to only those elements marked as OPTIONAL within
the production. If a production contains no optional elements, the entire construct is omitted.

For example, the production in the previous example can be changed to make both elements optional:

Aseq ::= [PRI VATE 2] SEQUENCE {
X | NTEGER OPTI ONAL,
Anlnt OPTI ONAL

}

In this case, the following C typedef is generated:

typedef struct Aseq {
struct {
unsi gned xPresent : 1,
unsi gned anlntPresent : 1

}om

OSI NT32 X;

Anl nt anl nt;
} Aseq;

When this structure is popul ated for encoding, the developer must set the xPresent and anl ntPresent flags accordingly
to indicate whether the elements are to be included in the encoded message or not. Conversely, when a message is
decoded into this structure, the developer must test the flags to determine if the element was provided in the message
or not.

68

ASN.1 To C/C++ Mappings

Thegenerated C++ structurewill contain aconstructor if OPTIONAL elementsare present. This constructor will set all
optional bitsto zero when avariable of the structured type is declared. The programmer therefore does not have to be
worried about clearing bits for elementsthat are not used; only with setting bitsfor the elementsthat are to be encoded.

DEFAULT keyword

The DEFAULT keyword allows a default value to be specified for elements within the SEQUENCE. ASN1C will
parse this specification and treat it as it does an optional element. Note that the value specification is only parsed in
simple casesfor primitive values. It isup to the programmer to provide the value in complex cases. For BER encoding,
avalue must be specified be it the default or other value.

For DER or PER, it is a requirement that no value be present in the encoding for the default value. For integer and
boolean default values, the compiler automatically generates code to handle this requirement based on the value in
the structure. For other values, an optional present flag bit is generated. The programmer must set this bit to false
on the encode side to specify default value selected. If thisis done, a value is not encoded into the message. On the
decode side, the developer must test for present bit not set. If thisisthe case, the default value specified in the ASN.1
specification must be used and the value in the structure ignored.

Extension Elements

If the SEQUENCE type contains an open extension field (i.e, a ... at the end of the specification or a ..., ... in the
middle), a special element will be inserted to capture encoded extension elements for inclusion in the final encoded
message. Thiselement will be of type OSRTDList and have the name extElem1. Thisisalinked list of open typefields.
Each entry inthelist is of type ASN1OpenType. Thefieldswill contain complete encodings of any extension elements
that may have been present in a message when it is decoded. On subsequent encode of the type, the extension fields
will be copied into the new message.

The-noOpenExt command line option can be used to alter this default behavior. If thisoptionis specified, the extEleml
element is not included in the generated code and extension data that may be present in a decoded message is simply
dropped.

If the SEQUENCE type contains an extension marker and extension elements, then the actual extension elements
will be present in addition to the extElem1 element. These elements will be treated as optional elements whether they
were declared that way or not. The reason is because a version 1 message could be received that does not contain
the elements.

Additional bits will be generated in the bit mask if version brackets are present. These are groupings of extended
elements that typically correspond to a particular version of a protocol. An example would be as follows:

Test Sequence ::= SEQUENCE {
i tem code | NTEGER (0. . 254),
item nane | A5String (SIZE (3..10)) OPTI ONAL,
R
ur gency ENUMERATED { normal, high } DEFAULT nornal ,
[[alternate-item code | NTEGER (0. . 254),
alternate-item nane | A5String (SIZE (3..10)) OPTI ONAL
11
}

In this case, a special bit flag will be added to the mask structure to indicate the presence or absence of the entire
element block. Thiswill be of theform"_v#ExtPresent" where # would be replaced by the sequential version number.
In the example above, this number would be three (two would be the version extension number of the urgency field).
Therefore, the generated bit mask would be as follows:

struct {

69

ASN.1 To C/C++ Mappings

unsi gned item namePresent : 1;

unsi gned urgencyPresent : 1;

unsi gned _v3ExtPresent : 1;

unsi gned alternate_item nanePresent : 1;
}m

In this case, the setting of the _v3ExtPresent flag would indicate the presence or absence of the entire version block.
Notethat it is also possible to have optional items within the block (alternate-item-name).

C++ Mapping of SEQUENCE

The C++ mapping of an ASN.1 SEQUENCE typeisvery similar to the C mapping. However, there are someimportant
differences:

1. Aswith all C++ types, the prefix ASN1T _ is added before the typename to distinguish the data class from the
control class (the control class containsan ASN1C_ prefix).

2. A default constructor is generated to initialize the structure elements. This constructor will initialize all elements
and set any simple default values that may have been specified in the ASN.1 definition.

3. If the -genCopy command line switch was specified, a copy constructor will be generated to alow an instance of
the data contained within a PDU control class object to be copied.

4. Also if -genCopy was specified, a destructor is generated if the type contains dynamic fields. This destructor will
free all memory held by the type when the object is deleted or goes out of scope.

SET

The ASN.1 SET typeisconverted into aC or C++ structured typethat isidentical to that for SEQUENCE as described
in the previous section. The only difference between SEQUENCE and SET isthat elements may be transmitted in any
order in a SET whereas they must be in the defined order in a SEQUENCE. The only impact this has on ASN1C is
in the generated decoder for a SET type.

The decoder must take into account the possibility of out-of-order elements. Thisis handled by using aloop to parse
each element in the message. Each time an item is parsed, an internal mask bit within the decoder is set to indicate
the element was received. The complete set of received elements is then checked after the loop is completed to verify
all required elements were received.

SEQUENCE OF

The ASN.1 SEQUENCE OF typeis converted into one of the following C/C++ types:
A doubly-linked list structure (OSRTDL.ist for C, or ASN1TSeqOfList, aclass derived from OSRTDLIist, for C++)

» A structure containing an integer count of elements and a pointer to hold an array of the referenced data type (a
dynamic array)

« A structure containing an integer count of elementsand afixed-sized array of thereferenced datatype (astatic array)
* A C++ Standard Library container class, such as std::list (when -cppll is specified on the command line)

The linked list option is the default for constructed types. An array is used for a sequence of primitive types. The
allocation for the contents field of the array depends on how the SEQUENCE OF is specified in the ASN.1 definition.
If asize constraint is used, a static array of that size is generated; otherwise, a pointer variable is generated to hold a
dynamically allocated array of values. The decoder will automatically allocate memory to hold parsed SEQUENCE
OF data values.

70

ASN.1 To C/C++ Mappings

The default type may be altered through the use of command-line options:

The -array option may be used to indicate an array type should be used as the default instead of alinked list for all
types. If the type does not contain a size constraint, adynamic array will be used; otherwise a static array of the given
sizewill be used. The -arraySze option may be used to force use of astatic array for all types. SEQUENCE OF types
not having a size constraint will result in a static array being generated of the size specified in the -arraySize option.
The -cppll option will alter the code to use std::array instead of plain C++ static arrays.

The -dynamicArray option will result in the use of a dynamic array for all SEQUENCE OF types.

The -linkedList option will result in the use of alinked list for all of these types. The -cpp11 option will result in using
std::list wherever alinked list would have been used othewise.

Thetype used for agiven SEQUENCE OF construct can be modified by the use of aconfiguration item. The <storage>
qualifier is used for this purpose. The dynamicArray keyword can be used at the global, module, or production level
to specify that dynamic memory (i.e., apointer) is used for the array. The syntax of this qualifier is as follows:

<st or age>dynam cArray</ st orage>

The array keyword is used to specify that a static array is to be generated to hold the data. In this case, if the
SEQUENCE OF production does not contain a size constraint, the maxSze attribute must be used to specify the
maximum size of the array. For example:

<st orage nmaxSi ze="100">array</ st orage>
If maxSzeisnot specified and the ASN.1 production contains no size constraint, then a dynamic array is used.

The std::array keyword isidentical to the array keyword except that it specifies use of std::array instead of aplain C
++ dtatic array. Its use reguires the -cppl1 command line option.

Thelist keyword can also be used inasimilar fashion to specify the use of alinked-linked structureto hold the elements:
<st orage>l i st </ st or age>

When -cppll is specified on the command line, you can also use the following storage options to select the use of C
++ Standard Library container classes:

<storage>std::|ist</storage>
<storage>std::vector</storage>
<storage>std:: deque</storage>

See the section entitled Compiler Configuration File for further details on setting up a configuration file.

Dynamic SEQUENCE OF Type
ASN.1 production:

<nanme> ::= SEQUENCE OF <type>
Generated C code:

t ypedef struct {
OSUI NT32 n;
<type>* el em

} <nane>;

Generated C++ code:

71

ASN.1 To C/C++ Mappings

typedef struct [: public ASNITPDU]| {
OSUI NT32 n;
<type>* el em
ASNLT_<name>();
[~ASNLT_<name>() ;]
} ASNLIT_<nane>;

Note that parsed values can be accessed from the dynamic data variable just as they would be from a stetic array
variable; i.e., an array subscript can be used (ex: elem[Q], elem[1]...).

In the case of C++, aconstructor is generated to initialize the element count to zero. If the type represents a PDU type
(either by default by not referencing any other types or explicitly viathe -pdu command-line option), the ASN1ITPDU
base class is extended and a destructor is added. This destructor ensures that memory allocated for elementsis freed
upon destruction of the object.

Static (sized) SEQUENCE OF Type

ASN.1 production:
<name> ::= SEQUENCE (SIZE (<len>)) OF <type>
Generated C code:

typedef struct {

OSUI NT32 n;

<type> el en<l en>];
} <nanme>;

Generated C++ code:

typedef struct {

OSUI NT32 n;

<type> el en <l en>];
} ASNLIT_ <nane>;

Generated C++ code with -cpp11:

typedef struct {

OSUI NT32 n;

std::array<<type>, <len>> elem
} ASNLIT <nane>;

If the -strict-size command-line option is used, the n component within this type definition may be of a different type
(OSUINTS8 or OSUINT16) or eliminated completely if the type is constrained to be a fixed-size.

List-based SEQUENCE OF Type

A doubly-linked list header type (OSRTDLIst) is used for the type definition if the list storage configuration setting
is used (see above). This can be used for either a sized or unsized SEQUENCE OF construct. The generated C or C
++ codeisasfollows:

Generated C code:
t ypedef OSRTDLi st <nane>;

Generated C++ code:

72

ASN.1 To C/C++ Mappings

typedef ASN1TSeqOFLi st ASNLT_<nane>;

The type definition of the OSRTDL st structure can be found in the 0sSysTypes.h header file. The common run-time
utility functions beginning with the prefix rtxDList are available for initializing and adding elements to the list. See
the C/C++ Common Run-time Reference Manual for afull description of these functions.

For C++, the ASN1TSeqOfList class is used, or, in the case of PDU types, the ASNITPDUSeqOfList class.
The ASN1TSeqOfList extends the C OSRTDList structure and adds constructors and other helper methods.
The ASNITPDUSeqOfList is similar except that it aso extends the ASNITPDU base class to add additional
memory management capabilities needed by PDU types to automatically release memory on destruction. See the
ASN1CSeqOfList sectioninthe C/C++ Common Run-time Reference Manual for detailson all of the methods available
inthisclass.

Populating Linked-List Structures

Populating generated list-based SEQUENCE OF structures for the most part requires the use of dynamic memory to
allocate elements to be added to the list (note that it is possible to use static elements for this, but this is unusual).
The recommended method is to use the built in run-time memory management facilities available within the ASN1C
runtime library. Thisalows al list memory to be freed with one call after encoding is complete.

In the case of C, the rtxMemaAlloc or rtxMemAllocType function would first be used to allocate arecord of the element
type. This element would then be initialized and populated with data. The rtxDListAppend function would then be
called to append it to the given list.

For C++, the compiler generates the helper methods NewElement and Append in the generated control class for a
SEQUENCE OF type. An instance of this class can be created using the list element within a generated structure as
a parameter. The helper methods can then be used to allocate and initialize an element and then append it to the list
after it is populated.

Seethecpp/ sanpl e_ber/ enpl oyee/ wri t er. cpp filefor an example of how these methods are used. In this
program, the following logic is used to populate one of the elementsinthe chi | dr en list for encoding:

ASNLT_Chi I dIl nformati on* pChil dl nfo;
ASNLIC SeqOf Childlnformation |istHel per (encodeBuffer, nsgData.children);

pChil dl nfo = IistHel per. Newkl emrent () ;

fill_Name (&pChildlnfo->nane, "Ralph", "T", "Smith");
pChi |l dl nfo->dateO'Birth = "19571111";

i st Hel per. Append (pChildlnfo);

In this example, nsgDat a is an instance of the main PDU class being encoded (Per sonnel Recor d). This object
contains an element called chi | dr en which is a linked-list of Chi | dI nf or mat i on records. The code snippet
illustrates how to use the generated control class for the list to alocate arecord, populate it, and append it to the list.

ASNI1C aso generates helper methods in SEQUENCE, SET, and CHOICE control classes to assist in alocating
and adding elements to inline SEQUENCE OF lists. These methods are named new_<el en>_el enent and
append_t o_<el en» where <el em> would be replaced with the name of the element they apply to.

C++ Standard Library Containers for SEQUNCE OF Type

As noted above, -cppll can be used (among other things) to specify that std::list should be used for SEQUENCE
OF types where a linked list would otherwise be used, while other C++ Standard library containers (e.g. std::vector)
can be specified by using a configuration file. When a C++ STL classis used, the generated C++ code will resemble
the following:

typedef std::list<ASNLT_<El ement TypeNanme*> ASNLT_<SeqOf TypeNane>;

73

ASN.1 To C/C++ Mappings

The contained type will always be a pointer type.

Generation of Temporary Types for SEQUENCE OF Elements

As with other constructed types, the <t ype> variable can reference any ASN.1 type, including other ASN.1
constructed types. Therefore, it is possible to have a SEQUENCE OF SEQUENCE, SEQUENCE OF CHOICE, etc.

When a constructed type or type that mapsto a C structured type is referenced, atemporary type is generated for use
in the final production. The format of thistemporary type nameis asfollows:

<pr odNane>_el enent
In this definition, <pr odNane> refers to the name of the production containing the SEQUENCE OF type.
For example, asimple (and very common) single level nested SEQUENCE OF construct might be as follows:
A ::= SEQUENCE OF SEQUENCE { a I NTEGER, b BOOLEAN }

In this case, a temporary type is generated for the element of the SEQUENCE OF production. This results in the
following two equivalent ASN.1 types:

A-elenent ::= SEQUENCE { a | NTEGER, b BOOLEAN }

A ::= SEQUENCE OF A-el erment

Thesetypesarethen convertedintotheequivalent C or C++t ypedef susing the standard mapping that was previously
described.

SEQUENCE OF Type Elements in Other Constructed Types

Frequently, a SEQUENCE OF construct is used to define an array of some common type in an element in some other
constructed type (for example, a SEQUENCE). An example of thisisasfollows:

SonmePDU : : = SEQUENCE {
addr esses SEQUENCE OF Al i asAddress,

}

Normally, thiswould result in the addr esses element being pulled out and used to create atemporary type with a
name egual to SomePDU- addr esses asfollows:

SormePDU- addr esses ::= SEQUENCE OF Al i asAddress

SonmePDU :: = SEQUENCE {
addr esses SomePDU- addr esses,

}

However, when the SEQUENCE OF element references a simple defined type as above with no additional tagging
or constraint information, an optimization is done to reduce the size of the generated code. This optimization is to
generate a common name for the new temporary type that can be used for other similar references. The form of this
common name is as follows:

_SeqOf <el enent Pr odNane>
So instead of this:

SormePDU- addr esses ::= SEQUENCE OF Al i asAddress

74

ASN.1 To C/C++ Mappings

The following equivalent type would be generated:
_SeqOf Al i asAddress ::= SEQUENCE OF Al i asAddress

The advantage is that the new type can now be easily reused if SEQUENCE OF AliasAddress is used in any other
element declarations. Note the (illegal) use of an underscore in the first position. This is to ensure that no name
collisions occur with other ASN.1 productions defined within the specification.

Some SEQUENCE OF elementsin constructed typesareinlined. In other words, no temporary typeis created; instead,
either the OSRTDLI st reference (for linked list) or the array definition is inserted directly into the generated C
structure. Thisis particularly true when X SD files are being compiled.

SET OF

The ASN.1 SET OF type is converted into a C or C++ structured type that is identical to that for SEQUENCE OF
as described in the previous section.

CHOICE

The ASN.1 CHOICE typeis converted into a C or C++ structured type containing an integer for the choice tag value
(t) followed by aunion (u) of al of the equivalent types that make up the CHOICE elements.

Thetag valueis simply asequential number starting at one for each alternative in the CHOICE. A #def i ne constant
isgenerated for each of these values. Theformat of thisconstantisT_<nane>_<el enent - nane> where<nane>
isthe name of the ASN.1 production and <el enent - name> isthe name of the CHOICE alternative. If a CHOICE
aternativeisnot given an explicit name, then <el enment - nanme> isautomatically generated by taking the type name
and making the first letter lowercase (this is the same as was done for the ASN.1 SEQUENCE type with unnamed
elements). If the generated name is not unique, a sequential number is appended to make it unique.

The union of choice aternatives is made of the equivalent C or C++ type definition followed by the element name
for each of the elements. The rules for element generation are essentially the same as was described for SEQUENCE
above. Constructed types or elements that map to C structured types are pulled out and temporary types are created.
Unnamed elements names are automatically generated from the type name by making the first character of the name
lowercase.

One difference between temporary types used in a SEQUENCE and in a CHOICE is that a pointer variable will be
generated for use within the CHOICE union construct.

ASN.1 production:

<nane> ::= CHO CE {
<el enent 1- nane> <el enent 1-type>,
<el enent 2- nane> <el enent 2-type>,

}

Generated C code:

#define T _<nanme>_<el enent 1- nane> 1
#defi ne T_<nanme>_<el enent 2- nane> 2

typedef struct {
i nt t;
uni on {
<typel> <el enent 1- nane>;

75

ASN.1 To C/C++ Mappings

<type2> <el enent 2- nane>;

, o

} <nane>;

-or-
typedef struct {
} <tenpNamels;
typedef struct {
} <tenpName2>;

typedef struct {
int t;
uni on {
<t enpNanel>* <el enent 1- nane>;
<t enpNane2>* <el enent 2- nane>;

, o

} <nanme>;

If the -use-enum+types command-line option is used, an enumerated typeis used instead of the #define statements and
integer t member variable as follows:

typedef struct {
enum T {
T _<name>_<el enment 1- name>,
T _<name>_<el enment 2- name>,

J

uni on {
<typel> <el enent 1- nane>;
<type2> <el enent 2- nane>;

, o

} <name>;

If the -static command line option or <st or age> static </storage> configuration variable is set for the
given production, then pointers will not be used for the variable declarations.

Note

Thisis true for the C case only; for C++, pointers must be used due to the fact that the generated code will
not compile if constructors are used in a non-pointer variable within a union construct.

The C++ mapping is the same with the exception that the ASNLT _ prefix is added to the generated type name.

<typel> and <t ype2> are the equivalent C types representing the ASN.1 types <el enment 1-t ype> and
<el enent 2- t ype> respectively. <t enpNanme 1> and <t enpNane2> represent the names of temporary typesthat
may have been generated as the result of using nested constructed types within the definition.

Choice alternatives may be unnamed, in which case <el enent - nanme> is derived from <el enent -t ype> by
making the first letter lowercase. One needs to be careful when nesting CHOICE structures at different levels within

76

ASN.1 To C/C++ Mappings

other nested ASN.1 structures (SEQUENCES, SETSs, or other CHOICES). A problem arises when CHOICE element
names at different levels are not unique (thisislikely when elements are unnamed). The problem is that generated tag
constants are not guaranteed to be unique since only the production and end element names are used.

The compiler gets around this problem by checking for duplicates. If the generated name is not unique, a sequential
number is appended to make it unique. The compiler outputs an informational message when it does this.

An example of this can be found in the following production:

C:.:= CHOCE {
[0] | NTEGER,
[1] CHO CE {

[0] | NTEGER,
[1] BOCOLEAN

}

Thiswill produce the following C code:

#define T_C alnt
#defi ne T_C aChoice
#define T_C alnt_1
#define T_C aBool

NEFEDNPR

t ypedef struct {
int t;
uni on {
OSI NT32 al nt;
struct {
int t;
uni on {
OSI NT32 al nt;
OSBOOL aBool ;
}ous
} acChoi ce;
} G

Notethat 1 was appended to the second instance of T_C_al nt . Developers must take care to ensure they are using
the correct tag constant value when this happens.

Populating Generated Choice Structures

Populating generated CHOICE structures is more complex then for other generated types due to the use of pointers
within the union construct. As previously mentioned, the use of pointers with C can be prevented by using the -
static command line option. If this is done, the elements within the union construct will be standard inline variable
declarations and can be populated directly. Otherwise, the methods listed below can be used to populate the variabl es.

The recommended way to popul ate the pointer elementsis to declare variables of the embedded type to be used on the
stack prior to populating the CHOICE structure. The embedded variable would then be populated with the data to be
encoded and then the address of this variable would be plugged into the CHOICE union pointer field.

Consider the following definitions:

Ascii String ::= [PRIVATE 28] OCTET STRI NG
EBCDI CString ::= [PRIVATE 29] OCTET STRI NG
String ::= CHOCE { AsciiString, EBCDI CString }

77

ASN.1 To C/C++ Mappings

Thiswould result in the following type definitions;

typedef OSDynCctStr Ascii String;
t ypedef OSDynCct Str EBCDI CStri ng;

typedef struct String {
int t;

uni on {
[*t =1 %
Ascii String *asciiString;
[*t =2 %
EBCDI CString *eBCDI CStri ng;
}ous
} String;

To set the AsciiSring choice value, one would first declare an AsciiString variable, populate it, and then plug the
addressinto a variable of type Sring structure as follows:

Ascii String ascii String;
String string;

asciiString = "Hello!";
string.t = T_String_AsciiString;
string.u.asciiString = &ascii String;

It is also possible to alocate dynamic memory for the CHOICE union option variable; but one must be careful to
release this memory when done with the structure. If the built in memory-management functions/macros are used
(rtxMem), all memory used for the variablesis automatically released when rtxMemFree is called.

Open Type

Note

The X.680 Open Type replaces the X.208 ANY or ANY DEFINED BY constructs. An ANY or ANY
DEFINED BY encountered within an ASN.1 module will result in the generation of code corresponding to
the Open Type described below.

An Open Type as defined in the X.680 standard is specified as a reference to a Type Field in an Information Object
Class. The most common form of this is when the Type field in the built-in TY PE-IDENTIFIER class is referenced
asfollows:

TYPE- | DENTI FI ER. &Type
See the section in this document on Information Objects for a more detailed explanation.

The Open Typeis converted into a C or C++ structure used to model a dynamic OCTET STRING type. This structure
contains apointer and length field. The pointer isassumed to point at astring of previously encoded ASN.1 data. When
amessage containing an open type is decoded, the address of the open type contentsfield is stored in the pointer field
and the length of the component is stored in the length field.

The general mapping of an Open Typeto C/C++ isasfollows:
ASN.1 production:

<name> ::= ANY

78

ASN.1 To C/C++ Mappings

Generated C code:

t ypedef ASN1QpenType <name>;
Generated C++ code:

typedef ASN1TOpenType <name>;

The difference between the two types is the C++ version contains constructors to initialize the value to zero or to a
given open type value.

If the -tables command line option is selected and the ASN.1 type definition references a table constraint, the code
generated is different. In this case, ASN1OpenType above is replaced with ASN1Object (or ASN1TObject for C++).
Thisis defined in asnltype.h asfollows:

typedef struct { /* generic table constraint value hol der */
ASN1OpenType encoded;

voi d* decoded;
OSI NT32 i ndex; /* table index */
} ASN1Obj ect;

This allows a value of any ASN.1 type to be represented in both encoded and decoded forms. Encoded form is the
open type form shown above. It is simply a pointer to a byte buffer and a count of the number of byesin the encoded
message component. The decoded form is a pointer to a variable of a specific type. The pointer is void because there
could be a potentially large number of different types that can be represented in the table constraint used to constrain
atypefield to a given set of values. The index member of the type is for interna use by table constraint processing
functions to keep track of which row in atable is being referenced.

If the -table-unions command line option is used, amore specialized type of structureis generated. In this case, instead
of avoid pointer being used to hold an instance of atype containing datato be encoded, all entries from the referenced
Information Object Set are used in a union structure in much the same way asis donein a CHOICE construct.

If codeisbeing generated from an XML schemafile and the file contains an <xsd:any> wildcard declaration, aspecial
type of any structure is inserted into the generated C/C++ code. This is the type OSXSDAny which is defined in the
0sSysTypes.h header file. This structure contains a union which contains alternatives for datain either binary or XML
text form. This makes it possible to transfer datain either binary form if working with binary encoding rules or XML
form if working with XML.

Character String Types

8-bit character character-string types are either represented using a character pointer (const char *) or, if -cpp11
is specified on the command line, st d: : st ri ng. Inthe caseof const char *, the pointer is used to hold a null-
terminated C string for encoding/decoding. For encoding, the string can either be static (i.e., astring literal or address
of astatic buffer) or dynamic. The decoder allocates dynamic memory from within its context to hold the memory for
the string. This memory is released when ther t xMentr ee functionis called.

The useful character string typesin ASN.1 are asfollows:

UTF8St ri ng
NumericString
Printabl eString

[UNI VERSAL 12] I MPLICIT OCTET STRI NG
[UNl VERSAL 18] |IMPLICIT I ASString
[UNI VERSAL 19] IMPLICIT I ASString

T61String [UNI VERSAL 20] I MPLICIT OCTET STRI NG
Vi deot exString [UNI VERSAL 21] I MPLICIT OCTET STRI NG
| A5String [UNI VERSAL 22] I MPLICIT OCTET STRI NG
UTCTi e [UNI VERSAL 23] |IMPLICIT GeneralizedTime

79

ASN.1 To C/C++ Mappings

General i zedTi e
Graphi cString

Vi sibleString
CGeneral String
Uni versal String
BMPSt ri ng

nj ect Descri pt or

[UNI VERSAL 24] |IMPLICIT I A5String

[UNI VERSAL 25] | MPLICI T OCTET STRING
[UNI VERSAL 26] | MPLICI T OCTET STRING
[UNI VERSAL 27] | MPLICIT OCTET STRI NG
[UNI VERSAL 28] | MPLICIT OCTET STRING
[UNI VERSAL 30] | MPLICIT OCTET STRING
[UNIVERSAL 7] IMPLICIT GraphicString

Of these, al are represented by const char * pointers (or std: : string)except for the BMPSring,
UniversalString, and UTF83tring types.

The BMPString type is a 16-bit character string for which the following structure is used:

typedef struct {
OSUI NT32 nchars;
OSUNI CHAR* dat a;

} Asnll6Bit Char String;

The OSUNI CHAR type used in this definition represents a Unicode character (UTF-16) and is defined to be a C
unsi gned short type.

Seethert BMPTOCSt ri ng, rt BMPToNewCSt r i ng, and ther t CToBMPSt r i ng run-time function descriptions
for information on utilities that can convert standard C strings to and from BMP string format.

The Uni ver sal Stri ng typeisa32-bit character string for which the following structureis used:

typedef struct {
OSUI NT32 nchars;
0S32BI TCHAR* dat a;
} Asnl32Bit Char String;

The OS32BI TCHAR type used in this definition is defined to beaC unsi gned i nt type.

Seethert UCSToCSt ri ng, rt UCSToNewCSt r i ng, and ther t CTOUCSSt r i ng run-time function descriptions
for information on utilities that can convert standard C strings to and from Universal Character Set (UCS-4) string
format. See also ther t UCSTOWCSSt ri ng and r t WCSToOUCSSt r i ng for information on utilities that can convert
standard wide character string to and from Uni ver sal St ri ng type.

The UTF8St ri ng typeisrepresented as astring of unsigned characters using the OSUTF8 CHAR datatype. Thistype
is defined to be unsi gned char . This makes it possible to use the characters in the upper range of the UTF-8
space as positive numbers. The contents of this string type are assumed to contain the UTF-8 encoding of a character
string. For the most part, standard C character string functionssuch asst r cpy, st r cat , etc. can be used with these
strings with some type casting.

Utility functions are provided for working with UTF-8 string data. The UTF-8 encoding for astandard ASCI| string is
simply the string itself. For Unicode strings represented in C/C++ using the wide character type (wchar _t), therun-
time functions r t xUTF8TOWCS and r t xX\WCSTOUTF8 can be used for converting to and from UTF-8 format. The
functionr t xVal i dat eUTF8 can be used to ensure that a given UTF-8 encoding isvalid. Seethe C/C++ Run-Time
Library Reference Manual for a complete description of these functions.

Time String Types
The ASN.1 GeneralizedTimeand UTCTimetypesare mapped to standard C/C++ null-terminated character string types.

The C++ version of the product contains additional control classesfor parsing and formatting time string values. When
C++ codegeneration isspecified, acontrol classisgenerated for operating on thetarget timestring. Thisclassisderived

80

ASN.1 To C/C++ Mappings

from the ASN1CGeneralizedTime or ASN1ICUTCTime class for GeneralizedTime or UTCTime respectively. These
classes contain methods for formatting or parsing time components such as month, day, year, etc. from the strings.

Objectsof these classes can be declared inlineto makethetask of formatting or parsing timestrings easier. For example,
in a SEQUENCE containing atime string element the generated type will contain apublic member variable containing
the ASN1T typethat holds the message data. If one wanted to operate on the time string contained within that element,
they could do so by using one of the time string classes inline as follows:

ASN1CCeneral i zedTi me gti ne (nmsgbuf, <seqVar>.<el enent>);
gtime. set Mont h (ASNLCTi ne: : Novenber) ;

Inthisexample, <seqVar >would represent agenerated SEQUENCE variabletypeand <el enment >would represent
atime string element within this type.

See the ASNLCTi ne, ASN1CGener al i zedTi e, and ASNLCUTCTi ne subsections in the C/C++ Run-Time
Library Reference Manual for details on al of the methods available in these classes.

EXTERNAL

The ASN.1 EXTERNAL type is a useful type used to include non-ASN.1 or other data within an ASN.1 encoded
message. Thistypeis described using the following ASN.1 SEQUENCE:

EXTERNAL ::= [UNI VERSAL 8] | MPLICIT SEQUENCE ({

direct-reference OBIJECT | DENTI FI ER OPTI ONAL,

i ndirect-reference | NTEGER OPTI ONAL,

dat a- val ue-descri ptor Obj ectDescri ptor OPTI ONAL,

encodi ng CHO CE {
si ngl e- ASN1-type [0] ABSTRACT- SYNTAX. &Type,
octet-aligned [1] IMPLICI T OCTET STRI NG
arbitrary [2] IMPLICIT BIT STRING

}

The ASN1C compiler is used to create a meta-definition for this structure. This code will always be generated in the
AsnlExt er nal . hand Asnl1Ext er nal . ¢/ cpp files. The code will only be generated if the given ASN.1 source
specification requires this definition. The resulting C structure is populated just like any other compiler-generated
structure for working with ASN.1 data.

Note

NOTE: It is recommended that if a specification contains multiple ASN.1 source files that reference
EXTERNAL, al of these source files be compiled with a single ASN1C call in order to ensure that only a
single copy of the Asn1External source files are generated.

EMBEDDED PDV

The ASN.1 EMBEDDED PDV typeisauseful type used to include non-ASN.1 or other datawithin an ASN.1 encoded
message. Thistypeis described using the following ASN.1 SEQUENCE:

EnbeddedPDV :: = [UNI VERSAL 11] | MPLICI T SEQUENCE {
identification CHO CE {
synt axes SEQUENCE {
abstract OBJECT | DENTI FI ER,
transfer OBJECT | DENTI FI ER

b

81

ASN.1 To C/C++ Mappings

syntax OBJECT | DENTI FI ER,
presentation-context-id | NTEGER,
cont ext - negoti ati on SEQUENCE {
presentation-context-id | NTEGER,
transfer-syntax OBJECT | DENTI FI ER
b
transfer-syntax OBJECT | DENTI FI ER,
fixed NULL
}
dat a- val ue-descri ptor Obj ectDescri ptor OPTI ONAL,
dat a- val ue OCTET STRI NG
}(WTH COMPONENTS { ... , data-val ue-descriptor ABSENT})

The ASN1C compiler is used to create a meta-definition for this structure. This code will be aways generated in
the Asn1EnmbeddedPDV. h and Asn1EnbeddedPDV. ¢/ cpp files. The code will only be generated if the given
ASN.1 source specification requires this definition. The resulting C structureis populated just like any other compiler-
generated structure for working with ASN.1 data.

Note

NOTE: It is recommended that if a specification contains multiple ASN.1 source files that reference
EMBEDDEDPDV, all of these sourcefiles be compiled with asingle ASN1C call in order to ensurethat only
asingled copy of the Asn1EmbeddedPDV source files are generated.

Parameterized Types

The ASN1C compiler can parse parameterized type definitions and references as specified in the X.683 standard.
These types allow dummy parameters to be declared that will be replaced with actual parameters when the type is
referenced. Thisis similar to templatesin C++.

A simple and common example of the use of parameterized typesis for the declaration of an upper bound on a sized
type as follows:

Si zedQct et Stri ng{| NTEGER ub} ::= OCTET STRING (SIZE (1..ub))

In this definition, ub would be replaced with an actual value when the type is referenced. For example, a sized octet
string with an upper bound of 32 would be declared as follows:

CctetString32 ::= SizedCctet String{32}

The compiler would handle this in the same way asif the original type was declared to be an octet string of size 1 to
32. That is, it will generate a C structure containing a static byte array of size 32 asfollows:

typedef struct CctetString32 {
GSUI NT32 nunoct s;
OSCCTET dat a[32] ;

} CctetString32;

Another common example of parameterization is the substitution of a given type inside acommon container type. For
example, security specifications frequently contain a'signed' parameterized type that allows a digital signature to be
applied to other types. An example of thisis asfollows:

SI GNED { ToBeSigned } ::= SEQUENCE ({
t oBeSi gned ToBeSi gned,
algorithnmO D OBJECT | DENTI FI ER,
par antS Par ans,

82

ASN.1 To C/C++ Mappings

si gnature BI T STRI NG
}

An example of areference to this definition would be as follows:
Si gnedNane ::= SI GNED { Name }
where Nane would be another type defined el sewhere within the module.
The compiler performs the substitution to create the proper C typedef for Si gnedNane:

typedef struct SignedName {

Nane t oBeSi gned;
ASN1OBJI D al gori t hmQ D
Par ans par ant;

ASN1DynBit Str signature;
} Si gnedNane;

When processing parameterized type definitions, the compiler will first ook to seeif the parameters are actually used
in the final generated code. If not, they will smply be discarded and the parameterized type converted to a normal
type reference. For example, when used with information objects, parameterized types are frequently used to pass
information object set definitions to impose table constraints on the final type. Since table constraints do not affect
the code that is generated by the compiler when table constraint code generation is not enabled, the parameterized
type definition is reduced to anormal type definition and references to it are handled in the same way as defined type
references. This can lead to asignificant reduction in generated code in cases where a parameterized typeisreferenced
over and over again.

For example, consider the following often-repeated pattern from the UMTS 3GPP specs:

Prot ocol | E-Fi el d { RANAP- PROTOCCOL- | ES : | EsSet Paran} ::= SEQUENCE {
id RANAP- PROTOCOL- | ES. &i d ({!EsSet Parant),
criticality RANAP- PROTOCOL- | ES. &criticality ({lIEsSetParant{@d}),
val ue RANAP- PROTOCOL- | ES. &Val ue ({! EsSet Param} { @ d})
}

Inthiscase, | Es Set Par amrefersto an information object set specification that constrainsthe valuesthat are allowed
to be passed for any giveninstance of atypereferencingaPr ot ocol | E- Fi el d. Thecompiler doesnot add any extra
codeto check for these values, so the parameter can be discarded (note that thisis not trueif the -tables compiler option
is specified). After processing the Information Object Class references within the construct (refer to the section on
Information Objects for information on how thisis done), the reduced definition for Pr ot ocol | E- Fi el d becomes
the following:

Protocol I E-Field ::= SEQUENCE {
id Protocol | E-1D,
criticality Criticality,
val ue ASN. 1 OPEN TYPE

}

Referencesto thefield are simply replaced with areferenceto the Pr ot ocol | D- Fi el d typedef.

If -tablesis specified, the parameters are used and a new type instance is created in accordance with the rules above.

Value Mappings

ASNIC can parse any type of ASN.1 value specification, but it will only generate code for following value
specifications:

83

ASN.1 To C/C++ Mappings

« BOOLEAN

* INTEGER

* REAL

« ENUMERATED
 Binary String

» Hexadecimal String

» Character String

* OBJECT IDENTIFER

All valuetypesexcept INTEGER and REAL cause an "extern" statement to be generated in the header fileand aglobal
value assignment to be added to the C or C++ source file. INTEGER and REAL value specifications cause #define
statements to be generated.

BOOLEAN Value

A BOOLEAN value causes an extern statement to be generated in the header file and a global declaration of type
OSBOOL to be generated in the C or C++ source file. The mapping of ASN.1 declaration to global C or C++ value
declaration is asfollows:

ASN.1 production:
<nane> BOOLEAN :: = <val ue>
Gener ated code:

OSBOOL <nane> = <val ue>;

INTEGER Value

The INTEGER type causes a #define statement to be generated in the header file of the form
ASNL1V_<val ueName> where <val ueNane> would be replaced with the name in the ASN.1 source file. The
reason for doing this is the common use of INTEGER values for size and value range constraints in the ASN.1
specifications. By generating #def i ne statements, the symbolic names can be included in the source code making
it easier to adjust the boundary values.

This mapping is defined as follows:
ASN.1 production:
<nane> | NTEGER :: = <val ue>
Generated code:
#def i ne ASNLV_<nane> <val ue>;
For example, the following declaration:
ivalue INTEGER ::= 5

will cause the following statement to be added to the generated header file:

84

ASN.1 To C/C++ Mappings

#define ASNLV ivalue 5

The reason the ASNLV_ prefix is added is to prevent collisions with INTEGER value declarations and other
declarations such as enumeration items with the same name.

REAL Value

The REAL type causes a#def i ne statement to be generated in the header file of theform ASN1V_<val ueNane>
where<val ueNanme>would bereplaced withthenameinthe ASN.1 sourcefile. By generating#def i ne statements,
the symbolic names can be included in the source code making it easier to adjust the boundary values.

This mapping is defined as follows:
ASN.1 production:
<name> REAL ::= <val ue>
Generated code:
#def i ne ASNLV_<name> <val ue>;
For example, the following declaration:
rvalue REAL ::= 5.5
will cause the following statement to be added to the generated header file:
#defi ne ASNLV rvalue 5.5

The reason the ASN1V_ prefix is added is to prevent collisions with other declarations such as enumeration items
with the same name.

Enumerated Value Specification

The mapping of an ASN.1 enumerated value declaration to agloba C or C++ value declaration is as follows:
ASN.1 production:

<name> <Enumlype> ::= <val ue>
Generated code:

OSUI NT32 <nane> = <val ue>;

Binary and Hexadecimal String Value

Binary and hexadecimal string value specifications cause two global C variablesto be generated: anunoct s variable
describing the length of the string and adat a variable describing the string contents. The mapping for abinary string
isasfollows (note: BIT STRING can also be used as the type in this type of declaration):

ASN.1 production:
<name> OCTET STRING ::= '<bstring>'B

Generated code :

85

ASN.1 To C/C++ Mappings

OSUI NT32 <nane>_nunocts = <l engt h>;
OSOCTET <nane>_data[] = <data>;

A hexadecimal string would be the same except the ASN.1 constant would end ina'H'.

Character String Value

A character string declaration would cause aC or C++ const char * declaration to be generated:
ASN.1 production:

<nane> <string-type> ::= <val ue>
Generated code:

const char* <nanme> = <val ue>;

In this definition, <string-type> could be any of the standard 8-bit characters string types such as IA5String,
PrintableString, etc.

Note

Code generation is not currently supported for value declarations of larger character string types such as
BMPString.

Object Identifier Value Specification

Object identifier values result in a structure being populated in the C or C++ sourcefile.
ASN.1 production:
<nane> OBJECT | DENTI FI ER ::= <val ue>
Generated code:
ASN1OBJI D <nane> = <val ue>;
For example, consider the following declaration:
oid OBJECT IDENTIFIER ::= { ccitt b(5) 10 }
Thiswould result in the following definition in the C or C++ sourcefile:

ASN1IOBJID oid = {
3, { 0,5 10}
b
To populate avariable in agenerated structure with thisvalue, ther t Set A D utility function can be used (see the C/
C++ Run-Time Library Reference Manual for afull description of this function). In addition, the C++ base type for

this construct (ASNLTObj | d) contains constructors and assignment operators that allow direct assignment of values
in this form to the target variable.

Constructed Type Values

ASN1C will generate code for following remaining value definitions only when their use is required in legacy table
constraint validation code:

86

ASN.1 To C/C++ Mappings

SEQUENCE

« SET

SEQUENCE OF

SET OF

CHOICE

Note

SEQUENCE, SET , SEQUENCE OF, SET OF and CHOICE values are avail able only when the -tables option
is selected.

The values are initialized in a module value initialization function. The format of this function name is as
follows:

i nit_<Modul eNane>Val ue (OSCTXT*
pct xt)

Where <Mbdul eNane> would be replaced with the name of the module containing the val ue specifications.

The only required argument is an initialized context block structure used to hold dynamic memory allocated
in the creation of the value structures.

If the value definitions are used in table constraint definitions, then the generated table constraint processing
code will handle the initialization of these definitions; otherwise, the initialization function must be called
explicitly.

SEQUENCE or SET Value Specification
The mapping of an ASN.1 SEQUENCE or SET value declaration to agloba C or C++ value declaration isasfollows:
ASN.1 production:
<nanme> <SeqType> ::= <val ue>
Generated code :
<SeqType> <nane>;
The sequence value will beinitialized in the value initialization function.
For example, consider the following declaration:
SeqType ::= SEQUENCE {

id | NTEGER |,
name VisibleString

}

val ue SeqType ::={ id 12, nane "abc" }
Thiswould result in the following definition in the C or C++ sourcefile:

SeqType val ue;

Code generated in value initialization function would be as follows:

87

ASN.1 To C/C++ Mappings

value.id = 12;

val ue. nane = "abc";

SEQUENCE OF/SET OF Value

The mapping of an ASN.1 SEQUENCE OF or SET OF value declaration to a global C or C++ value declaration is
asfollows:

ASN.1 production:
<name> <SeqCf Type> ::= <val ue>
Generated code :
<Seq(Type> <nane>;
The sequence of value will beinitialized in the value initialization function.
For example, consider the following declaration:
SeqOr Type ::= SEQUENCE OF (SIZE(2)) | NTEGER
val ue SeqOf Type ::={ 1, 2}
Thiswould result in the following definition in the C or C++ sourcefile:
SeqOf Type val ue;
Code generated in the value initialization function would be as follows:

val ue.n = 2;
val ue. el enent [0]
val ue. el enent [1]

CHOICE Value

The mapping of an ASN.1 CHOICE value declaration to aglobal C or C++ value declaration is as follows:

=

ASN.1 production:
<nane> <Choi ceType> ::= <val ue>
Generated code :
<Choi ceType> <nane>;
The choice value will beinitialized in the value initialization function.
For example, consider the following declaration:
Choi ceType ::= CHO CE { oid OBJECT IDENTIFIER, id |NTEGER }
val ue ChoiceType ::=id: 1
Thiswould result in the following definition in the C or C++ sourcefile:

Choi ceType val ue;

88

ASN.1 To C/C++ Mappings

Code generated in the value initialization function would be as follows:

value.t = T_Choi ceType_i d;
value.u.id = 1;

Table Constraint Related Structures

The following sections describe changes to generated code that occur when the -tables or -table-unions option is
specified on the command-line or when Table Constraint Options are selected from the GUI. This option causes
additional code to be generated for items required to support table constraints as specified in the X.682 standard. This
includesthe generation of structures and classes for Information Object Classes, Information Objects, and Information
Object Sets as specified in the X.681 standard.

Most of the additional items that are generated are read-only tables for use by the run-time for data validation
purposes. However, generated structures for types that use table constraints are different than when table constraint
code generation is not enabled. These differences will be pointed out.

There are two models currently supported for table contraint generation: Unions and Legacy. These are documented
in the following sections:

Unions Table Constraint Model

The unions table constraint model originated from common patterns used in a series of ASN.1 specifications in-use
in 3rd Generation Partnership Project (3GPP) standards. These standards include Node Application Part B (NBAP),
Radio Access Network Application Part (RANAP), and Radio Network Subsystem Application Part (RNSAP) in the
current 3G network and in S1IAP and X2AP protocols in the newer 4G network (LTE) standards. This model was
later extended to generate these type of structures for other specifications that made use of table constraintsincluding
security and legacy telecom speifications.

Generated C Type Definitions for Message Types

The standard message type used by many specifications that employ table constraints is usualy a SEQUENCE type
with elementsthat use arelational table constraint that uses fixed-type and typefields. The general form isasfollows:

<Type> ::= SEQUENCE ({
<el enent 1> <O ass>. &fi xed-type-fiel d> ({<bject Set>}),
<el enent 2> <O ass>. &fi xed-type-fiel d> ({<hject Set>)){ @l enent 1}
<el enent 3> <C ass>. &type-fiel d> ({<Ohj ect Set >)){ @l erment 1}
}

In this definition, <Cl ass> would be replaced with a reference to an Information Object Class, <f i xed- t ype-
fi el d>would be afixed-type field wtihin that class, and <t ype-fi el d> would be atype field within the class.
<(bj ect Set > would be a reference to an Information Object Set which would define all of the possibilities for
content within the message. The first element (<element1>) would be used as the index element in the object set
relation.

An example of this pattern from the SIAP LTE specification is as follows:
Initiati ngMessage :: = SEQUENCE {

pr ocedur eCode S1AP- EL EMENTARY- PROCEDURE. &pr ocedur eCode
({ SLAP- ELEMENTARY- PROCEDURES}) ,

criticality S1AP- ELEMENTARY- PROCEDURE. &criticality
({ SLAP- ELEMENTARY- PROCEDURES} { @r ocedur eCode}),
val ue S1AP- ELEMENTARY- PROCEDURE. &l ni ti at i ngMessage

89

ASN.1 To C/C++ Mappings

({ SLAP- ELEMENTARY- PROCEDURES} { @r ocedur eCode})
}

In this definition, pr ocedur eCode andcri ti cal i t y aredefined to be aenumerated fixed types, and val ue is
defined to be an open type field to hold variable content as defined in the object set definition.

In the legacy model defined below, a loose coupling would be defined for the open type field using the built-in
ASN1Cbj ect structure. This structure uses a void pointer to hold a link to a variable of the typed data structure.
This is inconvenient for the developer because he would need to consult the object set definition within the ASN.1
specification in order to determine what type of datais to be used with each procedure code. It is also error pronein
that the void pointer provides for no type checking at compile time.

In the new model, the generated structure is designed to be similar as to what is used to represent a CHOICE type.
That isto say, the structure is a union with a choice selector value and all possible typeslisted out in aunion structure.
Thisisthe general form:

typedef struct <Type> {
<El enent 1Type> <el enment 1>;
<El enent 2Type> <el enent 2>;

/**
* informati on object selector
*/

<Sel ect or Enunilype> t;

/**
* <Cbj ectSet> infornmation objects
*/
uni on {
/**
* <el enent 1> : <object 1- el enent 1-val ue>
* <el enent 2> : <obj ect 1- el enent 2-val ue>
*/
<obj ect 1- el enent 3-type>* <obj ect 1- nanme>;

/**
* <el enent 1> : <obj ect 2- el enent 1-val ue>
* <el enent 2> : <obj ect 2- el enent 2-val ue>
*/

<obj ect 2- el enent 3-type>* <obj ect 2- nane>;

b
}

In this definition, the first two elements of the sequence would use the equivalent C or C++ type as defined in the
fixed-type field in the information object. This is the same as in the legacy model. The open type field (element3)
would be expanded into the union structure asis shown. The <SelectorEnumType> would be an enumerated type that
is generated to represent each of the choicesin the referenced information object set. The union then contains an entry
for each of the possible types as defined in the object set that can be used in the open type field. Comments are used
to list the fixed-type fields corresponding to each open type field.

An example of the code that is generated from the SIAP sample ASN.1 snippet above is as follows:

typedef enum {

90

ASN.1 To C/C++ Mappings

T_S1AP_PDU Descri ptions_S1AP_ELEMENTARY_ PROCEDURES handover Prepar ati on,
T_S1AP_PDU Descri ptions_S1AP_ELEMENTARY_ PROCEDURES handover Resour ceAl | ocati on,
T_S1AP_PDU Descri ptions_S1AP_ELEVMENTARY_PROCEDURES pat hSwi t chRequest ,
etc..

} S1AP_ELEMENTARY_PROCEDURE_TVALUE;

typedef struct InitiatingMessage {
Pr ocedur eCode procedur eCode;
Criticality criticality;

/**

* informati on object selector

*/
S1AP_ELEMENTARY_PROCEDURE_TVALUE t;

/**
* S1AP- ELEMENTARY- PROCEDURE i nf ormati on obj ects
*/
uni on {
/**

* procedur eCode: id-HandoverPreparation
* criticality: reject
*/

Handover Requi red* handover Preparati on;

/**
* procedur eCode: id-Handover ResourceAl | ocation
* criticality: reject
*/

Handover Request* handover Resour ceAl | ocati on;

/**

* procedur eCode: id-HandoverNotification
* criticality: ignore
*/

Handover Noti fy* handover Noti fi cati on;

etc..

by
} InitiatingMessage;

Note that the long names generated in the SIAP_EL EMENTARY _PROCEDURE_TVALUE type can be reduced by
using the <alias> configuration element.

Generated C Type Definitions for Information Element (IE) Types

In addition to message types, another common pattern in 3GPP specifications is protocol information element (IE)
types. The general form of these typesisalist of information elements as follows:

<Protocol | EsType> ::= <Protocol | E- Cont ai ner Type> { <Obj ect Set> }

<Pr ot ocol | E- Cont ai ner Type> { <C ass> : <CbjectSetParanr } ::=
SEQUENCE (Sl ZE (<si ze>)) OF <Protocol | E-Fiel dType> {{Obj ect Set Par an} }

91

ASN.1 To C/C++ Mappings

<Protocol | E-Fi el dType> { <C ass> : <Object Set Paranm> } ::= SEQUENCE ({
<el enent 1> <C ass>. &fi xed-type-fiel d> ({Obj ect Set Par an}),
<el enent 2> <C ass>. &fi xed-type-fiel d> ({Obj ect Set Par an}{ @l enent 1}),
<el enent 3> <Cl ass>. &Type-fi el d> ({bj ect Set Par an} { @| ement 1})

}

There are afew different variations of this, but the overall patternissimilar in all cases. A parameterized typeisused
as a shorthand notation to pass an information object set into a container type. The container type holds a list of the
|E fields. The structure of an |E field type is similar to a message type: the first element is used as an index element
to the remaining elements. That is followed by one or more fixed type or variable type elements. In the case defined
above, only asingle fixed-type and variable type element is shown, but there may be more.

An example of this pattern from the SIAP LTE specification follows:

Handover Requi red ::= SEQUENCE {
protocol | Es Pr ot ocol | E- Cont ai ner { { Handover Requi redl Es} },

}

Prot ocol | E- Cont ai ner {S1AP-PROTOCOL-IES : |EsSetParan} ::=
SEQUENCE (Sl ZE (0..maxProtocol | Es)) OF Protocol | E-Field {{I| EsSet Parant}

Protocol | E-Field { SLAP- PROTOCOL- | ES : | EsSet Paran} ::= SEQUENCE {
id S1AP- PROTOCOL- | ES. & d ({! EsSet Parant),
criticality S1AP- PROTOCOL- | ES. &criticality ({I EsSet Param}{ @ d}),
val ue S1AP- PROTOCCL- | ES. &Val ue ({! EsSet Param}{ @ d})
}

In this case, standard parameterized type instantiation is used to create a type definition for the protocoll Es element.
Thisresultsin alist type being generated:

/* List of Handover Required_protocol | Es_el ement */
t ypedef OSRTDLi st Handover Requi red_pr ot ocol | Es;

The type for the protocol IE list element is created in much the same way as the main message type was above:

typedef struct Handover Required_protocol | Es_el emrent {
Protocol IE ID id;
Criticality criticality;
struct {
/**
* informati on object selector
*/
Handover Requi redl Es_TVALUE t;

/**
* Handover Requi redl Es i nfornmati on objects
*/
uni on {
/**
* id: id-MVE-UE-S1AP-1D
* criticality: reject
* presence: nandatory
*/

92

ASN.1 To C/C++ Mappings

MVE_UE_S1AP_|I D *_Handover Requi redl Es_i d_MVE_UE_S1AP_| D
/**

* id: id-Handover Type

* criticality: reject

* presence: nandatory

*/

Handover Type *_Handover Requi r edl Es_i d_Handover Type;
/**

* jd: id-Cause

* criticality: ignore

* presence: nandatory

*/

Py
} val ue;
} Handover Requi red_protocol | Es_el enment ;

In this case, the protocol IE id field and criticality are generated as usua using the fixed-type field type definitions.
The open type field once again resultsin the generation of aunion structure of all possible type fieldsthat can be used.
Notein this case the field names are automatically generated (_HandoverRequiredlEs id_ MME_UE_S1AP _ID, etc.).
The reason for this was the use of inline information object definitions in the information object set as opposed to
defined object definitions. Thisis a sample from that set:

Handover Requi redl Es S1AP- PROTOCOL- | ES :: = {
{ 1D id-MVE-UE-S1AP-1D CRITI CALI TY rej ect TYPE MVE- UE- S1AP-I D PRESENCE n
{ 1D id-Handover Type CRITI CALI TY rej ect TYPE Handover Type PRESENCE 1

In this case, the nameisformed by combining the information object set name with the name of each key field within
the set.

Generated | E Append Function

A user would need to allocate objects of this structure, populate them, and add them to the protocol IE list. In order
to make this easier, helper functions are generated assist in adding information items to the list. The general format
of these append functionsis as follows:

i nt asnlAppend_<Prot ocol | EsType> <KeyVal ueNane>
(OSCTXT* pctxt, <Protocol | EsType>* plist, <ValueType> val ue);

In this definition, <Pr ot ocol | EsType> refers to the main list type (SEQUENCE OF) defining the information
element list. <KeyVal ueNane> is the name of the primary key field defined in the associated information object
set. <Val ueType> isthe type of the value for the indexed information object set item.

An example of this type of function from the SIAP definitionsis as follows:

/* Append E with value type MME_UE S1AP ID to list */
i nt asnlAppend_Handover Requi red_protocol | Es_id_MVE_UE S1AP | D (OSCTXT* pctxt,
Handover Requi red_protocol Es* plist, MVE UE S1AP_ID val ue);

Generated |E Get Function

In addition to the list append function, a second type of helper function is generated to make it easier to find an item
in the list based on the key field. The general format for this type of function is asfollows:

<Protocol | E-Fi el dType>* asnlGet <Protocol | EsType>

93

ASN.1 To C/C++ Mappings

(<KeyFi el dType> <key>, <Protocol | EsType>* plist);

In this definition, <Pr ot ocol | EsType> refers to the main list type (SEQUENCE OF) defining the information
element list. <Pr ot ocol | E- Fi el dType> isthetype of an element within thislist and <KeyFi el dType> isthe
type of index key field.

An example of thistype of function from the SLAP definitionsis as follows:

/* Get IE using id key value */
Handover Requi red_protocol | Es_el ement* asnlGet Handover Requi red_prot ocol | Es
(Protocol lE_ ID id, Handover Required protocol |l Es* plist);

Generated Set Table Constraint (SetTC) Function

The set table constraint hel per function sets the fixed type value fields, the table union tag (t) value, and sets a pointer
to the variable typed value field to be encoded. The general format for this type of function is as follows:

voi d asnlSet TC <Type> <I| nfoQbj ect >
(OSCTXT* pctxt, <Type>* pElem <Val ueType> val ue);

In this definition, <Type> refers to the container type in which the table-constrained items are defined and
<VaueType> isthe type of the value for the indexed information object set item.

An example of thistype of function from the SIAP definitionsis asfollows:

voi d asnlSet TC Handover Requi red_prot ocol | Es_el enent _Handover Requi redl Es_i d_MVE _UE_S1AP_
(OSCTXT* pctxt, Handover Required_protocol | Es_el ement* pElem MVE UE S1AP I D val ue);

Generated C++ Classes and Methods
This section discusses items that are generated idfferently for C++ for union table constraints.
Choice Selector TVALUE Type

For C, an enumerated type is generated for each of the options in a type field union. These correspond to each of
the items in the information object set associated with the union. For example, the TVALUE type generated for
S1AP_ELEMENTARY_PROCEDURES isasfollows:

t ypedef enum {
T_S1AP_PDU Descri pti ons_S1AP_ELEMENTARY PROCEDURES UNDEF
T_S1AP_PDU Descri pti ons_S1AP_ELEMENTARY_PROCEDURES_ handover Prepar ati on,
T _S1AP_PDU Descri ptions_S1AP _ELEMENTARY PROCEDURES handover Resour ceAl | ocati on,
T_S1AP_PDU Descri pti ons_S1AP_ELEMENTARY_PROCEDURES pat hSwi t chRequest,

} S1AP_ELEMENTARY_PROCEDURES TVALUE;

The generated names include the name of the module, object set, and object in order to ensure that no name clashes
occur between enumerations with common names. For C++, thistypeisgenerated asaclasswith TVALUE asapublic
member inside:

cl ass S1AP_ELEMENTARY_PROCEDURES {
publi c:
enum TVALUE {
T_UNDEF_,
T_handover Prepar ati on,
T _handover Resour ceAl | ocati on,
T_pat hSwi t chRequest ,

94

ASN.1 To C/C++ Mappings

}

In this case, the type module and object set names are not needed because the class name provides for unambiguous
enumerated item names.

Generated Helper Methods

For C, special asnl1Append_<name> and asnl1CGet | E_<nane> functions are generated to help a user append
information elements (IE's) to alist and get an indexed |E respectively. For C++, these are added as methods to the
generated control classfor the list type.

For example, for the Handover Requi r ed_pr ot ocol | Es type, the following methods are added to the control
class:

cl ass EXTERN ASN1C Handover Requi red_protocol | Es : public ASNLCSeqOf Li st
{

/* Append IE with value type ASNIT MVE UE SIAP ID to list */
int Append_i d_MVE_UE S1AP | D (ASNLT_MVE_UE_S1AP_I D val ue);

/* Append IE with value type ASNLT Handover Type to list */
int Appendi d_eNB_UE_S1AP_| D (ASNLT_Handover Type val ue);

/* Get IE using id key value */
ASNL1T_Handover Requi red_prot ocol | Es_el ement* Get| E (ASNLT_Protocol IE_ID id);
b

Legacy Table Constraint Model

The primary difference asto what a user sees and works with in the legacy model as opposed to the unions model lies
in the representation of open type elements that contain atable constraint. The standard form of an open type element
constrained with atable constraint within a SEQUENCE container is as follows:

<Type> ::= SEQUENCE ({
<el enent > <Cl ass>. &type-field> ({<Obj ect Set >)){ @ ndex- el enent }

}

If -tablesis not specified on the command line, a standard open type structure is used to hold the element value:

typedef struct <Type> {
ASN1QpenType <el enent >;

}

The ASN1OpenType built-in type holds the element data in encoded form. The only validation that is done on the
element isto verify that it isawell-formed tag-length-value (TLV) structureif BER encoding is used or avalid length
prefixed structure for PER.

If the -tables command line option is selected, the code generated is different. In this case, ASNLOQpenTy pe aboveis
replaced with ASN1Obj ect (or ASNLTObj ect for C++). Thisisdefined inasnit ype. h asfollows:

typedef struct { /* generic table constraint value hol der */
ASN1OpenType encoded;
voi d* decoded,;
OSI NT32 i ndex; /* table index */

95

ASN.1 To C/C++ Mappings

} ASN1Obj ect;

This allows a value of any ASN.1 type to be represented in both encoded and decoded forms. Encoded form is the
open type form shown above. It is simply a pointer to a byte buffer and a count of the number of byesin the encoded
message component. The decoded form is a pointer to a variable of a specific type. The pointer is void because there
could be a potentially large number of different types that can be represented in the table constraint used to constrain
atypefield to agiven set of values. Thei ndex member of the typeisfor interna use by table constraint processing
functions to keep track of which row in atable is being referenced.

In addition to this change in how open types are represented, alarge amount of supporting code is generated to support
the table constraint validation process. This additional code is described below. Note that it is not necessary for the
average user to understand this asit is not for use by users in accomplishing encoding and decoding of messages. It is
only described for completeness in order to know what that additional codeis used for.

CLASS specification
All of the Class code will be generated in amodule class header file with the following filename format:
<Mbdul eNanme>Cl ass. h

In this definition, <Mbdul eNane> would be replaced with the name of the ASN.1 module name for this class
definition.

C Code generation

The C structure definition generated to model an ASN.1 class contains member variables for each of the fields within
the class.

For each of the following class fields, the corresponding member variable is included in the generated C structure
asfollows:

For aVaueField:
<TypeNane> <Fi el dName>;

For TypeField definitions, an encode and decode function pointer and type size field is generated to hold the
information of the type for the OpenType. If the -print option is selected, a print function pointer is also added.

i nt <Fi el dNane>Si ze;

int (*encode<FieldNane>) (...);
int (*decode<Fiel dNane>) (...);
voi d (*print<FieldNane>) (...);

For an Object Field:
<Cd assName>* <Fi el dName>;

For an ObjectSetField definition, an array of class definitionsis generated to hold the list of information objects.
<Cd assName>* <Fi el dName>;

In each of these definitions:

<Fi el dName> would be replaced with the name of the field (without the leading '&").

<TypeNane> would be replaced with the C type name for the ASN.1 Type.

<Cl assNane> would be replaced with the C type name of the class for the Information Object.

96

ASN.1 To C/C++ Mappings

As an example, consider the following ASN.1 class definition :

ATTRI BUTE ::= CLASS {
&Type,
& d OBJECT | DENTI FI ER UNI QUE }
W TH SYNTAX { &Type ID & d }

Thiswould result in the following definition in the C sourcefile:
typedef struct ATTRI BUTE ({
int TypeSi ze;
int (*encodeType) (OSCTXT* , void *, ASNlTagType);
int (*decodeType) (OSCTXT* , void *, ASNlTagType, int);
ASNLOBJI D i d;
}

C++ Code generation

The C++ abstract class generated to model an ASN.1 CLASS contains member variables for each of the fields within
the class. Derived information object classes are required to populate these variables with the values defined in the
ASN.1 information object specification. The C++ class also contains virtual methods representing each of the type
fields within the ASN.1 class specification. If the field is not defined to be OPTIONAL in the ASN.1 specification,
then it is declared to be abstract in the generated class definition. A class generated for an ASN.1 information object
that references this base class is required to implement these abstract virtual methods.

For each of the following CLASS fields, a corresponding member variable is generated in the C++ class definition
asfollows:

For a Vaue Field definition, the following member variable will be added. Also, an Equals() method will be added
if required for table constraint processing.

<TypeNane> <Fi el dNanme>;
inline OSBOOL i dEqual s (<TypeNane>* pval ue)

For a Type Field definition, avirtual method is added for each encoding rules typeto call the generated C encode and
decode functions. If -print is specified, a print method is also generated.

virtual int encode<ER><Fi el dNanme>
(OSCTXT* pctxt, ASNLITObject& object) { return O; }

virtual int decode<ER><Fi el dNanme>
(OSCTXT* pctxt, ASNLITObject& object) { return O; }

virtual void print<Fiel dName>
(ASN1Const Char Ptr nane, ASN1TObj ect & object) {}

For an Object Field:
cl ass <C assNane>* <Fi el dNane>;
In each of these definitions:
<Fi el dNane> would be replaced with the name of the field (without the leading '&").

<TypeNane> would be replaced with the C type name for the ASN.1 Type.

97

ASN.1 To C/C++ Mappings

< assNane> would be replaced with the C type name of the class for the Information Object.
<ER> would be replaced by an encoding rules type (BER, PER, or XER).

As an example, consider the following ASN.1 class definition :

ATTRI BUTE ::= CLASS {
&Type,
&Par amet er Type OPTI ONAL,
& d OBJECT | DENTI FI ER UNI QUE }

W TH SYNTAX { &Type ID & d }
Thiswould result in the following definition in the C++ sourcefile:

cl ass EXTERN ATTRI BUTE {
pr ot ect ed:
ASNLTOnj I d id;

ATTRI BUTE ();
publi c:
virtual int encodeBERType

(OSCTXT* pctxt, ASNLITObj ect & object) = O;
virtual int decodeBERType
(OSCTXT* pctxt, ASNLITObj ect & object) = O;

OSBOOL i sPar amet er TypePresent () {
i f(m Paranet er TypePresent) {return TRUE;} else {return FALSE;}
}

virtual int encodeBERParamneter Type
(OSCTXT* pctxt, ASNLTObject& object) { return O; }

virtual int decodeBERParaneter Type
(OSCTXT* pctxt, ASNLTObj ect& object) { return O; }

inline OSBOOL idEqual s (ASN1TOoj I d* pval ue)
{

}

return (0 == rtCpTCAO D (& d, pvalue));

.
This assumes that only BER or DER was specified as the encoding rules type.

First notice that member variables have been generated for the fixed-typefieldsin the definition. Theseincludethei d
field. Information object classes derived from this definition are expected to popul ate these fieldsin their constructors.

Also, virtual methods have been generated for each of the type fields in the class. Theseinclude the Ty pe fields. The
method generated for Ty pe is abstract and must be implemented in a derived information object class. The method
generated for the Par anet er Type field has a default implementations that does nothing. That is because it is a
optional field.

Also generated are Equal s methods for the fixed-type fields. These are used by the generated code to verify that data
in a generated structure to be encoded (or data that has just been decoded) matches the table constraint values. This
method will be generated only if it isrequired to check atable constraint.

OPTIONAL keyword

98

ASN.1 To C/C++ Mappings

Fields within a CLASS can be declared to be optional using the OPTIONAL keyword. This indicates that the field
is not required in the information object. An additional construct is added to the generated code to indicate whether
an optional field is present in the information object or not. This construct is a bit structure placed at the beginning
of the generated structure. This structure always has variable name 'm' and contains single-bit elements of the form
<fi el dname>Pr esent asfollows:

struct {
unsi gned <fi el d-nanmel>Present : 1,
unsi gned <fi el d-name2>Present : 1,

bomo

In this case, the fields included in this construct correspond to only those fields marked as OPTIONAL within the
CLASS. If aCLASS contains no optional fields, the entire construct is omitted.

For example, we will change the CLASS in the previous example to make one field optional:

ATTRI BUTE ::= CLASS {
&Type OPTI ONAL,
& d OBJECT | DENTI FI ER UNI QUE

}
In this case, the following C typedef is generated in C struct or C++ class definition:
struct {
unsi gned TypePresent : 1;
}m

When this structure is populated for encoding, the information object processing code will set TypePresent flag
accordingly to indicate whether the field is present or not.

In C++ code generation, an additional method is generated for an optional field as follows:

OSBOOL i s<Fi el dNanme>Present () {
if (m<Fiel dNanme>Present) {return TRUE;} else {return FALSE;}
}

Thisfunction is used to check if the field value is present in an information object definition.
Generation of New ASN.1 Assignmentsfrom CLASS Assignments:
During CLASS definition code generation, the following new assignments are created for C or C++ code generation:
1. A new Type Assignment is created for a TypeField's type definition, as follows:
<d assNanme><Fi el dName> :: = <Type>

Here O assNane isreplaced with name of the Class Assignment and Fi el dNarre is replaced with name of this
field. Typeisthe type definition in CLASSs TypeField.

Thistype is used as a defined type in the information object definition for an absent value of the TypeField. It is
also useful for generation of avalue for arelated Open Type definition in atable constraint.

2. A new Type Assignment is created for a Value Field or Value Set Field type definition as follows (if the type
definition is one of the following: ConstraintedType/ ENUMERATED / NamedList BIT STRING / SEQUENCE/
SET / CHOICE / SEQUENCE OF / SET OF):

<C assName><Fi el dName> ::= <Type>

99

ASN.1 To C/C++ Mappings

Here O assNane is replaced with the name of the CLASS assignment and Fi el dNane is replaced with name
of the ValueField or ValueSetField. Ty pe isthetype definitioninthe CLASS's ValueField or ValueSetField. This
type will appear as a defined type in the CLASS's ValueField or ValueSetField.

This new type assignment is used for compiler internal code generation purpose. It is not required for a user to
understand this logic.

3. A new Vaue Assignment is created for a VaueField's default value definition as follows:
<C assNane><Fi el dNane>_default <Type> ::= <Val ue>

Here O assNane isreplaced with name of the Class Assignment and Fi el dNane is replaced with name of this
VaueField. Val ue isthe default value in the Class's ValueField and Ty pe isthetypein Class's VaueField.

Thisvalueis used as a defined value in the information object definition for an absent value of the field. This new
value assignment is used for compiler internal code generation purpose. It is not required for user to understand
thislogic.

ABSTRACT-SYNTAX and TYPE-IDENTIFIER

The ASN.1 ABTRACT-SYNTAX and TYPE-IDENTIFIER classes are useful ASN.1 definitions. These classes are
described using the following ASN.1 definitions:

TYPE- | DENTI FI ER :: = CLASS {
& d OBJECT | DENTI FI ER UNI QUE,
&Type
}
W TH SYNTAX { &Type | DENTIFIED BY & d }
ABSTRACT- SYNTAX ::= CLASS {
& d OBJECT | DENTI FI ER UNI QUE,
&Type,

&roperty BI T STRING { handl es-invalid-encodi ng(0)} DEFAULT {}

}
W TH SYNTAX {

&Type | DENTI FI ED BY & d [HAS PROPERTY &property]
}

The ASN1C compiler generates code for these constructs when they are referenced in the ASN.1 source file that is
being compiled. The generated code for these constructsiswrittentothe Rt Cl ass. hand. ¢/ . cpp sourcefiles.

I nfor mation Object

Information Object code will be generated in a header and source file with a C struct / C++ class to hold the values.
The name of the header and source file are of the following format:

<Modul eNanme>Tabl e. h
<Mbdul eNane>Tabl e. c/ cpp

In this definition, <Modul eNane> would be replaced with the name of the ASN.1 module in which the information
object is defined.

C Code Generation

For C, aglobal variableisgenerated to hold the information object definition. Thisisvery similar to the code generated
for avalue definition.

100

ASN.1 To C/C++ Mappings

An example of aninformation object definition that isderived fromthe ASN.1 ATTRIBUTE classaboveisasfollows:

name ATTRIBUTE :: = {
WTH SYNTAX Visible String
I D {011}}

This results in the generation of the following C constant:
ATTRI BUTE nane,

Code generated in information object initialization function:
nane. TypeSi ze = si zeof (_nane_Type);
nane. encodeType &asnlE__nane_Type,

nane. decodeType &asnlD_name_Type;
nane. i d. num ds =

3;
nane. i d.subid[0] = O;
nane. i d.subid[1] = 1;
nane.id.subid[2] = 1;

C++ Code Generation

The C++ classes generated for ASN.1 information objects are derived from the ASN. 1 class abjects. The constructors
in these classes popul ate the fixed-type field member variables with the values specified in the information object. The
classes also implement the virtual methods generated for the information object type fields. All non-optional methods
are required to be implemented. The optional methods are only implemented if they are defined in the information
object definition.

An example of an information object definition that is derived from the ASN.1 class above is as follows:

nane ATTRIBUTE :: = {
W TH SYNTAX Vi si bl Stri ng
ID {011} }

This results in the generation of the following C++ class:

cl ass EXTERN nane : public ATTRI BUTE {
public:
nane() ;

virtual int encodeBERType
(OSCTXT* pctxt, ASNLTObj ect & object);

virtual int decodeBERType
(OSCTXT* pctxt, ASNLTObj ect & object);

} o

The constructor implementation for this class (not shown) setsthe fixed typefields (i d) to the assigned values({ 0 1
1}). The class also implements the virtual methods for the type field virtual methods defined in the base class. These
methods simply call the BER encode or decode method for the assigned type (this exampl e assumes -ber was specified
for code generation - other encode rules could have been used as well).

Generated Type Assignments

If the information object contains an embedded type definition, it is extracted from the definition to form a new type
to be added to the generated C or C++ code. The format of the new type nameis asfollows:

101

ASN.1 To C/C++ Mappings

<Onj ect Nanme><Fi el dNanme>

where <Cbj ect Nane> isreplaced with the information object name and <Fi el dNane> isreplaced with the name
of the field from within the object.

Information Object Set

Table constraint processing code to support Information Object Setsis generated in a header and source filewitha C
struct / C++ class to hold the values. The name of the header and source file are of the following format:

<Mbdul eNane >Tabl e. h
<Mbdul eNane >Tabl e. ¢/ cpp

In this definition, <Mbdul eNane> would be replaced with the name of the ASN.1 module in which the information
object is defined.

C Code Generation

A C global variable is generated containing a static array of values for the ASN.1 CLASS definition. Each structure
inthe array isthe equivalent C structure representing the corresponding ASN.1 information object

An example of an Information Object Set definition that is derived from the ASN.1 ATTRIBUTE class above is as
follows:

SupportedAttri butes ATTRIBUTE ::= { nane | comobnNane }
Thisresultsin the generation of the following C constant:

ATTRI BUTE SupportedAttributes[2];
i nt SupportedAttributes_Size = 2;

Code generated in the Information Object Set initialization function:

SupportedAttri butes[0]. TypeSi ze = sizeof (_nane_Type);

SupportedAttri butes[0].encodeType = &snlE_nane_Type;
SupportedAttri butes[0].decodeType = &snlD_nane_Type;
SupportedAttributes[0].id.nunids = 3;

31
SupportedAttri butes[0].id.subid[0] = O;
SupportedAttributes[0].id.subid[1] = 1;
SupportedAttributes[0].id.subid[2] = 1;

SupportedAttributes[1l]. TypeSi ze = sizeof (_conmonNane_Type);

SupportedAttri butes[1l].encodeType = &snlE__conmonName_Type;
SupportedAttri butes[1l].decodeType = &snlD__conmonName_Type;
SupportedAttributes[1].id.nunids = 3;
SupportedAttributes[1].id.subid[O0]
SupportedAttributes[1].id.subid[1]
SupportedAttributes[1].id.subid[?2]
SupportedAttributes[1].id.subid[3]

i w
PR PO

C++ Code Generation

In C++, ASN.1 information object sets are mapped to C++ classes. In this case, a C++ singleton class is generated.
This class contains a container to hold an instance of each of the ASN.1 information object C++ objects in a static
array. The class also contains an object lookup method for each of the key fields. Key fields are identified in the class
as either a) fields that are marked unique, or b) fields that are referenced in table constraints with the '@' notation.

102

ASN.1 To C/C++ Mappings

The generated constructor initializes all required values and information objects.

An example of an information object set that uses the information object class defined above is as follows:
SupportedAttri butes ATTRIBUTE ::= { nane | comobnNane }

Thisresultsin the generation of the following C++ class:

cl ass EXTERN SupportedAttributes {
pr ot ect ed:
ATTRI BUTE* ntbj ect Set [2] ;
const size_ t mNunObj ects;
static SupportedAttributes* nplnstance;
SupportedAttri butes (OSCTXT* pctxt);

public:
ATTRI BUTE* | ookupOhj ect (ASNITOojld _id);
static SupportedAttributes* instance(OSCTXT* pctxt);

}

The mCbj ect Set array is the container for the information object classes. These objects are created and this array
populated in the class constructor. Note that this is a singleton class (as evidenced by the protected constructor and
i nst ance methods). Therefore, the object set array is only initialized once the first time the i nst ance method

isinvoked.

The other method of interest is the | ookupQbj ect method. This was generated for the id field because it was
identified as akey field. This determination was made becausei d was declared to be UNIQUE in the class definition
above. A field can also be determined to be akey field if it is referenced via the @notation in atable constraint in a

standard type definition. For example, in the following element assignment:
argunent OPERATI ON. &Type ({SupportedAttri butes}{ @pcode})

theopcode element's ATTRIBUTE classfield isidentified as a key field.

103

Chapter 5. XSD to C/C++ Type Mappings

ASN1C can accept as input XML schema definition (XSD) specifications in addition to ASN.1 specifications. If an
XSD specification is compiled, the compiler does internal translations of the XSD typesinto equivalent ASN.1 types
as specified in ITU-T standard X.694. The following sections provide information on the tranglations and the C/C++
type definitions generated for the different XSD types.

XSD Simple Types

The trandation of XSD simple typesinto ASN.1 typesis straightforward; in most cases, a one-to-one mapping from
XSD simple type to ASN.1 primitive type exists. The following table summarizes these mappings:

XSD Simple Type ASN.1 Type

anyURI UTF8String

base64Binary OCTET STRING

boolean BOOLEAN

byte INTEGER (-128..127)

date UTF8String

datetime UTF8String

decimal UTF8String

double REAL

duration UTF8String

ENTITIES SEQUENCE OF UTF8String

ENTITY UTR8String

float REAL

gDay UTF8String

gMonth UTF8String

gMonthDay UTF8String

gYear UTF8String

gYearMonth UTF8String

hexBinary OCTET STRING

ID UTF8String

IDREF UTF8String

IDREFS SEQUENCE OF UTF8String

integer INTEGER

int INTEGER (-2147483648..2147483647)

language UTF8String

long INTEGER
(-9223372036854775808..9223372036854775807)

Name UTF8String

NCName UTF8String

negativel nteger INTEGER (MIN..-1)

104

XSD to C/C++ Type Mappings

XSD Simple Type ASN.1 Type

NMTOKEN UTRF8String

NMTOKENS SEQUENCE OF UTF8String
nonNegativel nteger INTEGER (0..MAX)
nonPositivel nteger INTEGER (MIN..0)
normalizedString UTF8String

positivel nteger INTEGER (1..MAX)

short INTEGER (-32768..32767)
string UTF8String

time UTF8String

token UTF8String

unsignedByte INTEGER (0..255)
unsignedShort INTEGER (0..65535)
unsignedint INTEGER (0..4294967295)
unsignedLong INTEGER (0..18446744073709551615)

The C/C++ mappings for these types can be found in the section above on ASN.1 type mappings.

XSD Complex Types

XSD complex types and selected simple types are mapped to equivalent ASN.1 constructed types. In some cases,
simplifications are done to make the generated code easier to work with. The following are mappings for specific
XSD complex types.

xsd:sequence

The XSD sequence type is normally mapped to an ASN.1 SEQUENCE type. The following items describe special
processing that may occur when processing a sequence definition:

« If the resulting SEQUENCE type contains only a single repeating element, it is converted into a SEQUENCE OF
type. This can occur if either the sequence declaration has a maxOccurs attribute with a value greater than one or
if the single element inside has a similar maxOccurs attribute.

« If the sequence contains an element that has a‘ minOccurs="0"" attribute declaration, the element is mapped to be
an OPTIONAL element in the resulting ASN.1 SEQUENCE assignment.

« If the sequence contains a repeating element (denoted by having a‘ maxOccurs’ attribute with a value greater than
one), then a SEQUENCE OF type for this element is used in the ASN.1 SEQUENCE for the element.

« If attributes are defined within the complex type container containing the sequence group, attributes are defined,
these attribute declarations are added to the resulting ASN.1 as element declarations as per the X.694 standard. In
XML encodings, these appear as attributes in the markup; in binary encodings, they are elements.

Example

<xsd: conpl exType nanme="Nane">
<xsd: sequence>
<xsd: el ement nanme="gi venName" type="xsd:string "/>
<xsd: el ement nane="initial" type="xsd:string" m nCccurs="0"/>
<xsd: el ement nanme="fam | yNane" type="xsd:string"/>

105

XSD to C/C++ Type Mappings

</ xsd: sequence>
</ xsd: conpl exType>

would result in the creation of the following C type definition:

t ypedef struct EXTERN Nane {

struct {
unsigned initial Present : 1;

}om
const OSUTF8CHAR* gi venNane;
const OSUTF8CHAR* initial;
const OSUTF8CHAR* fani | yNane;

} Name;

xsd:all

The xsd:all type is similar to an ASN.1 SET in that it alows for a series of elements to be specified that can be
transmitted in any order. However, due to sometechnicalitieswith thetype, it ismodeled in X.694 to bea SEQUENCE
type with a special embedded array called order. This array specifiesthe order in which XML elements were received
if XML decoding of an XML instance was done. If this information were then retransmitted in binary using BER or
PER, the order information would be encoded and transmitted followed by the SEQUENCE elements in the declared
order. If the data were then serialized back into XML, the order information would be used to put the elements back
in the same order in which they were originally received.

The mapping to C type would be the same as for xsd: sequence above with the addition of the special order array. An
example of thisisasfollows:

<xsd: conpl exType nanme="Nane">
<xsd:al | >
<xsd: el ement nane="gi venNane" type="xsd:string "/>
<xsd: el ement nane="initial" type="xsd:string"/>
<xsd: el ement nane="fani | yNane" type="xsd:string"/>
</xsd:all >
</ xsd: conpl exType>

would result in the creation of the following C type definition:

typedef struct EXTERN Nanme {

struct {

OSUI NT32 n;

OSUI NT8 el enf 3];
} _order;

const OSUTF8CHAR* gi venNane;

const OSUTF8CHAR* initial;

const OSUTF8CHAR* fani | yNane;
} Nane;

In this case, the _order element is for the order element described earlier. Normally, the user does not need to deal
with this item. When the generated initialization is called for the type (or C++ constructor), the array will be set to
indicate elements should be transmitted in the declared order. If XML decoding is done, the contents of the array will
be adjusted to indicate the order the elements were received in.

xsd:choice and xsd:union

The xsd: choice typeis converted to an ASN.1 CHOICE type. ASN1C generates exactly the same code. For example:

106

XSD to C/C++ Type Mappings

<xsd: conpl exType nanme="NanePart">
<xsd: choi ce>
<xsd: el ement nanme="gi venName" type="xsd:string "/>
<xsd: el ement nane="initial" type="xsd:string"/>
<xsd: el ement nanme="fam | yNane" type="xsd:string"/>
</ xsd: choi ce>
</ xsd: conpl exType>

in this case, the generated code is the same asfor ASN.1 CHOICE:

#define T_NanePart_ gi venNane 1
#define T _NanePart _initial 2
#define T _NanePart fam | yNane 3

typedef struct EXTERN NanePart {
int t;

uni on {
[*t =1 %/
const OSUTF8CHAR* gi venNang;
[*t =2 %/
const OSUTF8CHAR* initial;
[*t =3 %/
const OSUTF8CHAR* fani | yNane;

}ous

} NanmePart;

Similar to xsd:choice is xsd:union. The main difference is that xsd:union alternatives are unnamed. As specified in
X.694, special names are generated in this case using the base name “alt”. The generated name for the first member
is“at”; names for successive members are “alt-n” where n is a sequential number starting at 1. An example of this
naming is as follows:

<xsd: si npl eType nanme="M/Type" >
<xsd: uni on nmenber Types="xsd: i nt xsd: | anguage"/ >
</ xsd: si npl eType>
This generates the following C type definition:

#define T_MyType_alt 1
#define T_MyType_ alt 1 2

typedef struct EXTERN MyType {
int t;

uni on {
[*t =1 %
OSINT32 alt;
[*t =2 %]
const OSUTF8CHAR* alt 1;
}ous
} M Type;

Repeating Groups

Repeating groups are specified in XML schema definitions using the minOccurs and maxOccurs facets on sequence
or choice definitions. These items are converted to ASN.1 SEQUENCE OF types.

107

XSD to C/C++ Type Mappings

An example of arepeating group is asfollows:

<xsd: conpl exType nanme="Nanes" >
<xsd: sequence maxQCccur s="unbounded" >
<xsd: el ement nane="gi venNane" type="xsd:string "/>
<xsd: el ement nane="initial" type="xsd:string"/>
<xsd: el ement nane="fanil yNane" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>

in this case, ASN1C pulls the group out to form a type of form <name>-element where <name> would be replaced
with the complex type name. In this case, the name would be Names-element. A SEQUENCE OF type isthen formed

based on this newly formed type (SEQUENCE OF Names-element). The generated C code corresponding to thisis
asfollows:

typedef struct EXTERN Nanes_el ement {
const OSUTF8CHAR* gi venNane;
const OSUTF8CHAR* initial;
const OSUTF8CHAR* fani | yNane;

} Nanmes_el enent;

/* List of Nanes_el ement */
t ypedef OSRTDLi st Names;

Thisgenerated codeis not identical to the code generated by performing an X.694 translation to ASN.1 and compiling
the resulting specification with ASN1C; it is much simpler. The generated encoder and decoder make the necessary
adjustments to ensure that the encodings are the same regardless of the process used.

Repeating Elements

It is common in XSD to specify that elements within a composite group can occur a multiple number of times. For
example:

<xsd: conpl exType name="Nanme" >
<xsd: sequence>
<xsd: el emrent name="gi venNane" type="xsd:string "/>
<xsd: el emrent name="initial" type="xsd:string"/>
<xsd: el emrent name="fam | yName" type="xsd:string" nmaxCccurs="2"/>
</ xsd: sequence>
</ xsd: conpl exType>

In this case, the f ami | yNane element may occur one or two times. (If mi nQccur s is absent, its default value
is 1.) X.694 specifies that a SEQUENCE OF type be formed for this element and then the element renamed to
fam | yName- | i st to reference this element. The C code produced by this transformation is as follows:

t ypedef struct EXTERN Nane {
const OSUTF8CHAR* gi venNane;
const OSUTF8CHAR* initial;
struct {

OSUI NT32 n;
const OSUTF8CHAR* el enf 2];
} fam | yNane_|ist;
} Name;

In this case, an array was used to represent f ani | yNanme_| i st . In others, alinked list might be used to represent
the repeating item.

108

XSD to C/C++ Type Mappings

xsd:list

Another way to represent repeating items in XSD is by using xsd:list. Thisis asimple type in XSD that refersto a
space-separated list of repeating items. When the list is converted to ASN.1, it is modeled as a SEQUENCE OF type.

For example:
<xsd: si npl eType nanme="M/Type" >
<xsd:list itemlype="xsd:int"/>
</ xsd: si npl eType>

results in the generation of the following C type:

typedef struct EXTERN MyType {

OSUI NT32 n;
OSI NT32 *el em
} W Type;

Specia codeisadded tothe generated XML encode and decode function to ensure the datais encoded in spaceseparated
list form instead of as XML elements.

xsd:any

Thexsd: any elementisawildcard placeholder that all ows an occurence of any element definition to occur at agiven
location. It is similar to the ASN.1 open type and can be modeled as such; however, ASN1C uses a special type for
these items (OSXSDANY) that allows for either binary or xml textual datato be stored. This allows items to be stored
in binary form if binary encoding rules are being used and XML text form if XML text encoding is used.

The definition of the OSXSDANny typeisasfollows:

typedef enum { OSXSDAny_ bi nary, OSXSDAny_ xm Text } OSXSDAnyAlt;
typedef struct OSXSDAny {
OSXSDAnyAl t t;
uni on {
OSOpenType* bi nary;
const OSUTF8CHAR* xm Text;
Pou
} OSXSDAny;

The t value is set to either OSXSDANny _bi nary or OSXSDAny _xm Text to identify the content type. If binary
decoding is being done (BER, DER, CER, or PER), the decoder will populate the bi nar y alternative element; if
XML decoding is being done, the xm Text field is populated. It is possible to perform XML-to-binary transcoding
of amulti-part message (for example, a SOAP message) by decoding each part and then reencoding in binary form
and switching the content type within this structure.

An example of a sequence with asingle wildcard element is as follows:

<xsd: conpl exType name="M/Type" >
<xsd: sequence>
<xsd: el ement nanme="El enent One" type="xsd:string"/>
<xsd: el ement nane="El enent Two" type="xsd:int"/>
<xsd: any processContents="1ax"/>
</ xsd: sequence>
</ xsd: conpl exType>

109

XSD to C/C++ Type Mappings

The generated C type definition is as follows:

t ypedef struct EXTERN MyType {
const OSUTF8CHAR* el enent One;
OSI NT32 el enent Two;

OSXSDAny el em

} MyType;

As per the X.694 standard, the element was given the standard element name el em

XML Attribute Declarations

XML attribute declarationsin XSD are translated into ASN.1 elementsthat are added to a SEQUENCE type. In binary
encodings, there is no way to tell encoded attributes apart from encoded elements. They just represent data fieldsin
ASN.1. For XML, special logic isadded to the generated XML encoders and decoders to encode and decode the items
as attributes.

An example of an attribute being added to an xsd:sequence declaration is as follows:

<xsd: conpl exType nane="Nane" >
<xsd: sequence>
<xsd: el ement nane="gi venNane" type="xsd:string "/>
<xsd: el ement nane="initial" type="xsd:string"/>
<xsd: el ement nane="fani | yNane" type="xsd:string"/>
</ xsd: sequence>
<xsd:attribute name ="occupation" type="xsd:string"/>
</ xsd: conpl exType>

Thisresultsin the following C type definition being generated:

t ypedef struct EXTERN Nane {
struct {
unsi gned occupati onPresent : 1;
}m
const OSUTF8CHAR* occupati on;
const OSUTF8CHAR* gi venNarre;
const OSUTF8CHAR* initial;
const OSUTF8CHAR* f ami | yNane;
} Name;

The attribute is marked as optional (hencetheoccupat i onPr esent flagin thebit mask) since XML attributes are
optional by default. The attribute declarations also occur before the element declarations in the generated structure.

Attributes can also be added to a choice group. Inthiscase, an ASN.1 SEQUENCE isformed consisting of the attribute
elements and an embedded element, choi ce, for the choice group. An example of thisisasfollows:

<xsd: conpl exType name="NanePart">
<xsd: choi ce>
<xsd: el ement nane="gi venNane" type="xsd:string "/>
<xsd: el ement nane="initial" type="xsd:string"/>
<xsd: el ement nane="fani | yNane" type="xsd:string"/>
</ xsd: choi ce>
<xsd:attribute name ="occupation" type="xsd:string"/>
</ xsd: conpl exType>

Thisresultsin the following C type definitions being generated:

110

XSD to C/C++ Type Mappings

#defi ne T_NanmePart _choi ce_gi venNamne 1
#define T_NanmePart choice_initial 2
#defi ne T_NamePart_choi ce_fam | yNane 3

typedef struct EXTERN NanePart_choice {
int t;

uni on {
[*t =1 %
const OSUTF8CHAR* gi venNane;
[*t =2 %
const OSUTF8CHAR* initial;
[*t =3 %/
const OSUTF8CHAR* fami | yName;
Py

} NanePart _choi ce;

typedef struct EXTERN NanePart {
struct {
unsi gned occupati onPresent : 1;
}m
const OSUTF8CHAR* occupati on;
NanmePart choi ce choi ce;
} NanePart;

In this case, occupat i on attribute declaration was added as before. But the choi ce group became a separate
embedded element called choi ce which the ASN1C compiler pulled out to create the NanmePart _choi ce
temporary type. Thistypewasthen referenced by thechoi ce elementinthegenerated typedefinitionfor NarmrePar t .

xsd:anyAttribute

An xsd:anyAttribute declaration is the attribute equivalent to the xsd:any wildcard element declaration described
earlier. The main difference is that a single xsd:anyAttribute declaration indicates that any number of undeclared
attributes may occur whereas xsd:any without a maxOccurs facet indicates that only a single wildcard element may

occur at that position.

X.694 model s xsd: anyAttribute asa SEQUENCE OF UTF83ring in ASN. 1. Each string in the sequence is expected to
beinanane=' val ue’ format. Thegenerated C typefor thisissimply alinked list of character strings. For example:

<xsd: conpl exType name="M/Type" >
<xsd: anyAttribute processContents="Iax"/>
</ xsd: conpl exType>

resultsin the following C type:

typedef struct EXTERN MyType {
/* List of const OSUTF8CHAR* */
OSRTDLi st attr;

} MyType;

To populate avariable of thistype for encoding, onewould add name="' val ue’ stringsto thelist for each attribute.

For example:

MyType nyVar,
rtxDListlnit (&wyVar.attr);

rt xDLi st Append (&ctxt, &mryVar.attr, OSUTF8(“attr1='valuel ”));

111

XSD to C/C++ Type Mappings

rt xDLi st Append (&ctxt, &mryVar.attr, OSUTF8(“attr2="value2' ”));

and so on.

xsd:simpleContent

The xsd:simpleContent type is used to either extend or restrict an existing simple type definition. In the case of
extension, the common use is to add attributes to a simple type. ASN1C will generate a C structure in this case with
an element called base that is of the simple type being extended. An example of thisis asfollows:

<xsd: conpl exType name="Si zeType">
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd:integer">
<xsd: attribute name="systeni type ="xsd:token"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

thisresultsin the following generated C type definition:

typedef struct EXTERN SizeType {
struct {
unsi gned system Present : 1;
}m
const OSUTF8CHAR* system ;
OSI NT32 base;
} SizeType;

Inthiscase, theattribute sy st emwasadded first (notethe name changetosyst em_ whichwastheresult of syst em
being determined to be a C reserved word). The base element is then added and is of type OSI NT32, the default

type used for xsd: i nt eger .

In the case of a simple content restriction, the processing issimilar. A complete new separate typeis generated even if
theresult of therestriction leavesthe original type unaltered (i.e. therestriction is handled by code within the generated
encode and/or decode function). This proves to be a cleaner solution in most cases than trying to reuse the type being
restricted. For example:

<xsd: conpl exType name="Smal | Si zeType" >
<xsd: si npl eCont ent >
<xsd:restriction base="Si zeType" >
<xsd: m nl ncl usi ve val ue="2"/>
<xsd: max| ncl usi ve val ue="6"/>
<xsd:attribute nane="systent type ="xsd:token" use="required"/>
</ xsd:restriction>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

This applies arestriction to the SizeType that was previously derived. In this case, the generated C type is asfollows:

typedef struct EXTERN Smal | Si zeType {
const OSUTF8CHAR* system ;
CSI NT32 base;

} Smal | Si zeType;

In this case, the type definition is almost identical to the original Si zeType. The only exception is that the bit mask
field for optional elements is removed—a consequence of the use="r equi r ed” attribute that was added to the

112

XSD to C/C++ Type Mappings

syst emattributedeclaration. Thehandling of them nl ncl usi ve andmax| ncl usi ve attributesishandledinside
the generated encode and decode function in the form of constraint checks.

xsd:complexContent

The xsd: complexContent type is used to extend or restrict complex types in different ways. It is similar to deriving
types from base types in higher level programming languages such as C++ or Java. A common usage pattern in the
case of extension is to add additional elements to an existing sequence or choice group. In this case, a new type is
formed that contains all elements—those declared in the base definition and those in the derived type. Also generated
is a new type with the name <baseType>_deri vati ons which isachoice of all of the different derivations of
the base type. Thisis used wherever the complex content base type is referenced to allow any derivation of the type
to be used in a message.

An example of thisisasfollows:

<xsd: conpl exType name="MType">
<xsd: sequence>
<xsd: el ement nanme="El enent One" type="xsd:string"/>
<xsd: el ement nane="El enent Two" type="xsd:int"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nanme="M/Ext endedType">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="M/Type" >
<xsd: sequence>
<xsd: el ement nane="El enent Three" type="xsd:string"/>
<xsd: el ement nane="El enment Four" type="xsd:int"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: compl exCont ent >
</ xsd: conpl exType>

The base typein thiscaseis My Type and it is extended to contain two additional elementsin MyExt endedType.
The resulting C type definitionsfor My Type, MyExt endedType, and the special derivations type are as follows:

typedef struct EXTERN MyType {
const OSUTF8CHAR* el enent One;
OSI NT32 el enent Two;

} MyType;

typedef struct EXTERN MyExt endedType {
const OSUTF8CHAR* el erment One;
OSI NT32 el enent Two;
const OSUTF8CHAR* el ement Thr ee;
OSI NT32 el enent Four ;
} MyExt endedType;

#define T_MyType_derivations_nyType 1
#define T_MyType_derivati ons_nyExt endedType 2

typedef struct EXTERN MyType_derivations ({
int t;
uni on {

113

XSD to C/C++ Type Mappings

[* t =1 %/
M/ Type *nyType;
/[*t =2 */
M/Ext endedType *nyExt endedType;
Py
} MyType_derivati ons;

The derivations type is a choice between the base type and al derivations of that base type. It will be used wherever
the base type is referenced. This makes it possible to use an instance of the extended type in these places.

The case of restriction is handled in a similar fashion. In this case, instead of creating a new type with additional
elements, anew typeiscreated with all restrictionsimplemented. Thistype may beidentical to the base type definition.

Substitution Groups

A substitution group is similar to a complex content type in that it allows derivations from a common base. In this
case, however, the baseis an XSD element and the substitution group allows any of a set of elements defined to bein
the group to be used in the place of the base element. A simple example of thisis asfollows:

<xsd: el ement nane="MEl ement" type="MType"/>
<xsd: conpl exType name="M/Type" >
<xsd: sequence>
<xsd: el ement ref="M/BaseEl emrent"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el ement nane="MBaseEl ement" type="xsd:string"/>

<xsd: el ement nane="M/Ext endedEl emrent" type="xsd:string" substitutionG oup="MBaseEl enen

Inthiscase, the global element MyEl enrent references My Ty pe which isdefined as a sequence with asingle element
reference to MyBaseEl enent . MyBaseEl enent is the head element in a substitution group that also includes
MyExt endedEl enent . Thismeans My Ty pe can either reference MyBaseEl enent or MyExt endedEl enent .

As per X.694, ASN1C generates a special type that acts as a container for al the different possible elements in the
substitution group. Thisis a choice type with the name <BaseEl enment >_gr oup where<BaseEl enent > would
be replaced with the name of the subsitution group head element (MyBaseEl enent in this case).

The generated C type definitions for the above XSD definitions follow:
typedef const OSUTF8CHAR* MyBaseEl enent;

typedef const OSUTF8CHAR* MyExt endedEl enent;

#defi ne T_MyBaseEl ement _group_mnyBaseEl enent 1
#def i ne T_MyBaseEl enent _gr oup_mnyExt endedEl ement 2

typedef struct EXTERN MyBaseEl ement _group {

int t;
uni on {

[*t =1 %

MyBaseEl ement mnmyBaseEl enent ;

[*t =2 %

MyExt endedEl enent nyExt endedEl enent ;
P

} MyBaseEl enent _gr oup;

114

XSD to C/C++ Type Mappings

typedef struct EXTERN MyType {
MyBaseEl ement _gr oup nyBaseEl enment ;

} MType;
typedef MyType M/El ement;

Inthiscase, if MVEl enent or My Type isused, it can be populated with either base element or extended element data.

115

Chapter 6. Generated C/C++ Source Code
Header (.h) File

The generated C or C++ include file contains a section for each ASN.1 production defined in the ASN.1 sourcefile.
Different items will be generated depending on whether the selected output code is C or C++. In general, C++ will
add some additional items (such as a control class definition) onto what is generated for C.

The following items are generated for each ASN.1 production:

» Tag value constant

* Choice tag constants (CHOICE type only)

» Named bit number constants (BIT STRING type only)

» Enumerated type option values (ENUMERATED or INTEGER type only)

» Ctypedefinition

» Encode function prototype

 Decaode function prototype

 Other function prototypes depending on selected options (for example, print)
e C++ control class definition (C++ only)

A sample section from a C header fileis asfollows:

/**/

/* */
/* Enpl oyeeNumnber */
/* */

/**/

#def i ne TV_Enpl oyeeNunber (TM APPL| TM PRI M 2)
t ypedef OSI NT32 Enpl oyeeNumnber ;

EXTERN i nt asnlE_Enpl oyeeNunber (OSCTXT* pctxt,
Enpl oyeeNunber *pval ue, ASN1TagType taggi ng);

EXTERN i nt asnlD Enpl oyeeNunber (OSCTXT* pctxt,
Enpl oyeeNunber *pval ue, ASN1TagType taggi ng, int |ength);

This corresponds to the following ASN.1 production specification:

Enpl oyeeNunber ::= [APPLI CATION 2] | MPLICI T | NTEGER

Inthisdefinition, TV_EmployeeNumber isthe tag constant. Doing alogical OR on the class, form, and identifier fields
forms this constant. This constant can be used in a comparison operation with atag parsed from a message.

Thefollowing line;

t ypedef OSI NT32 Enpl oyeeNumnber ;

116

Generated C/C++ Source Code

declares EmployeeNumber to be of an integer type (note: OSINT32 and other primitive type definitions can be found
in the osSysTypes.h header file).

asnlE_EmployeeNumber and asn1D_EmployeeNumber are function prototypes for the encode and decode functions
respectively. These are BER function prototypes. If the -per switch is used, PER function prototypes are generated.
The PER prototypes begin with the prefix asn1PE_ and asn1PD_ for encoder and decoder respectively. XER function
prototypes begin with asn1XE_and asn1XD .

A sample section from a C++ header file for the same production is as follows:

/**/

/* */
/* Enpl oyeeNumnber */
/* */

/**/

#def i ne TV_Enpl oyeeNunber (TM APPL| TM PRI M 2)
typedef OSI NT32 ASNLT_Enpl oyeeNunber;

cl ass EXTERN ASNLC_Enpl oyeeNumnber
publ i c ASN1CType
{
pr ot ect ed:
ASNLT_Enmpl oyeeNunber & nsgDat a;
publi c:
ASN1C _Empl oyeeNunber (ASN1T_Enpl oyeeNunber & dat a) ;
ASN1C Enpl oyeeNunber (
ASN1MessageBuf f er | F& nsgBuf, ASNLT_Enpl oyeeNunber & dat a) ;

/1 standard encode/ decode nethods (defined in ASN1CType base cl ass):
/1 int Encode ();
/1 int Decode ();

/1 stream encode/ decode net hods:
i nt EncodeTo (ASNlMessageBufferl F& nmsgBuf);
i nt DecodeFrom (ASN1MessageBuffer| F& nmsgBuf) ;

b

EXTERN i nt asnlE_Enpl oyeeNunber (OSCTXT* pct xt,
ASNLT_Enpl oyeeNunber *pval ue, ASN1TagType taggi ng);

EXTERN i nt asnlD Enpl oyeeNunber (OSCTXT* pct xt,
ASNLT_Enpl oyeeNunber *pval ue, ASN1TagType taggi ng, int |ength);

Note the two main differences between this and the C version:

1. The use of the ASN1T_ prefix on the type definition. The C++ version uses the ASN1T_ prefix for the typedef and
the ASN1C _ prefix for the control class definition.

2. Theinclusion of the ASN1C_EmployeeNumber control class.

As of ASN1C version 5.6, control classes are not automatically generated for all ASN.1 types. The only types they
are generated for are those determined to be Protocol Data Units (or PDU’ s for short). A PDU is atop-level message
type in a specification. These are the only types control classes are required for because the only purpose of a control
classisto provide the user with asimplified calling interface for encoding and decoding amessage. They are not used

117

Generated C/C++ Source Code

in any of the ASN1C internally generated logic (the exception to this rule is the XER / XML encoding rules where
they are used internally and still must be generated for all types).

A typeisdetermined to be aPDU in two different ways:
1. If itisexplicitly declared to be PDU viathe <isPDU/> configuration setting or -pdu command-line option.
2. If no explicit declarations exist, atype is determined to be a PDU if it is not referenced by any other types.

In the employee sample program, EmployeeNumber would not be considered to be a PDU becauseiit is referenced as
an element within the Employee production. For the purpose of this discussion, we will assume EmployeeNumber was
explicitly declared to be a PDU via a configuration setting or command-line specification.

ASN1C EmployeeNumber is the control class declaration. The purpose of the control class is to provide a linkage
between the message buffer object and the ASN.1 typed object containing the message data. The class provides
methods such as EncodeTo and DecodeFrom for encoding and decoding the contents to the linked objects. It also
provides other utility methods to make populating the typed variable object easier.

ASNI1C aways adds an ASN1C prefix to the production name to form the class name. Most generated classes are
derived from the standard ASN1CType base class defined in asn1Message.h. The following ASN.1 types cause code
to be generated from different base classes:

» BIT STRING — The generated control classis derived from the ASN1CBItStr class

» SEQUENCE OF or SET OF with linked list storage — The generated control class is derived from the
ASN1CSqOfList base class.

» Defined Type — The generated control class for defined types is derived from the generated base class for the
reference type. For example, if we have A ::= INTEGER and B ::= A, then B is a defined type and would inherit
from the base class generated for A (classASN1C B : public ASNIC A{ ...).

These intermediate classes are also derived from the ASN1CType base class. Their purpose is the addition of
functionality specific to the given ASN.1 type. For example, the ASN1CBItSr control class provides methods for
setting, clearing and testing bits in the referenced bit string variable.

In the generated control class, the msgData member variable is a reference to a variable of the generated type. The
constructor takestwo arguments—an Asn1MessageBuffer | F (message buffer interface) object referenceand areference
to avariable of the datatype to be encoded or decoded. The message buffer object isawork buffer object for encoding
or decoding. The interface reference can also be used to specify a stream. Stream classes are derived from this same
base class. The data type reference is areference to the ASNLIT_ variable that was generated for the data type.

EncodeFrom and DecodeTo methods are declared that wrap the respective compiler generated C encode and decode
stream functions. Standard Encode and Decode methods exist in the ASN1CType base class for direct encoding and
decoding to a memory buffer. Command-line options may cause additional methods to be generated. For example,
if the —print command line argument was specified; a Print method is generated to wrap the corresponding C print
function.

The equivalent C and C++ type definitions for each of the various ASN.1 types follow.

Generated C Source Files

By default, the ASN1C compiler generates the following set of .c source files for a given ASN.1 module (note: the
name of the module would be substituted for <moduleName>):

<nmodul eNane>. ¢ common definitions and functions (for example,
asnlFree <type>) and/or global vaue constant
definitions.

118

Generated C/C++ Source Code

<nodul eNane>Enc. c encode functions (asnlE_<type>)

<nodul eNane>Dec. ¢ decode functions (asn1D_<type>)

If additional options are used (such as—genPrint, -genCopy, etc), additional files will be generated:

<nodul eNane>Copy. ¢ copy functions, generated if —genCopy is specified

<nmodul eName>Print.c print functions, generated if —genPrint is specified

<nodul eNane>Conpare. c comparison functions, generated if —genCompare is
specified

<nodul eNane>Prt ToStr. c print-to-string functions, generated if —genPrtToStr is
specified

<nmodul eName>Prt ToStrm c print-to-stream functions, generated if —genPrtToStrm is
specified

<nmodul eName>Tabl e. c table constraint functions, generated if —genTable option
is specified

<nodul eNane>Test . c test functions, generated if —genTest is specified

If —genCopy, -genPrint, etc have a filename parameter then the code will be written to the given file instead of the
default one. If the —file <filename> option is used and —genCopy, -genPrint, etc options do not have parameters then
all code will be placed in one source file with name <filename>.

Maximum Lines per File

In each of the cases above, it is possible to specify an approximate maximum number of lines that each of the
generated .c files may contain. Thisis done using the -maxlines option. If -maxlinesis specified with no parameter, a
default maximum number of lines (50,000) will be set; otherwise, the given value will be used.

If the given maximum lines limit is surpassed in afile, a new file will be started with an“_1" appended, for example
<moduleName>Enc_1.c. Additional fileswill be numbered sequentially if necessary (_2, _3, etc.). Note that thislimit
is alower threshold and not exact. A complete compilation unit (for example, a function) will not be split because
of this threshold. The way it works is the threshold is checked before the output of a compilation unit. If it is found
to be exceeded, a new file is started at that time. Therefore, a user should plan for a reserve to be in place above the
[imit to compensate for this overflow.

Thereason for having thislimit is because some C/C++ compilers have problemswith very large .c files. For example,
one product will not allow the debugger to work on linesin afile over the 64k threshold.

Use of the -maxcfiles Option

The -maxcfiles option allows generation of more compact code by putting each encode, decode, copy, compare, etc
function into a separate file. This allows the linker to link in only the required functions as opposed to all functions
in a compiled object module. This option might be useful for applications that have minimal space requirements (for
example, embedded systems).

Note

Some sophisticated linkers have the capability to pull individual functions out of an object module directly
for final inclusion in the target executable or shared object file. In this case, the -maxcfiles option does not
provide any advantage in reducing the size of the application program.
To achieve the best results it is necessary to put all compiled object files into an object library (.a or .lib file) and
includethislibrary inthelink command. The—genMake option when used in conjunction with —maxcfileswill generate

119

Generated C/C++ Source Code

a makefile that will compile each of the generated files and add them to alibrary with a name based on the name of
the ASN.1 module being compiled (< moduleName>.lib for Windows or lib<moduleName>.a for *NIX).

The format of each generated .c file nameis asfollows:
asnl<suffi x>_<prodnane>. c

where <suf f i x> depends on encoding rules and the function type (encode, decode, free, etc.) and <pr odnane>
isthe ASN.1 production name.

For example, consider one type definition within the enpl oyee. asn ASN.1 specification:

Enpl oyee DEFINITIONS ::= BEG N

[...]

Nanme ::= [APPLI CATION 1] | MPLICI T SEQUENCE {
gi venNane | A5Stri ng,
initial 1A5String,
fam | yName | A5String

}

[...]
END

By default, the following .c files would be generated (note: this assumes no additional code generation options were
selected):

Enpl oyee. c
Enpl oyeeEnc. ¢
Enpl oyeeDec. ¢

If -maxcfiles was selected asin the following command line:
asnlc enpl oyee.asn -c -ber -trace —naxcfiles
Running ASN1C with the -maxcfiles option, the following .c files for this type would be generated for the Name type:

asnlD _Nane. c
asnlE Nane.c

These contain the functions to decode Name and encode Name respectively. Similar files would be generated for the
other productions in the module as well.

Generated C++ files

In general, the generation logic for C++ is similar to the logic for C. Instead of the .c file extension, .cpp is used:

<nodul eNane>. cpp Common definitions and functions (for example,
asnlFree <type>) and/or global value constant
definitions. This file a&so contains constructors,
destructors and al methods for ASN1C <Type> and
ASNIT_<Type> control classes.

<nodul eNane>Enc. cpp C encode functions and C++ encode methods.
<nodul eNane>Dec. cpp C decode functions and C++ decode methods.

120

Generated C/C++ Source Code

If additional options are used (such as —genPrint, -genCopy, etc), additiona files will be generated:

Filename Description

<nodul eNane>Copy. cpp copy functions, generated if —genCopy is specified

<nodul eNane>Print. cpp print functions, generated if —genPrint is specified

<nodul eNane>Conpar e. cpp comparison functions, generated if —genCompare is
specified

<nodul eNane>Prt ToStr. cpp print-to-string functions, generated if —genPrtToStr is
specified

<nodul eNane>Prt ToStrm cpp print-to-stream functions, generated if —genPrtToStrm is
specified

<nmodul eName>Tabl e. cpp table constraint functions, generated if —genTable option
is specified

<nmodul eNanme>Test . cpp test functions, generated if —genTest is specified

The -maxcfiles option for C++ works very similar to how it works for C. The only differences are a few additional
files are generated and the .cpp extension is used instead of .c. Additional files are generated to hold ASN1C_<Type>
and ASN1T _<Type> control classes. The format of the filenames of thesefilesis asfollows:

asnl<suffi x>_<prodnane>. cpp
ASN1C <prodnane>. cpp
ASNLT_<pr odnane>. cpp

where <suf fi x> depends on the encoding rules and function type selected (encode, decode, free, etc.) and
<pr odnane> isthe ASN.1 production name.

For the example presented previously in the C Files section, the following files would be generated for the Name
productioninthe enpl oyee. asn file:

asnlD Name. cpp
asnlE_Name. cpp
ASNL1T_Name. cpp
ASN1C_Nane. cpp

These contain the functions to decode Name and encode Name respectively. The ASNIT_Name.cpp file contains the
type class methods, and the ASN1C_Name.cpp files contains the control class methods. Note that not all productions
have a control class (only PDU typesdo for BER or PER) thereforethe ASN1C_<type>.cpp file may not be generated.

Similar fileswould be generated for the other productions in the module as well.

Note that for C++, the code reduction effect islessthan that for pure C. Thisis because most of the linkers cannot omit
virtual methods even if they are not being used by the application. These virtual methods refer to separate C functions
and these functions are being linked into the application even if they are not actually used. But, still, the size of thefinal
application created with —maxcfiles option should be less than the size of the application created without this option.

Generated C/C++ files and the -compat Option

ASNIC 5.6 and below did not generate separate files for common definitions, encode and decode functions
(<moduleName> .c/.cpp, <moduleName> Enc.c/.cpp, <moduleName>Dec.c/.cpp). All code was generated in asingle
filewith the name <moduleName>..c/.cpp. If it is necessary to maintain this behavior then use the—compat 5.6 option.

Also, the behavior of the -cfile optionis slightly changed in ASN1C 5.7 and above. In 5.6 and below, the —file option
did not have any effect for files containing copy, print, compare, etc functions. For ASN1C 5.7 and above, —cfile causes

121

Generated C/C++ Source Code

everything to be output to one file unless specific filename parameters are specified with —genPrint, -genCopy, etc.
Once again, to maintain the previous behavior the —.compat 5.6 option can be used.

Considerations When Using C++ Standard
Library

When -cpp11 is specified on the command line, the generated code may use features of the C++ Standard Library such
as std::string for character strings and std::list (or another container class) for SEQUENCE OF types. There are afew
considerations to keep in mind when using this option.

ASN1C generates code that manages memory using OSCTXT and r t xMent functions. The design of the generated
code and memory management is such that the C++ constructors and destructors generally don't need to be invoked.
For example, dynamic memory isallocated usingr t xMemAl | oc Type, instead of new, andinitialization can be done
by assigning individual fieldsor else using ageneratedasnll ni t * function, so that the constructor is never invoked.

The C++ Standard Library classes are more typical C++ classes, and failing to invoke their constructor or destructor,
or invoking them more than once, can lead to memory leaks or crashes. This meansthat when you are using the -cpp11
option, you must take care that the C++ constructors and destructors for the generated classes are invoked exactly
once. Follow these rules to avoid problems:

» When you dynamically allocate an object, user t xMemAl | oc* to allocate the memory, then use a placement new
expression to invoke the constructor.

» C++destructorsdon't have accessto an OSCTXT for usein freeing memory. Therefore, before an object isdestructed,
invoke the generated asn1Fr ee* function for that type to free any dynamically allocated memory that is directly
or indirectly owned by the object. If no asn1Fr ee* function was generated for the type in question, there is no
such memory that needs to be freed and this rule does not apply.

* If you dynamically allocate an object that is not owned by some other object, make sure when you are finished with
the object that you do the following three things, in order:

1. invoke the generated asnl1Fr ee* function, if thereis one. Thiswill recursively destruct and free memory for
objects directly or indirectly owned by the object.

2. explicitly invoke the destructor for the object. Thiswill recursively destruct objects contained by the object.
3. usert xMenFr eePt r to release the memory

« If you repeatedly use the same object to encoderecords, usethe asnlinit* method with free=TRUE to free previously
alocated data before repopulating the object. If you repeatedly decode into the same object, invoke the Decode
method with free=TRUE.

* Do not use ASN1CType.memReset(). Y ou must use the asnlFree* methods or else memory allocated by the C++
standard library will not be freed. Also, invoking an asnlFree* method after ASN1CType.memReset() is likely to
cause a segmentation fault as dangling pointers are followed.

A few code examples are given below.
EXAMPLE 1, Using alocal variable:

/1A local variable's constructor & destructor fire automatically. You only need to

/' make sure asnlFree* is invoked. Using a control class, as show here, does that for y
ASNLT_PDU nsgDat a;

ASNLC PDU control PDU (encodeBuffer, nsgData);

122

Generated C/C++ Source Code

/1 Popul ate structure of generated type

/] Encode

/1 When control PDU goes out of scope, asnlFree_PDU will be invoked on nsgDat a
/1 When nsgDta goes out of scope, its destructor will fire

EXAMPLE 2, Assigning adynamically allocated std::string for a choice type:
OSCTXT* pct xt;
//set the selector indicating which alternative is chosen
pval ue- >nyChoi ce.t = 1;

/lallocate nenory for the chosen alternative
pval ue- >nyChoi ce. u. nessage = rtxMemAl | ocTypeZ (pctxt, std::string);

/1invoke the constructor using placement new expression
new (pval ue->nyChoi ce. u. nessage) std::string();

/1 Assign the contents of the string.
*pval ue- >nyChoi ce. u. message = "Happy Birthday!";

EXAMPLE 3, Dynamically allocating and freeing an object:
OSCTXT* pct xt ;
//dynam cally allocate and construct the object
ASNLT_Stri ngsl nSequence* pvalue = rtxMemAl | ocType (pctxt, ASNLT_Stringsl nSequence);

i f (pvalue == NULL)
return LOG RTERR (pctxt, RTERR _NOVEM ;

new (pval ue) ASNLT_Stringsl nSequence();

//do some work, naybe decode into pval ue

/1invoke asnlFree*, destruct, and free nenory
asnlFree_Stringsl nSequence (pctxt, pvalue);
pval ue- >~ASNL1T_St ri ngsl nSequence() ;
rtxMentreebPtr (pctxt, (void*)pvalue);

Generated Build Files

Generated Makefile

The -genmake option causes a portable makefile to be generated to assist in the C or C++ compilation of all of the
generated C or C++ sourcefiles. This makefile contains arule to invoke ASN1C to regenerate the .c and .h filesif any

123

Generated C/C++ Source Code

of the dependent ASN.1 source files are modified. It also contains rules to compile al of the C or C++ source files.
Header file dependencies are generated for all the C or C++ sourcefiles.

Two basic types of makefiles are generated:

1. A GNU compatible makefile. Thismakefileiscompatiblewith the GNU make utility whichissuitablefor compiling
code on Linux and many UNIX operating systems, and

2. A Microsoft Visual Studio compatible makefile. This makefile is compatible with the Microsoft Visua Studio
nmake utility.

A GNU compatible makefile is produced by default, the Microsoft compatible file is produced when the —w32
command line option is specified in addition to —genmake.

Both of these makefile types rely on definitions in the platform.mk make include file. This file contains parameters
specific to different compiler and linker utilities available on different platforms. Typically, al the needs to be done
to port to a different platform isto adjust the parametersin thisfile.

When a makefile is generated, it is assumed that the ASN1C project exists within the ASN1C installation directory
tree. The generation logic triesto determine the root directory of the installation by traversing upward from the project
directory in an attempt to locate the rtsrc subdirectory which is assumed to be the installation root directory. The
makefile variable OSROOTDIR is then set to this value. A similar traversal is done to locate the platform.mk and
xmlparser.mk files. These paths are then set in the makefile. If the project directory is located outside of the ASN1C
directory tree, the user must set the OSROOTDIR environment variable to point at the ASN1C root directory in order
for the makefile generation to be successful. If thisis done, it is assumed that the platform.mk and xmlparser.mk files
arelocated in this directory aswell. If the compiler is unable to determine the root directory using any of the methods
described above, an error will be generated and the user will need to manually edit the makefile to set the required
root directory parameters and makefile include file paths.

Generated VC++ Project Files

The-vcproj option causes Microsoft Visual Studio project and workspacefilesto be generated that can be used to build
the generated code. The files are compatible with Visual Studio version 6.0; but higher versions of Visula Studio can
convert these files to the newer formats. This option can be used with the -dil option that will generate project filesto
compile all generated codeinto aDLL and -mt that will add multi-threaded compilation options to generated projects.

Because there are several different versions of Visual Studio, the -vcproj option takes an optional argument: therelease
year of the version of Visual Studio used. This modifies the resulting project to link against the appropriate set of
librariesdistributed with ASN1C. If no year is specified, the project will link against the usual ¢ and cpp directories. If
2003 is specified, the project will usthec_vs2003 and cpp_vs2003 directories. If 2005 is specified, c_vs2005
and cpp_vs2005 will be used. Likewise, if 2008 is specified, c_vs2008 and cpp_vs2008 will be used.

124

Chapter 7. Generated Encode/Decode
Function and Methods

Encode/Decode Function Prototypes

If BER or DER encoding is specified, a BER encode and decode function prototype is generated for each production
(DER uses the same form — there are only minor differences between the two types of generated functions). These
prototypes are of the following general form:

i nt asnlE <ProdNanme> (OSCTXT* pct xt,
<Pr odNane>* pval ue, ASNlTagType taggi ng);

i nt asnlD <ProdNanme> (OSCTXT* pct xt,
<Pr odNane>* pval ue, ASNlTagType tagging, int |ength);

The prototype with the asn1E_ prefix is for encoding and the one with asn1D__isfor decoding. The first parameter
is a context variable used for reentrancy. This allows the encoder/decoder to keep track of what it is doing between
function invocations.

The second parameter is for passing the actual data variable to be encoded or decoded. Thisis a pointer to a variable
of the generated type.

The third parameter specifies whether implicit or explicit tagging should be used. In practically all cases, users of the
generated function should set this parameter to ASN1EXPL (explicit). This tells the encoder to include an explicit tag
around the encoded result. The only time this would not be used is when the encoder or decoder is making internal
callsto handle implicit tagging of elements.

Thefinal parameter (decode case only) islength. Thisisignored when tagging is set to ASN1EXPL (explicit), so users
canignoreit for the most part and set it to zero. In the implicit case, this specifies the number of octets to be extracted
from the byte stream. Thisis necessary because implicit indicates no tag/length pair precedes the data; thereforeiit is
up to the user to indicate how many bytes of data are present.

If PER encoding is specified, the format of the generated prototypes is different. The PER prototypes are of the
following general form:

i nt asnlPE_<ProdNane> (OSCTXT* pctxt, <ProdNane>[*] val ue);

i nt asnlPD <ProdNane> (OSCTXT* pctxt, <ProdName>* pval ue);

In these prototypes, the prefixes are different (a‘P' character is added to indicate they are PER encoders/decoders),
and the tagging argument variables are omitted. |n the encode case, the value of the production to be encoded may be
passed by valueiif it isa simple type (for example, BOOLEAN or INTEGER). Structured values will still be passed
using a pointer argument.

If XML functions are generated using the -xml or -xer switches, the function prototypes are as follows:

i nt Xm Enc_<ProdNanme> (OSCTXT* pctxt, <ProdName>[*] val ue,
const OSUTF8CHAR* el emNane, const OSUTF8CHAR* nsPrefi x);

i nt Xm Dec_<ProdNanme> (OSCTXT* pctxt, <ProdNanme>* pval ue);

In this case, the encode function contains an argument for XML element name (elemName) and al so namespace prefix
(nsPrefix).

125

Generated Encode/Decode Function and Methods

Generated C++ Control Class Definition

A control class definition is generated for each defined production in the ASN.1 sourcefile that is determined to be a
Protocol Data Unit (PDU). By default, any type definedinan ASN.1 sourcefilethat is not referenced by any other type
isaPDU. This default behavior can be overridden by using a configuration file setting (<isPDU/>) or a command-
line option (-pdu) to explicitly declare that certain types are PDU’s.

The generated control classis derived from the ASN1CType base class. This class provides a set of common attributes

and methods for encoding/decoding ASN.1 messages. It hides most of the complexity of calling the encode/decode
functions directly.

BER/DER or PER Class Definition

The general form of the class definition for BER, DER, or PER encoding rulesis as follows:

cl ass ASNLC <nane> : public ASNLCType {
pr ot ect ed:
ASNLIT_<nane>& nsgDat a;
public:
ASN1C _<nane> (ASNLT_<nane>& dat a) ;
ASN1C <nanme> (
ASN1MessageBuf f er | F& nsgBuf, ASNLT_<name>& dat a);

/1 standard encode/ decode met hods (defined in ASNLCType base cl ass):
/1 int Encode ();
/1 int Decode ();

/1 stream encode/ decode net hods:

i nt EncodeTo (ASNlMessageBufferl F& nmsgBuf);

i nt DecodeFrom (ASN1MessageBufferl| F& nmsgBuf) ;
b

The name of the generated classis ASN1C_<name> where <name> is the name of the production. The only defined
attribute is a protected variabl e reference named msgData of the generated type.

Two constructors are generated. Thefirst isfor stream operations and allows the control classto be created using only
areference to avariable of the generated type.

The EncodeTo and Decodefrom methods can then be used to encode or decode directly to and from a stream. The
<< and >> stream operators can be used as well.

The second constructor isthe legacy form that allows amessage buffer to be associated with a datavariable at the time
of creation. The Encode and Decode methods defined in the ASN1CType base class can be used with this construction
form to encode and decode to the associated buffer.

The constructor arguments are areference to an ASN1MessageBuffer | F (message buffer interface) type and areference
to an ASN1T _<name> type. The message buffer interface argument is a reference to an abstract message buffer or
stream class. Implementations of the interface class are available for BER/DER, PER, or XER encode or decode
message buffers or for aBER or XER encode or decode stream.

The ASN1T _<name> argument is used to specify the data variable containing data to be encoded or to receive dataon
adecode call. The procedure for encoding isto declare avariable of thistype, populate it with data, and then instantiate
the ASN1C <name> object to associate a message buffer object with the data to be encoded. The Encode or Encode
To method can then be called to encode the data. On the decode side, a variable must be declared and passed to the
constructor to receive the decoded data.

126

Generated Encode/Decode Function and Methods

Note that the ASN1C class declarations are only required in the application code as an entry point for encoding or
decoding a top-level message (or Protocol Data Unit — PDU). As of ASN1C version 5.6, control classes are only
generated for ASN.1 types that are determined to be PDU’s. A type is determined to be a PDU if it is referenced by
no other types. Thisdiffersfrom previous versions of ASN1C where control classes were generated for al types. This
default behavior can be overridden by using a configuration file entry or the -pdu command-line switch to explicitly

declare the PDU types. The <isPDU/> flag is used to declare atype to be a PDU in a configuration file. An example
of thisisasfollows:

<asnlconfi g>
<nmodul e>
<nanme>H323- MESSAGES</ nane>
<pr oducti on>
<nane>H323- User | nf or mat i on</ nane>
<i sPDU/ >
</ producti on>
</ nodul e>
</ asnlconfi g>

This will cause only a single ASN1C_ control class definition to be added to the generated code for the H323-
UserInformation production.

If the module contains no PDUSs (i.e,. contains support types only), the <noPDU/> empty element can be specified at
the module level to indicate that no control classes should be generated for the module.

XER Class Definition

For the XML encoding rules (XER), the generated class definition is as follows:

cl ass ASNLC <name> :
public ASNLCType
{

pr ot ect ed:
ASNL1T_<nane>& nsgDat a;
additional control variables
publi c:
ASNLC <nanme> (ASNLT_<nanme>& data);
ASNLC <nane> (
ASN1MessageBuf ferl F& nsgBuf, ASNLT <nane>& data);

/1 standard encode/ decode nethods (defined in ASN1LCType base cl ass):
/1 int Encode ();

/1 int Decode ();

/1 stream encode/ decode net hods:

i nt EncodeTo (ASNlMessageBufferl F& nsgBuf);
i nt DecodeFrom (ASN1MessageBuf ferl F& nsgBuf);

} s
Generated Methods

For each production, an EncodeFrom and DecodeTo method is generated within the generated class structure. These
are standard methods that initialize context information and then call the generated C-like encode or decode function.

127

Generated Encode/Decode Function and Methods

If the generation of print functions was specified (by including —print on the compiler command line), a Print method
is also generated that calls the C print function.

Generated Information Object Table Structures

Information Objects and Classes are used to define multi-layer protocols in which “holes’ are defined within ASN.1
types for passing message components to different layers for processing. These items are also used to define the
contents of various messages that are allowed in a particular exchange of messages. The ASN1C compiler extractsthe
types involved in these message exchanges and generates encoders/decoders for them. The “holes’ in the types are
accounted for by adding open type holders to the generated structures. These open type holders consist of abyte count
and pointer for storing information on an encoded message fragment for processing at the next level.

The ASN1C compiler is capable of generating code in one of two forms for information in an object specification:

1. Simpleform: in thisform, references to variable type fields within standard types are simply treated as open types
and an open type placeholder is inserted.

2. Table unions form: in this form, all of the classes, objects, and object sets within a specification result in the
generation of codefor parsing and formatting the information field references within standard type structures. Open
types with relational constraints result in the generation of C union structures that enumerate all of allowed fields
as defined by the constraint. Thisform is selected by using the -table-unions command-line option.

3. Legacy tableform: thisissimilar to 2 in that all information object related itemsresult in the generation of additional
code. Inthis case, however, instead of aunion structure being generated for open typeswith relational constraints, a
void pointer isused to hold an object in decoded form. Thisform is selected using the -tables command-line option.

To better understand the support in this area, the individual components of Information Object specifications are
examined. We begin with the “CLASS’ specification that provides a schema for Information Object definitions. A
sample class specification is as follows:

OPERATI ON :: = CLASS {
&oper at i onCode CHO CE { | ocal | NTECER,
gl obal OBJECT | DENTI FI ER },
&Ar gunent Type,
&Resul t Type,
&Errors ERROR OPTI ONAL

}

Users familiar with ASN.1 will recognize this as a simplified definition of the ROSE OPERATION MACRO using
the Information Object format. When a class specification such asthisis parsed, information on itsfieldsis maintained
in memory for later reference. In the simple form of code generation, the class definition itself does not result in the
generation of any corresponding C or C++ code. It is only an abstract template that will be used to define new items
later on in the specification. Inthetableform, if C++ is specified, an abstract base classis generated off of which other
classes are derived for information object specifications.

Fieldsfrom within the class can be referenced in standard ASN. 1 types. It isthese types of referencesthat the compiler
ismainly concerned with. These aretypically “header” typesthat are used to add acommon header to avariety of other
message body types. An example would be the following ASN.1 type definition for a ROSE invoke message header:

I nvoke ::= SEQUENCE {
i nvokel D | NTEGER,
opcode OPERATI ON. &oper at i onCode,
argunment OPERATI ON. &Ar gunent Type

128

Generated Encode/Decode Function and Methods

Thisisavery simple casethat purposely omitsalot of additional information such as|nformation Object Set constraints
that are typically a part of definitions such as this. The reason this information is not present is because we are just
interested in showing the items that the compiler is concerned with. We will use this type to demonstrate the simple
form of code generation. We will then add table constraints and discuss what changes when the —tables command
line optionsis used.

The opcode field within this definition is an example of afixed typefield reference. It is known asthis because if you
go back to the original class specification, you will see that operationCode is defined to be of a specific type (namely
a choice between alocal and global value). The generated typedef for this field will contain a reference to the type
from the class definition.

Theargument field isan example of avariabletypefield.. Inthiscase, if you refer back to the class definition, you will
see that no typeis provided. This means that this field can contain an instance of any encoded type (note: in practice,
table constraints can be used with Information Object Sets to limit the message types that can be placed in this field).
The generated typedef for thisfield contains an “open type” (ASN1OpenType) reference to hold a previously encoded
component to be specified in the final message.

Simple Form Code Generation

In the simple form of information object code generation, the Invoke type above would result in the following C or
C++ typedefs being generated:

typedef struct |Invoke ::= SEQUENCE ({
OSI NT32 i nvokel D
OPERATI ON _oper at i onCode opcode;
ASN1OpenType ar gunent;

}

The following would be the procedure to add the Invoke header type to an ASN.1 message body:
1. Encode the body type
2. Get the message pointer and length of the encoded body

3. Plug the pointer and length into the numocts and data items of the argument open type field in the Invoke type
variable.

4. Populate the remaining Invoke type fields.

5. Encode the Invoke type to produce the final message.

In this case, the amount of code generated to support the information object references is minimal. The amount of
coding required by a user to encode or decode the variable type field elements, however, can be rather large. This

is a tradeoff that exists between using the compiler generated table constraints solution (as we will see below) and
using the simple form.

Unions Table Form Code Generation

If we now add table constraints to our original type definition, it might look as follows:

I nvoke ::= SEQUENCE {
i nvokel D | NTEGER,
opcode OPERATI ON. &oper ati onCode ({My-ops}),

129

Generated Encode/Decode Function and Methods

argunent OPERATI ON. &Ar gurrent Type ({ My- ops}{ @pcode})
}

The“{My-ops}” constraint on the opcode element specifies an information object set that constrainsthe element value
to one of the valuesin the object set. The { My-ops}{ @opcode} constraint on the argument element goes a step further
—it tiesthe type of the field to the type specified in the row that matches the given opcode value.

An example of the information object set and corresponding information objects would be as follows:

My-ops OPERATION ::= { nakeCall | fwdCall, ... }

makeCal | OPERATION :: = {
&Ar gurrent Type MakeCal | Argurent ,
&oper ati onCode | ocal : 10

}

fwdCal | OPERATION :: = {
&Ar gurrent Type FwdCal | Ar gunent ,
&oper ati onCode | ocal : 11

}

The C or C++ type generated for the SEQUENCE above when —table-unions is specified would be as follows:

typedef struct EXTERN I nvoke {
OSI NT32 i nvokel D
_OPERATI ON_oper ati onCode opcode;
struct {
/**
* informati on object selector
*/
My _ops_TVALUE t;

/**

* My_ops infornmation objects

*/
uni on {
/**
* operationCode: local : 10
*/
MakeCal | Argunent *nakeCal | ;
/**
* operationCode: local : 11
*/
FwdCal | Argurrent *fwdCal | ;
ASN1OpenType* ext El ent;
Pow
} argunent;
} I nvoke;

Each of the options from the information object set are enumerated in the union structure. All a user needs to do to
encode a variable of this type isto set the "t" value in the structure to the selected information object field and then
populate the type field. Thisis very similar to populating a CHOICE construct. The comments in the elements show

130

Generated Encode/Decode Function and Methods

what the value of the key element(s) must beif that alternative is selected. The open typefield at the end (extEleml) is
added because the object set is extensible and it therefore may contain avalue that is currently not included in the set.

Legacy Table Form Code Generation

In the legacy form of table constraint code generation, the following structure would be generated for the Invoke type
above:

t ypedef struct EXTERN | nvoke {
OSI NT32 i nvokel D
__OPERATI ON_oper ati onCode opcode;
ASN1Chj ect ar gument ;

}

Thisisalmost identical tothetype generatedin the simplecase. Thedifferenceisthe ASN10bject type (or ASN1TObject
for C++) that is used instead of ASN1OpenType. Thistypeis defined in the asnltype.h run-time header file asfollows:

typedef struct ASN1Obj ect {
ASN1OpenType encoded;
voi d* decoded;
OSI NT32 i ndex;

}

This holds the value to be encoded or decoded in both encoded or decoded form. The way a user uses this to encode
avalue of thistypeisasfollows:

1. Populate avariable of the type to be used as the argument to the invoke type.

2. Plug the address of this variable into the decoded void pointer in the structure above.
3. Populate the remaining Invoke type fields.

4. Encode the Invoke type to produce the final message.

Note that in this case, the intermediate type does not need to be manually encoded by the user. The generated encoder
has logic built-in to encode the complete message using the information in the generated tables.

Additional Code Generated with the -tables option

When the —tables command line option is used, additional code is generated to support the additional processing
required to verify table constraints. This code varies depending on whether C or C++ code generation is selected. The
C++ code is designed to take advantage of the object-oriented capabilities of C++. These capabilities are well suited
for modeling the behavior of information objects in practice. The following subsections describe the code generated
for each of these languages.

The code generated to support these constraints is intended for use only in compiler-generated code. Therefore, it is
not necessary for the average user to understand the mappings in order to use the product. The information presented
here isinformative only to provide a better understanding of how the compiler handles table constraints.

C Code Generation

For C, code is generated for the Information Object Sets defined within a specification in the form of aglobal array of
structures. Each structure in the array is an equivalent C structure representing the corresponding ASN.1 information
object.

131

Generated Encode/Decode Function and Methods

Additional encode and decodefunctionsare also generated for each typethat containstable constraints. Thesefunctions
have the following prototypes :

BER/DER
i nt asnlETC <ProdNane> (OSCTXT* pctxt, <ProdNane>* pval ue);
i nt asnlDTC <ProdNane> (OSCTXT* pctxt, <ProdNane>* pval ue);
PER
i nt asnlPETC <ProdNane> (OSCTXT* pctxt, <ProdNanme>* pval ue);
i nt asnlPDTC <ProdNane> (OSCTXT* pctxt, <ProdNanme>* pval ue);

The purpose of these functions is to verify the fixed values within the table constraints are what they should be and
to encode or decode the open type fields using the encoder or decoder assigned to the given table row. Calls to these
functions are automatically built into the standard encode or decode functions for the given type. They should be
considered hidden functions not for use within an application that uses the API.

C++ Code Generation

For C++, code is generated for ASN.1 classes, information objects, and information object sets. This code is then
referenced when table constraint processing must be performed.

Each of the generated C++ classes builds on each other. Firgt, the classes generated that correspond to ASN.1 CLASS
definitions form the base class foundation. Then C++ classes derived from these base classes corresponding to the
information objects are generated. Finally, C++ singleton classes corresponding to the information object sets are
generated. Each of these classes provides a container for a collection of C++ objects that make up the object set.

Additional encode and decode functions are also generated as they were in the C code generation case for interfacing
with the object definitions above. These functions have the following prototypes:

BER/DER

i nt asnlETC <ProdName> (OSCTXT* pctxt,
<Pr odNane>* pval ue,
<C assNanme>* pobject);

i nt asnlDTC <ProdName> (OSCTXT* pctxt,
<Pr odNane>* pval ue,
<C assNanme>* pobject);

PER

i nt asnlPETC_<Pr odNane> (OSCTXT* pct xt,
<Pr odNane>* pval ue,
<C assName>* pobject);

i nt asnlPDTC_<Pr odNane> (OSCTXT* pct xt,
<Pr odNane>* pval ue,
<C assName>* pobject);

These prototypes are identical to the prototypes generated in C code generation case except for the addition of the
pobject argument. This argument is for a pointer to the information object that matches the key field value for a

132

Generated Encode/Decode Function and Methods

given encoding. These functions have different logic for processing Relative and Simple table constraints. The logic
associated with each case is asfollows:

On the encode side:
Relative Table Constraint:

1. ThelookupObject method isinvoked on the object set instance to find the class object for the datain the popul ated
type variable to be encoded.

2. If amatch isfound, the table constraint encode function as defined above is invoked. This function will verify all
fixed type values match what is defined in the information object definition and will encode all typefields and store
the resulting encoded data in the ASN1TObject.encoded fields.

3. If amatch is not found and the information object set is not extensible, then a table constraint error status will be
returned. If the information object set is extensible, a normal status s returned.

Smple Table Constraint:

1. Thisfunction will verify all the fixed type values match what is defined in the table constraint information object
set. If an element value does not exist in thetable (i.e. theinformation object set) and the object set isnot extensible,
then atable constraint violation exception will be thrown.

The normal encode logic is then performed to encode all of the standard and open type fields in the message.
On the decode side, the logic is reversed:

The normal decode logic is performed to popul ate the standard and open type fields in the generated structure.
Relative Table Constraint:

1. The lookupObject method is invoked on the decoded key field value to find an object match.

2. If amatch isfound, the table constraint decode function as defined above is invoked. This function will verify all
fixed type values match what is defined in the information object definition and will fully decode all type fields
and store pointers to the decoded type variables in the ASN1TObject.decoded fields.

3. If amatch is not found and the information object set is not extensible, then a table constraint error status will be
returned. If the information object set is extensible, a normal statusis returned.

Smple Table Constraint:

1. This function will verify all the fixed type values match what is defined in the table constraint object set. If an
element value does not exist in the table (i.e. the information object set) and the object set is not extensible, then
atable constraint violation exception will be thrown.

General Procedure for Table Constraint Encoding

The general procedure to encode an ASN.1 message with table constraints is the same as without table constraints.
The only difference isin the open type data population procedure.

The -table-unions option will cause union structure to be generated for open type field containing relationsal table
constraints. These are populated for encoding in much the same way CHOICE onstructs are handled.

The -tables option will cause ASN1TODbject fields to be inserted in the generated code instead of Asn1OpenType
declarations.

133

Generated Encode/Decode Function and Methods

The procedure to popul ate the value for an ASN1TObject item is as follows:

1. Check the ASN.1 specification or generated C code for the type of the type field value in the information object
set that corresponds to the selected key field value.

2. Create avariable of that type and assign a pointer to it to the Asn1Object.decoded member variable as void*.
3. Follow the common BER/PER/DER encode procedure.

A complete example showing how to assign an open type value in the legacy tables case is as follows:

Test DEFINITIONS ::= BEG N
ATTRI BUTE :: = CLASS {
&Type,
& d OBJECT | DENTI FI ER UNI QUE }

W TH SYNTAX {
W TH SYNTAX &Type 1D & d }

name ATTRI BUTE :: = {
W TH SYNTAX Vi sibleString
I D {o0o111}}
name ATTRI BUTE :: = {
W TH SYNTAX | NTEGER
I D {o0o121}}
SupportedAttri butes ATTRIBUTE ::= { nane | comobnNane }
I nvoke ::= SEQUENCE {
opcode ATTRI BUTE. & d ({SupportedAttributes}),
argunent ATTRI BUTE. &Type ({SupportedAttri butes}{@pcode})
}
END

In the above example, the Invoke type contains a table constraint. Its element opcode refers to the ATTRIBUTE id
field and argument element refers to the ATTRIBUTE Type field. The opcode element is an index element for the
Invoke type' s table constraint. The argument element is an open type whose type is determined by the opcode value.
In this example, opcode is the key field.

The opcode element can have only two possible values: { 011} or { 01 2}. If the opcode valueis{ 0 1 1} then
argument will have a VisibleSring value and if the opcode valueis{ 01 2} then argument will have an INTEGER
value. Any other value of the opcode element will be violation of the Table Constraint.

If the SupportedAttributesinformation object set was extensible (indicated by a“,...” at the end of the definition), then
the argument element may have avalue of atype that is not in the defined set. In this case, if the index element value
is outside the information object set, then the argument element will be assumed to be an Asn1OpenType. The Invoke
type encode function call will use the value from argument.encoded.data field (i.e. it will have to be pre-encoded
because the encode function will not be able to determine from the table constraint how to encode it).

A C++ program fragment that could be used to encode an instance of the Invoke type is as follows:;

#i nclude TestTable.h // include file generated by ASNLC

134

Generated Encode/Decode Function and Methods

main ()

{
const OSOCTET* nsgptr;

OSOCTET msgbuf [1024] ;
int msgl en;

/1 step 1: construct ASNLIC C++ generated cl ass.
/1 this specifies a static encode nessage buffer

ASN1BEREncodeBuf f er encodeBuf fer (nsgbuf, sizeof (msgbuf));
/1 step 2: popul ate nsgbData structure with data to be encoded

ASNLT_I nvoke nsgDat a;
ASN1C | nvoke invoke (encodeBuffer, nsgData);

nmsgDat a. opcode. num ds = 3;

nmsgDat a. opcode. subi d[0] = O;
nmsgDat a. opcode. subi d[1] = 1;
nmsgDat a. opcode. subi d[2] = 1;

ASNL1Vi si bl eStri ng argument = “objsys”;

nmsgDat a. ar gunent . decoded = (voi d*) &argunent;

/1 note: opcode value is {0 1 1}, so argunent nust be
/1 ASNLVi si bl eString type

/1 step 3: invoke Encode nethod

if ((msglen = invoke.Encode ()) > 0) {
/1 encoding successful, get pointer to start of nessage
msgptr = encodeBuffer.get MsgPtr();

}

el se
error processing...

}

The encoding procedure for C requires one extra step. Thisisacall to the moduleinitialization functions after context
initialization is complete. All module initialization functions for all modules in the project must be invoked. The
module initialization function definitions can be found in the <ModuleName>Table.h file.

The format of each module initialization function name is as follows:
voi d <Modul eName>_init (OSCTXT* pctxt)
Here ModuleName would be replaced with name of the module.
A C program fragment that could be used to encode the Invoke record defined above is as follows:

#i ncl ude TestTable.h /* include file generated by ASNLIC */

int min ()
{
OSOCTET msgbuf [1024], *nsgptr;
i nt nmsgl en;
OSCTXT ctxt;
I nvoke invoke; /* typedef generated by ASNIC */

135

Generated Encode/Decode Function and Methods

}

/* Step 1: Initialize the context and set the buffer pointer */
if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/

printf (“context initialization failed (check license)\n");
return -1,

}

xe_setp (&ctxt, msgbuf, sizeof (nmsgbuf));

/* step 2: call nodule initialization functions */
Test _init (&ctxt);

/* Step 3: Populate the structure to be encoded */

nmsgDat a. opcode. num ds = 3;

nmsgDat a. opcode. subi d[0] = O;
nmsgDat a. opcode. subi d[1] = 1;
nmsgDat a. opcode. subi d[2] = 1;

/I note: opcode value is {0 1 1}, so argunment nust be
/1 ASN1Vi si bl eString type

ASNL1Vi si bl eStri ng argument = “objsys”;

nmsgDat a. ar gunent . decoded = (voi d*) &argunent;

/* Step 4: Call the generated encode function */
msgl en = asnlE I nvoke (&ctxt, & nvoke, ASNLEXPL);

/* Step 5: Check the return status (note: the test is */
/* > 0 because the returned value is the length of the */
/* encoded nessage conponent)..*/

if (msglen > 0) {

/* Step 6: If encoding is successful, call xe_getp to */
/* fetch a pointer to the start of the encoded nessage. */
megptr = xe_getp (&ctxt);

}

el se
error processing...

General Procedure for Table Constraint Decoding

The general procedure to decode an ASN.1 message with table constraintsis the same aswithout table constraints. The
only difference will exist in the decoded data for open type fields within the message. In this case, the Asn1Object /
Asn1TObject’ s decoded member variable will contain the original decoded type and the encoded member variable will
contain the original datain encoded form.

Refer to the BER/DER/PER decoding procedure for further information.

136

Generated Encode/Decode Function and Methods

The procedure to retrieve the value for open type fieldsis as follow:

1. Check the possible Typein the Information Object Set from index element value.

2. Assign or cast the Asn1Object.decoded member variable (void*) to the result type.

3. The Asn1Object.encoded field will hold the datain encoded form.

For the above complete example, the Invoke type's argument element will be decoded as one of the types in the
SupportedAttributesinformation object set (i.e. either asa VisibleString or INTEGER type). If the SupportedAttributes
information object set is extensible, then the argument el ement may be of atype not defined in the set. In this case, the
decoder will set the Asn1Object.encoded field as before but the Asn1Object.decoded field will be NULL indicating

the valueis of an unknown type.

A C++ program fragment that could be used to decode the Invoke example is as follows:

#i ncl ude Test.h //

main ()

{

OSCCTET nsgbuf [1024];
ASN1TAG nsgt ag;
i nt msegl en, status;

/* step 1: logic to read nmessage i nto nmsgbuf */

/* step 2: create decode buffer and nmsg data type */
ASN1BERDecodeBuf f er decodeBuffer (nsgbuf, |en);

ASNLT_I nvoke nsgDat a;
ASN1C | nvoke invoke (decodeBuffer, nsgData);

/* step 3: call decode function */

if ((status = invoke.Decode ()) == 0)
{
/1 decoding successful, data in nsgData
/1 use key field value to set type of nmessage data
ASNLOBJID oidl[] ={ 3, { 0, 1, 1 }};
ASNLOBJID o0id2[] ={ 3, { 0, 1, 2 }};
i f (msgDat a. opcode == o0idl) {
/1 argument is a VisibleString
ASNLVi si bl eStri ng* pArg =
(ASNLVi si bl eString*) mnsgDat a. ar gunent . decoded;

}
el se if (nsgDat a. opcode == 0id2) {
/1 argument is an | NTEGER
OSINT32 arg = (0OSINT32) *nsgDat a. ar gunent . decoded,;

el se {

137

include file generated by ASNLIC

Generated Encode/Decode Function and Methods

The decoding procedure for C requires one additional step. Thisis a call to the module initialization functions after
context initialization is complete. All module initialization functions for all modules in the project must be invoked.
The module initialization function definitions can be found in the <ModuleName>Table.h file.

/1 error processing

}

Inthiscase, thetype of the decoded argument can be determined by testing the key field value. In the example as shown,
the SupportedAttributes information object set is not extensible, therefore, the type of the argument must be one of the
two shown. If the set were extensible (indicated by a*“,...” inthe definition), then it is possible that an unknown opcode
could be received which would mean the type can not be determined. In this case, the original encoded message data
would be present in msgData.argument.encoded field and it would be up to the user to determine how to processiit.

A C program fragment that could be used to decode the Invoke exampleis as follows:

#i ncl ude TestTable.h /1 include file generated by ASNLC
main ()
{

OSOCTET msgbuf [1024] ;
ASNITAG nsgt ag;

i nt nmsgl en;
OSCTXT ct xt ;
| nvoke i nvoke;

ASNLOBJI D oi d1[] :
ASNLOBJI D oi d2[] :

{3 {0 1 1}}
{3 {0 1, 2}};

logic to read nessage into nmsgbuf

/* Step 1: Initialize a context variable for decoding */

if (rtlnitContext (&ctxt) !'= 0) {

/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);

return -1;

}

xd_setp (&ctxt, msgbuf, 0, &mrsgtag, &nsglen);

/* step 2: call nodule initialization functions */
Test _init (&ctxt);

/* Step 3: Call decode function */

status = asnlD | nvoke (&ctxt, & nvoke, ASNLEXPL, 0);
/[* Step 4: Check return status */

if (status == 0)

{

/* process received data in ‘invoke variable */
if (rtCnpTCO D (& nvoke. opcode, &oidl) == 0) {
/[* argument is a VisibleString */
ASNLVi si bl eStri ng* pArg =

138

Generated Encode/Decode Function and Methods

(ASNLVi si bl eString*) mnsgDat a. ar gunent . decoded;

}

else if (rtChpTCA D (& nvoke. opcode, &oid2) == 0) {
/* argument is an | NTEGER */
OSINT32 arg = (0OSINT32) *nsgDat a. ar gunent . decoded,;

}

/* Renenber to rel ease dynam c nenory when done! */
ASNLMEMFREE (&ct xt);

}

el se
error processing...

}

General Procedures for Encoding and
Decoding

Encoding functionsand methods generated by the ASN1C compiler aredesigned to besimilar in use acrossthe different
encoding rule types. In other words, if you have written an application to use the Basic Encoding Rules (BER) and
then later decide to use the Packed Encoding Rules (PER), it should only be asimple matter of changing afew function
calls to accomplish the change. Procedures for such things as populating data for encoding, accessing decoded data,
and dynamic memory management are the same for all of the different encoding rules.

This section describes common procedures for encoding or decoding data that are applicable to any of the different
encoding rules. Subsequent sections will then describe what will change for the different rules.

Populating Generated Structure Variables for Encoding

Prior to calling a compiler generated encode function, a variable of the type generated by the compiler must be
populated. Thisis normally a straightforward procedure —just plug in the values to be encoded into the defined fields.
However, things get more complicated when more complex, constructed structures are involved. These structures
frequently contain pointer types which means memory management issues must be dealt with.

There are three aternatives for managing memory for these types:
1. Allocate the variables on the stack and plug the address of the variablesinto the pointer fields,

2. Use the standard malloc and free C functions or new and delete C++ operators to allocate memory to hold the
data, and

3. UsethertxMemAlloc and rtxMemkFree run-time library functions or their associated macros.

Allocating the variables on the stack is an easy way to get temporary memory and have it released when it is no longer
being used. But one hasto be careful when using additional functions to populate these types of variables. A common
mistake isthe storage of the addresses of automatic variablesin the pointer fields of a passed-in structure. An example
of thiserror isasfollows (assume A, B, and C are other structured types):

typedef struct {
A* a,

139

Generated Encode/Decode Function and Methods

B* b;
C c;
} Parent;

void fill Parent (Parent* parent)

{
A aa,
B bb;
C cc;
/* logic to popul ate aa, bb, and cc */
parent->a = &aa;
parent->b = &bb;
parent->c = &cc;
}
main ()
{
Parent parent;
fillParent (&parent);
encodeParent (&parent); /* error! pointers in parent
reference nenory that is
out of scope */
}

In this example, the automatic variables aa, bb, and cc go out of scope when the fillParent function exits. Yet the
parent structure is still holding pointers to the now out of scope variables (this type of error is commonly known as
“dangling pointers’).

Using the second technique (i.e., using C malloc and free) can solve this problem. In this case, the memory for each
of the elements can be safely freed after the encode function is called. But the downside is that a free call must be
made for each corresponding malloc call. For complex structures, remembering to do this can be difficult thus leading
to problems with memory leaks.

Thethird technique usesthe compiler run-timelibrary memory management functionsto allocate and freethe memory.
The main advantage of this technique as opposed to using C malloc and free isthat all allocated memory can be freed
with a single rtxMemFree call. The rtxMemAlloc macro can be used to allocate memory in much the same way as
the C malloc function with the only difference being that a pointer to an initialized OSCTXT structure is passed in
addition to the number of bytesto allocate. All allocated memory is tracked within the context structure so that when
the rtxMemFree function is called, all memory isreleased at once.

Accessing Encoded Message Components

After a message has been encoded, the user must obtain the start address and length of the message in order to do
further operations with it. Before a message can be encoded, the user must describe the buffer the message is to be
encoded into by specifying a message buffer start address and size. There are three different types of message buffers
that can be described:

1. satic: thisisafixed-size byte array into which the message is encoded

140

Generated Encode/Decode Function and Methods

2. dynamic: in this case, the encoder manages the allocation of memory to hold the encoded message
3. stream: in this case, the encoder writes the encoded data directly to an output stream

The static buffer case is generally the better performing case because no dynamic memory alocations are required.
However, the user must know in advance the amount of memory that will be required to hold an encoded message.
Thereisno fixed formulato determinethis number. ASN.1 encoding involvesthe possible additions of tagsand lengths
and other decorations to the provided data that will increase the size beyond the initial size of the populated data
structures. The way to find out is either by trial-and-error (an error will be signaled if the provided buffer is not large
enough) or by using avery large buffer in comparison to the size of the data.

In the dynamic case, the buffer description passed into the encoder is a null buffer pointer and zero size. Thistells
the encoder that it is to alocate memory for the message. It does this by allocating an initial amount of memory and
when thisisused up, it expandsthe buffer by reallocating. This can be an expensive operation in terms of performance
— especially if alarge number of reallocations are required. For this reason, run-time helper functions are provided
that allow the user to control the size increment of buffer expansions. See the C/C++ Run-Time Library Reference
Manual for a description of these functions.

In either case, after amessage is encoded, it is hecessary to get the start address and length of the message. Eveninthe
static buffer case, the message start address may be different then the buffer start address (see the section on encoding
BER messages). For this reason, each set of encoding rules has a run-time C function for getting the message start
address and length. See the C/C++ Run-Time Library Reference Manual for a description of these functions. The C+
+ message buffer classes contain the getMsgPtr, getMsgCopy , and getMsgLength methods for this purpose.

A stream message buffer can be used for BER encoding. Thistype of buffer is used when the -stream option was used
to generate the encode functions. See the section on BER stream encoding for a complete description on how to set
up an output stream to receive encoded data.

Generation of Sample Application Programs

ASN1C has the capability to generate sample application programs that make use of generated code within a project.
The types of sample programs that can be created include writer, reader, client, and server.

A writer program is generated by selecting the -writer command-line option or the 'Generate writer sample program'
option within the GUI. This causes a program named 'writer' to be generated which will populate a structure of the
given PDU type and then encode and write it to an output file. If test code generation is being done as part of the
project, a call will be made to the generated test function to populate the variable to be encoded; otherwise, the user
will need to manually edit the program to add logic to to this part.

A reader program is generated by selecting the -reader command-line option or the 'Generate reader sample program'
option within the GUI. This causes a program named 'reader’ to be generated which will read a binary message from a
file and decode it and print the results. The message file cnabe that created by awriter program or can originate from
some other source aslong asit contains a message in raw binary format.

A client program is generated by selecting the -client command-line option or the 'Generate client sample program'
option withinthe GUI. Thiscausesaprogram named ‘client’ to be generated which will populate astructure of the given
PDU type and then encode and write it over a TCP/IP connection to a server interface. It will then wait for aresponse
from the server. Once received, the response will be decoded and printed and the client program will terminate. Note
that in thisrelease, only C++ client programs are supported.

A server program is generated by selecting the -server command-line option or the 'Generate server sample program'
option within the GUI. This causes a program named 'server' to be generated which will will listen for an incoming
TCP/1P socket connection request. Once received, it will read an encoded message from the client, decode it, and then
send aresponse and terminate. Note that in this release, only C++ client programs are supported.

141

Generated Encode/Decode Function and Methods

Generation of Programs from Templates

ASN1C hasthe capability to generate custom application programs using code generated by the compiler. The custom
programs are formed by combining code from user created template files with generated code. Placeholders are built
into the template code which are replaced with the compiler generated items.

The -gen-from-template command-line option or 'Generate program from template’ GUI option is used to generate
these types of programs.

Currently, the following placeholders in atemplate file may be specified for replacement:
* <include-files> - #include statements for all header files generated for the project are inserted at this location.

» <PDU-Type> - the name of a PDU type. If the project contains multiple PDU types, arandom one will be selected.
The -usepdu command-line option can be used to specify the type that is used.

Examples of some template files may be found in the templates directory within the installation. Templates are used
to generate the client and server application programs described in the last section. These templates can be modified
to change what is generated when those commands are used.

In the release, only templates in the C/C++ programming language are supported.

142

Chapter 8. Memory Management in C/C++

This chapter describes ASN1C's memory manager. Usersare encouraged to read this chapter when they need to replace
ASN1C'smemory manager or wish to have adeeper understanding of how memory is managed by the runtime context
structure.

Dynamic memory is managed by ASN1C to improve the overall performance of encoding and decoding procedures,
and understanding this management isimperative to avoiding memory problemsin applications. ASN1C also supports
replacing the memory manager with user-written objects at two levels: the high-level API called by the generated code
and the low-level API that provides the core memory functionality.

The ASN1C Default Memory Manager

The default ASN1C run-time memory manager uses an algorithm called the nibble-allocation algorithm. Large blocks
of memory are allocated up front and then split up to provide memory for smaller alocation requests. This reducesthe
number of callsrequired to the C nmal | oc and f r ee functions, which are very expensive in terms of performance.

The large blocks of memory are tracked through the ASN.1 context (OSCTXT) structure. For C, this means that an
initialized context block is required for all memory allocations and deallocations. All alocations are done using this
block as an argument to routines such asr t xMemAl | oc. All memory can be released at once when a user is done
with a structure containing dynamic memory items by calling r t xMentr ee. Other functions are available for doing
other dynamic memory operations as well. See the C/C++ Run-time Reference Manual for details on these.

High Level Memory Management API

The high-level memory management APl consists of C macros and functions called in generated code and/or in
application programs to allocate and free memory within the ASN1C run-time.

At thetop level are aset of macro definitionsthat begin with the prefix r t x Mem These are mapped to a set of similar
functions that begin with the prefix r t xMentHeap. A table showing this basic mapping is as follows:

Macro Function Description

rtxMemAl | oc rt xMentHeapAl | oc Allocate memory

rtxMemAl | ocZ rt xMenHeapAl | ocZ Allocate and zero memory
rtxMenReal | oc rt xMenmHeapReal | oc Reallocate memory

rt xMenfr ee rt xMenmHeapFr eeAl | Free all memory in context
rtxMenfreePtr rt xMenHeapFr eePt r Free a specific memory block

See the ASN1C C/C++ Common Runtime Reference Manual for further details on these functions and macros.

It is possible to replace the high-level memory allocation functions with functions that implement a custom memory
management scheme. This is done by implementing some (or al) of the C rt xMenHeap functions defined in the
following interface (note: a default implementation is shown that replaces the ASN1C memory manager with direct
callsto the standard C run-time memory management functions):

#i ncl ude <stdlib. h>
#i ncl ude "rtxMenory. h"

143

Memory Management in C/C++

/* Create a menory heap */
int rtxMenHeapCreate (void **ppvMenHeap) {
return O;

}

/* Allocate nmenmory */
voi d* rtxMenHeapAl |l oc (void **ppvMenHeap, size_t nbytes) {
return mall oc (nbytes);

}

/* Allocate and zero nenory */
voi d* rtxMenHeapAl |l ocZ (void **ppvMenHeap, size_t nbytes) {
return calloc (nbytes, 1);

}

/* Free nenory pointer */
void rtxMenmHeapFreePtr (void **ppvMenHeap, void *nmemp) ({
free (nemp);

}

/* Reallocate menory */
voi d* rtxMenHeapReal | oc (void **ppvMenHeap, void *nemp, size_t nbytes) {
return reall oc (nmemp, nbytes);

}

/* Free heap nenory, reset all heap variables. */
void rtxMenmHeapFreeAl |l (void **ppvMenHeap) ({
/* There is no analog in standard nenory managenent. */

}

/* Free heap nenory, reset all heap variables, and free heap structure if
it was allocated. */

voi d rtxMenmHeapRel ease (void **ppvMenHeap) ({
/* There is no analog in standard nenory managenent. */

}
In most casesit is only necessary to implement the following functions:
* rtxMemHeapAlloc
* rtxMemHeapAllocZ
* rtxMemHeapFreePtr
» rtxMemHeapRealloc

There is no anadlog in standard memory management for ASN1C's rtxMenfFree macro (i.e. the
rt xMenHeapFr eeAl | function). The user is responsible for freeing al items in a generated ASN1C structure
individually if standard memory management is used.

Thert xMermHeapCr eat e and r t xMenHeapRel ease functions are specialized functions used when a special
heap is to be used for alocation (for example, a static block within an embedded system). In this case,
rt xMenHeapCr eat e must set the ppvMenHeap argument to point at the block of memory to be used. This will
then be passed in to all of the other memory management functions for their use through the OSCTXT structure. The
rt xMenHeapRel ease function can then be used to dispose of this memory when it is no longer needed.

144

Memory Management in C/C++

To add these definitions to an application program, compile the C source file (it can have any name) and link the
resulting object file (. obj or . 0) in with the application.

Built-in Compact Memory Management

A built-in version of the simple memory management API described above (i.e with direct callsto malloc, free, etc.)
is available for users who have the source code version of the run-time. The only difference in this APl with what is
described above is that tracking of allocated memory is done through the context. This makes it possible to provide
an implementation of the r t xMenmHeapFr eeAl | function as described above. This memory management scheme
is slower than the default manager (i.e. nibble-based), but has a smaller code footprint.

This form of memory management is enabled by defining the _MEMCOMPACT C compile time setting. This can
be done by either adding -D_MEMCOMPACT to the C compiler command-line arguments, or by uncommenting this
item at the beginning of ther t xMenor y. h header file:

Uncoment this definition before building the C or C++ run-tinme
libraries to enable conpact nenory managenent. This will have a
smal | er code footprint than the standard nenory managenent; however,
* the performance may not be as good.

*/

[*#defi ne _MEMCOWPACT*/

Built-in Static Block Memory Management

Another alternative memory management capability is static block memory management. Thisis a faster alternative
to the nibble-allocation scheme but one that comes with some limitations. The main limitations are:

E I 3

* The capability to free an individual memory pointer (rtxMemFreePtr) is not available. The block must be freed as
awhole

» The capability to reallocate memory (rtxMemRealloc) is not available.

* The user must estimate up front what the maximum size of all alocations will be as once all memory in the block
is exhausted, further allocation attempts will fail.

Despite these limitations, thistype of memory management may be agood choice for simple, memory-based decoding
because a decoder normally does not require free and reallocation capabilities. It ssmply progresses sequentially
through a message and allocates memory for decoded items. If decoding in aloop, the rtxMemReset function can be
used to free the entries block up for storage for items in the next message.

To use the capability, a user would release the memory heap created in the context structure after initialization with
the static block they wanted to use using ther t xMenSt at i cHeapCr eat e function as follows:

/* Set static menory heap */

rt xMentHeapRel ease (&ct xt. pMentHeap) ;
rt xMentt ati cHeapCr eat e
(&ct xt . pMenHeap, staticMenHeap, sizeof(staticMenHeap));

Thest at i cMenHeap variable would simply be abyte array of the desired size. It also could be ablock of memory
allocated using mal | oc or new.

145

Memory Management in C/C++

Low Level Memory Management API

It is possible to replace the core memory management functions used by the ASN1C run-time memory manager.
This has the advantage of preserving the existing management scheme but with the use of different core functions.
Using different core functions may be necessary on some systems that do not have the standard C run-time functions
mal | oc,free,andreal | oc, or when extrafunctionality is desired.

To replace the core functions, use ther t xMenSet Al | ocFuncs runtime library call:

voi d rtxMentet Al | ocFuncs (OSMal | ocFunc mal | oc_func, OSReal | ocFunc
real l oc_func, OSFreeFunc free_func);

The mal | oc, real | oc, and f r ee functions must have the same prototype as the standard C functions. Some
systems do not have arealloc-like function. In thiscase, r eal | oc_f unc may be set to NULL. Thiswill cause the
mal | oc_func/free_func pair to be used to do reallocations.

This function must be called before the context initialization function (rt | ni t Cont ext) because context
initialization requires low level memory management facilities bein placein order to do its work.

Note that this function makes use of static global memory to hold the function definitions. This type of memory is not
available in all run-time environments (most notably Symbian). In this case, an aternative function is provided for
setting the memory functions. Thisfunctionisr t X1 ni t Cont ext Ext , which must be called in place of the standard
context initialization function (r t I ni t Cont ext). Inthiscase, thereisabit morework required to initialize acontext
because the ASN.1 subcontext must be manually initialized. Thisis an example of the code required to do this:

int stat = rtxlnitContextExt (pctxt, malloc_func, realloc_func,
free_func);

if (0 == stat) {
/* Add ASN.1 error codes to global table */
rtErrASNLInit ();

/* Init ASN. 1 info block */
stat = rtCxtlnitASNLI nfo (pctxt);

}

Memory management can also be tuned by setting the default memory heap block size. The way memory management
works isthat alarge block of memory is allocated up front on the first memory management call. This block is then
subdivided on subsequent calls until the memory is used up. A new block is then started. The default value is 4K
(4096) bytes. The value can be set lower for space constrained systems and higher to improve performancein systems
that have sufficient memory resources. To set the block size, the following run-time function should be used: voi d
rt xMenSet Def Bl kSi ze (QOSUI NT32 bl kSi ze) ;

This function must be called prior to context initialization.

C++ Memory Management

In the case of C++, the ownership of memory is handled by the control class and message buffer objects. These classes
share a context structure and use reference counting to manage the allocation and release of the context block. When
a message buffer object is created, a context block structure is created as well. When this object is then passed into
a control class constructor, its reference count is incremented. Then when either the control class object or message

146

Memory Management in C/C++

buffer object are deleted or go out of scope, the count is decremented. When the count goesto zero (i.e. when both the
message buffer object and control class object go away) the context structure is released.

What this means to the user is that a control class or message buffer object must be kept in scope when using a data
structure associated with that class. A common mistake is to try and pass a data variable out of a method and use it
after the control and message buffer objects go out of scope. For example, consider the following code fragment:

ASNLIT_<type>* func2 () {
ASNLT <type>* p = new ASNLIT <type> ();
ASN1BERDecodeBuf f er decbuf;
ASNLC <type> cc (dechuf, *p);

cc. Decode();

/1l After return, cc and decbuf go out of scope; therefore
/1 all menory allocated within struct p is rel eased..

return p;
}
void funcl () {
ASNLIT_<type>* pType = func2 ();
/1 pType is not usable at this point because dynam c nenory
/1 has been rel eased. .
}

As can be seen from this example, once func2 exits, al memory that was allocated by the decode function will be
released. Therefore, any items that require dynamic memory within the data variable will bein an undefined state.

An exception to this rule occurs when the type of the message being decoded is a Protocol Data Unit (PDU). These
are the main message types in a specification. The ASN1C compiler designates types that are not referenced by any
other types as PDU types. This behavior can be overridden by using the -pdu command line argument or <isPDU>
configuration file element.

The significance of PDU types is that generated classes for these types are derived from the ASN1 TPDU base class.
This class holds a reference to a context object. The context object is set by Decode and copy methods. Thus, even
if control class and message buffer objects go out of scope, the memory will not be freed until the destructor of an
ASNLTPDU inherited class is called. The example above will work correctly without any modifications in this case.

Another way to keep data is to make a copy of the decoded object before it goes out of scope. A method called
newCopy is aso generated in the control class for these types which can be used to create a copy of the decoded
object. This copy of the abject will persist after the control class and message buffer objects are deleted. The returned
object can be deleted using the standard C++ del et e operator when it is no longer needed.

Returning to the example above, it can be madeto work if thetype being decoded isaPDU type by doing thefollowing:
ASNLT_<type>* func2 () {
ASNLT_<t ype> nsgdat a;
ASN1BERDecodeBuf f er decbuf;
ASNLC <type> cc (dechuf, nsgdata);

cc. Decode();

147

Memory Management in C/C++

/1 Use newCopy to return a copy of the decoded item.

return cc. newCopy();
}

Memory Security

ASNI1C offers two primary tools to help secure memory operations. a safe memory copy accessed using the
OSCRTLSAFEMEMCPY macro and amemory heap flag RT_VH ZEROONFREE that will cause the runtime context to
zero out any freed memory. Memory that is marked as available using r t xMenReset will also be zeroed out.

Safe Memory Copy

Safe memory copy wasintroduced in version 6.7, primarily in response to the need to pacify some static code analysis
toolsthat flagged unchecked memory copies. Formerly ASN1C generated code that used the OSCRTLMEMCPY macro
to make callsto mentpy (or, by editing the rtxCommonDefs.h file, to afunction of the user's choice).

ASN1C now generates code that calls OSCRTLSAFEMEMCPY, which provides checks to ensure that the destination
buffer is sufficiently large to hold the source content. In thisway, ASN1C helpsto prevent potential buffer overflows.

The runtime libraries also use this macro internally.

Zero on Free

Users also have the option of zeroing memory whenever it is freed or reset using the memory heap functions. In
sensitive applications, this can prevent exploitsthat depend on reading datafrom memory after it isfreed by the calling
application.

In order to activate zero on free, users will need to set aflag in the runtime context heap:

OSCTXT ct xt;
int heap_flag = RT_MH _ZEROONFREE, stat = O;

stat = rtlnitContext (&ctxt);
if (stat '=0) {
rtxErrPrint (&ctxt);
return stat;

}

rt xMentHeapSet Property (&ctxt.pMenHeap, OSRTMH _PROPI D_SETFLAGS,
(void *) &heap flag);

There aretwo caveatsto zeroing memory on free. First, it isaslow operation and will noticeably degrade performance
inmost cases. Second, it will leave some metadata behind. The data describe the size of the all ocated blocks, but not the
content. Internally these data are used to navigate through the memory heap, and they must be retained until the blocks
areresized (e.g., by auser cal tor t xMentr ee or by arequest that causes an available block to bejoined to another).

148

Chapter 9. Generated BER Functions

Generated BER Encode Functions

Note

This section assumes standard memory-buffer based encoding isto be done. If stream-based encoding isto be
done (specified by adding -stream to the ASN1C command-line), see the Generated BER Streaming Encode
Functions section for correct procedures on using the stream-based encode functions.

For each ASN.1 production defined in the ASN.1 source file, a C encode function is generated. This function will
convert apopulated C variable of the given type into an encoded ASN.1 message.

If C++ code generationisspecified, acontrol classisgenerated that containsan Encode method that wrapsthisfunction.
Thisfunction isinvoked through the class interface to convert a popul ated msgData attribute variable into an encoded
ASN.1 message.

Generated C Function Format and Calling Parameters

The format of the name of each generated encode function is as follows:
asnlE [<prefix>] <pr odNane>

where <pr odNamne> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function is as follows:

l en = asnlE_<nane> (OSCTXT* pctxt,
<name>* pval ue,
ASN1TagType taggi ng);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The variable
should be initialized using the rtinitContext run-time library function (see the C/C++ Common Run-Time Library
Reference Manual for a complete description of this function).

The pval ue argument holds a pointer to the data to be encoded and is of the type generated from the ASN.1
production.

The t aggi ng argument is for internal use when calls to encode functions are nested to accomplish encoding of
complex variables. It indicates whether the tag associated with the production should be applied or not (implicit versus
explicit tagging). At the top level, the tag should always be applied so this parameter should aways be set to the
constant ASN1EXPL (for EXPLICIT).

The function result variable | en returns the length of the data actually encoded or an error status code if encoding
fails. Error status codes are negative to tell them apart from length values. Return status values are defined in the
asnlt ype. hincludefile.

149

Generated BER Functions

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C BER or DER encode function. This method must be
used if C code generation was done. This method can also be used as an dternative to using the control classinterface
if C++ code generation was done. Note that the procedures described here cannot be used if stream-based encoding is
to be done (specified by the use of the -stream ASN1C command-line option). In this case, the procedures described
in the Generated BER Streaming Encode Functions section.

Before any encode function can be called; the user must first initialize an encoding context. Thisis avariable of type
OSCTXT. Thisvariable holds all of the working data used during the encoding of a message. The context variableis
declared as a normal automatic variable within the top-level calling function. It must beinitialized before use. This
can be accomplished by using the rtinitContext function as follows:

OSCTXT ct xt;

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem */
printf (“context initialization failed (check license)\n");
return -1,

}

The next step is to specify an encode buffer into which the message will be encoded. Thisis accomplished by calling
the xe_setp run-time function. The user can either pass the address of a buffer and size allocated in his or her program
(referred to as a static buffer), or set these parametersto zero and let the encode function manage the buffer memory
allocation (referred to as a dynamic buffer). Better performance can normally be attained by using a static buffer
because this eliminates the high-overhead operation of allocating and reallocating memory.

After initializing the context and populating a variable of the structure to be encoded, an encode function can be
called to encode the message. If the return statusindicates success (positive length value), the run-timelibrary function
xe_get p can be called to obtain the start address of the encoded message. Note that the returned address is not the
start address of the target buffer. BER encoded messages are constructed from back to front (i.e., starting at the end
of the buffer and working backwards) so the start point will fall somewhere in the middle of the buffer after encoding
iscomplete. Thisisillustrated in the following diagram:

Encode bulfer (size 1K):

Buffer start Start of _ Encode this way End of Buflfer
address Message [Ope 500
(0x100) (0 200)

Inthisexample, a 1K encode buffer is declared which happensto start at address 0x100. When the context isinitialized
with a pointer to this buffer and size equa to 1K, it positions the internal encode pointer to the end of the buffer
(address 0x500). Encoding then proceeds from back-to-front until encoding of the message is complete. In this case,
the encoded message turned out to be 0x300 (768) bytes in length and the start address fell at 0x200. Thisisthe value
that would be returned by the xe_get p function.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */

int min ()

{
OSOCTET nsgbuf[1024], *nsgptr;

150

Generated BER Functions

i nt nmsgl en;

OSCTXT ctxt;

Enpl oyee enpl oyee; /* typedef generated by ASNLIC */

/* Step 1: Initialize the context and set the buffer pointer */

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1,

}
xe_setp (&ctxt, msgbuf, sizeof (nmsgbuf));
/* Step 2: Populate the structure to be encoded */

enpl oyee. nane. gi venNane = "SM TH';

/* Step 3: Call the generated encode function */
nmsgl en = asnlE Enpl oyee (&ctxt, &enployee, ASNLIEXPL);
/* Step 4: Check the return status (note: the test is
* > 0 because the returned value is the length of the
* encoded nessage component).. */
if (msglen > 0) {
/* Step 5: If encoding is successful, call xe_getp to

* fetch a pointer to the start of the encoded nessage. */
megptr = xe_getp (&ctxt);

}

el se {
rtxErrPrint (&ctxt);
return nsgl en;

}

}

In general, static buffers should be used for encoding messages where possible as they offer a substantia performance
benefit over dynamic buffer allocation. The problem with static buffers, however, isthat you are required to estimate
in advance the approximate size of the messages you will be encoding. There is no built-in formulato do this; the size
of an ASN.1 message can vary widely based on data types and the number of tags required.

If performanceis not asignificant issue, then dynamic buffer allocation isagood alternative. Setting the buffer pointer
argument to NULL in the call to xe_setp specifies dynamic alocation. This tells the encoding functions to allocate
a buffer dynamically. The address of the start of the message is obtained as before by calling xe_getp. Note that this
is not the start of the allocated memory; that is maintained within the context structure. To free the memory, either
the rixMemFree function may be used to free all memory held by the context or the xe_free function used to free the
encode buffer only.

The following code fragment illustrates encoding using a dynamic buffer:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */

151

Generated BER Functions

main ()

{
OSCCTET* nmsgptr;
i nt nmsgl en;
OSCTXT ctxt;

Enpl oyee enpl oyee; /* typedef generated by ASNLIC */

if (rtlnitContext (&ctxt) !'= 0) {

/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);

return -1;

}
xe_setp (&ctxt, NULL, 0);

enpl oyee. nane. gi venNane = "SM TH';

nmsgl en = asnlE Enpl oyee (&ctxt, &enployee, ASNLIEXPL);

if (msglen > 0) {
megptr = xe_getp (&ctxt);

rtxMenfFree (&ctxt); /* don’t call free (msgptr); !!!
}

el se
error processing...

}

Encoding a Series of Messages Using the C Encode Functions

A common application of BER encoding is the repetitive encoding of a series of the same type of message over and
over again. For example, a TAP3 batch application might read billing data out of a database table and encode each

of the records for a batch transmission.

If auser was to repeatedly allocate/free memory and reinitialize the C objects involved in the encoding of a message,
performance would suffer. Thisis not necessary however, because the C objects and memory heap can be reused to

allow multiple messages to be encoded. As example showing how to do thisisasfollows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

const OSOCTET* nsgptr;

OSCCTET nmsgbuf [1024] ;

i nt nmsgl en;

OSCTXT ct xt;

Per sonnel Record dat a;
/* Init context structure */

if ((stat = rtlnitContext (&ctxt)) !'= 0) {

152

Generated BER Functions

printf ("rtlnitContext failed; stat = %\n", stat);
return -1,

}

/* Encode |l oop starts here, this will repeatedly use the
* objects decl ared above to encode the nessages */

for (;;) {
xe_setp (&ctxt, msgbuf, sizeof (nmsgbuf));

/* logic here to read record from sone source (database,
* flat file, socket, etc.).. */

/* popul ate structure with data to be encoded */

data.nane = “SM TH’;

/* call encode function */

if ((msglen = asnlE Personnel Record (&ctxt, &data, ASNLIEXPL)) > 0) {
/* encodi ng successful, get pointer to start of message */
megptr = xe_getp (&ctxt);

/* do sonething with the encoded nessage */

}

el se
error processing...

/[* Call rtxMenReset to reset the nmenory heap for the next
* iteration. Note, all data allocated by rtxMemAll oc will
* pecone invalid after this call. */

rtxMenReset (&ctxt);
}

rt FreeCont ext (&ctxt);
}

The rtixMemReset call does not free memory; instead, it marksit as empty so that it may be reused in the next iteration.
Thus, all memory allocated by rtxMemAlloc will be overwritten and data will be lost.

Generated C++ Encode Method Format and Calling
Parameters

When C++ code generation is specified, the ASN1C compiler generates an Encode method in the generated control
class that wraps the C function call. This method provides a more simplified calling interface because it hides things
such as the context structure and the tag type parameters.

153

Generated BER Functions

The calling sequence for the generated C++ class method is as follows:
| en = <obj ect>. Encode ();

In this definition, <object> is an instance of the control class (i.e., ASN1C_<prodName>) generated for the given
production. The function result variable len returns the length of the data actually encoded or an error status code if
encoding fails. Error status codes are negative to tell them apart from length values. Return status values are defined
in the asnltype.h includefile.

Procedure for Using the C++ Control Class Encode Method
The procedure to encode a message using the C++ class interface is as follows:

1. Create avariable of the ASN1T_ <name> type and populate it with the data to be encoded.

2. Create an ASN1BERENncodeBuffer object.

3. Create avariable of the generated ASN1C_<name> class specifying the items created in 1 and 2 as arguments to
the constructor.

4. Invoke the Encode method.

The constructor of the ASN1C <type> class takes a message buffer object argument. This makesit possible to specify
a static encode message buffer when the class variable is declared. A static buffer can improve encoding performance
greatly asit relieves the internal software from having to repeatedly resize the buffer to hold the encoded message. If
you know the general size of the messages you will be sending, or have a fixed size maximum message length, then
a static buffer should be used. The message buffer argument can also be used to specify the start address and length
of areceived message to be decoded.

After the datato be encoded is set, the Encode method is called. This method returnsthe length of the encoded message
or anegative value indicating that an error occurred. The error codes can be found in the asnltype.h run-time header
fileor in Appendix A of the C/C++ Common Functions Reference Manual.

If encoding is successful, a pointer to the encoded message can be obtained by using the getMsgPtr or getMsgCopy
methods available in the ASN1BERENncodeBuffer class. The getMsgPtr method is faster as it simply returns a pointer
to the actual start-of-message that is maintained within the message buffer object. The getMsgCopy method will return
acopy of the message. Memory for this copy will be allocated using the standard new operator, so it is up to the user
to free this memory using delete when finished with the copy.

A program fragment that could be used to encode an employee record is asfollows. This example uses a static encode
buffer:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

const OSOCTET* nsgptr;
OSOCTET nsgbuf [1024] ;
i nt megl en;

/1l step 1l: construct ASNLC C++ generated cl ass.
/1 this specifies a static encode nessage buffer

ASN1BEREncodeBuf f er encodeBuf fer (nsgbuf, sizeof(msgbuf));

154

Generated BER Functions

ASNLT_Per sonnel Record nsgDat a;
ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);

/1 step 2: popul ate nsgbData structure with data to be encoded

msgDat a. name = “SM TH’;

/1 step 3: invoke Encode nethod

if ((msglen = enpl oyee. Encode ()) > 0) {
/1 encoding successful, get pointer to start of nessage
msgptr = encodeBuffer.get MsgPtr();

}

el se
error processing...

}

The following code fragment illustrates encoding using a dynamic buffer. This also illustrates using the getMsgCopy
method to fetch a copy of the encoded message:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

OSCCTET* msgptr;
i nt nmsgl en;

/1 construct encodeBuffer class with no argunents
ASN1BEREncodeBuf f er encodeBuf fer;

ASNLT_Per sonnel Record nsgDat a;

ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);

/1 popul ate nmsgbData structure

msgDat a. name = "SM TH';

/1 call Encode nethod

if ((msglen = enpl oyee. Encode ()) > 0) {
/1 encodi ng successful, get copy of nessage
msgptr = encodeBuf fer. get MsgCopy();

delete [] msgptr; // free the dynam c nenory!

}

el se
error processing...

155

Generated BER Functions

Encoding a Series of Messages Using the C++ Control Class

Interface

A common application of BER encoding is the repetitive encoding of a series of the same type of message over and
over again. For example, a TAP3 batch application might read billing data out of a database table and encode each

of the records for a batch transmission.

If auser wasto repeatedly instantiate and destroy the C++ objectsinvolved in the encoding of amessage, performance
would suffer. Thisis not necessary however, because the C++ objects can be reused to allow multiple messages to be

encoded. As example showing how to do thisis asfollows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

const OSOCTET* msgptr;

OSCCTET nsgbuf [1024];

i nt nmsgl en;

ASN1BEREncodeBuf f er encodeBuf fer (nsgbuf, sizeof (msgbuf));
ASNLT_Per sonnel Record nsgDat a;

ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);

/1 Encode |oop starts here, this will repeatedly use the
/1 objects decl ared above to encode the messages

for (;;) {

/1 logic here to read record from sone source (database,
/1 flat file, socket, etc.)..

/1 popul ate structure with data to sbe encoded

megDat a. name = “SM TH’;

/1 invoke Encode net hod

if ((msglen = enpl oyee. Encode ()) > 0) {
/1 encoding successful, get pointer to start of nessage
snmegptr = encodeBuffer.get MsgPtr();
/1 do sonething with the encoded nessage

}

el se
error processing...

/1 Call the init method on the encodeBuffer object to
/1 prepare the buffer for encodi ng anot her message..

156

Generated BER Functions

encodeBuffer.init();

}
Generated BER Streaming Encode Functions

BER messages can be encoded directly to an output stream such as afile, network or memory stream. The ASN1C
compiler has the -stream option to generate encode functions of this type. For each ASN.1 production defined in the
ASN.1 source file, a C stream encode function is generated. This function will encode a populated C variable of the
given type into an encoded ASN.1 message and write it to a stream.

If the return status indicates success (0), the message will have been encoded to the given stream. Streaming BER
encoding starts from the beginning of the message until the message is complete. This is sometimes referred to as
“forward encoding”. This differs from regular BER where encoding is done from back-to-front. Indefinite lengths are
used for all constructed elementsin the message. Also, thereis no permanent buffer for streaming encoding, all octets
are written to the stream. The buffer in the context structure is used only as a cache.

If C++ code generation is specified, a control class is generated that contains an EncodeTo method that wraps the
stream encode C function. Thisfunction isinvoked through the classinterface to convert apopul ated msgData attribute
variableinto an encoded ASN.1 message.

Generated Streaming C Function Format and Calling
Parameters

The format of the name of each generated streaming encode function is as follows:
asnlBSE [<prefi x>] <pr odNane>

where <pr odNane> is the name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function is as follows:

stat = asnlBSE <nanme> (OSCTXT* pct xt,
<nane>* pval ue,
ASN1TagType tagging);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application.
The user is required to supply a pointer to a variable of this type declared somewhere in his or her program. This
variable must be initialized using both the rtinitContext and rtStreamBufInit run-time library functions (see the C/C+
+ Common Run-Time Library Reference Manual for a description of these functions).

The pval ue argument holds a pointer to the data to be encoded and is of the type generated from the ASN.1
production.

The t aggi ng argument is for internal use when calls to encode functions are nested to accomplish encoding of
complex variables. It indicates whether the tag associated with the production should be applied or not (implicit versus
explicit tagging). At the top level, the tag should always be applied so this parameter should aways be set to the
constant ASN1EXPL (for EXPLICIT).

The function result variable st at returns the completion status of the operation. 0 (0) means the success.

157

Generated BER Functions

Procedure for Calling Streaming C Encode Functions

This section describes the step-by-step procedure for calling astreaming C BER encode function. This method must be
used if C code generation was done. This method can also be used as an alternative to using the control classinterface
if C++ code generation was done.

Before any encode function can be called; the user must first initialize an encoding context. Thisis avariable of type
OSCTXT. This variable holds al of the working data used during the encoding of a message. The context variable
is within the top-level calling function. It must be initialized before use. This can be accomplished by using the
ber SrminitContext function:

OSCTXT ct xt;

if (berStrmnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n");
return -1;

}

The next step isto create a stream object within the context. This object isan abstraction of the output device to which
the datais to be encoded and isiinitialized by calling one of the following functions:

* rtxStreamFileOpen
» rtxSreamFileAttach

* rtxStreamSocketAttach

rixStreamMemoryCreate
* rtxSreamMemoryAttach

The flags parameter of these functions should be set to the OSRTSTRMF_OUTPUT constant value to indicate an
output stream is being created (see the C/C++ Common Run-Time Library Reference Manual for a full description
of these functions).

It is aso possible to use a simplified form of these function calls to create a writer interface to a file, memory, or
socket stream:

o rtxSreamFileCreateWriter
* rtxStreamMemoryCreateWriter
» rtxStreamSocketCreateWriter

After initializing the context and populating a variable of the structure to be encoded, an encode function can be called
to encode the message to the stream. The stream must then be closed by calling the rtxStreamClose function.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
int min ()
{

i nt st at;

OSCTXT ctxt;
Enpl oyee enpl oyee;/* typedef generated by ASNIC */
const char* filename = “nmessage. dat”;

158

Generated BER Functions

/[* Step 1: Initialize the context and stream */

if (berStrmnitContext (&ctxt) = 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n");
return -1,

}

/* Step 2: create a file streamobject within the context */

stat = rtxStreanfFileCreateWiter (&ctxt, filenane);
if (stat '=0) {

rtxErrPrint (&ctxt);

return stat;

}

/* Step 3: Populate the structure to be encoded */

enpl oyee. nane = "SM TH";

/* Step 4: Call the generated encode function */

stat = asnlBSE_Enpl oyee (&ctxt, &enployee, ASNLEXPL);

/* Step 5: Check the return status and cl ose the stream */
if (stat '=0) {

...error processing...

}

rtxStreantl ose (&ctxt);
}

In general, streaming encoding is slower than memory buffer based encoding. However, in the case of streaming
encoding, it is not necessary to implement code to write or send the encoded data to an output device. The streaming
functions also use less memory because there is no need for a large destination memory buffer. For this reason, the
final performance of the streaming functions may be the same or better than buffer-oriented functions.

Encoding a Series of Messages Using the Streaming C Encode
Functions
A common application of BER encoding is the repetitive encoding of a series of the same type of message over and

over again. For example, a TAP3 batch application might read billing data out of a database table and encode each
of the records for a batch transmission.

Encoding a series of messages using the streaming C encode functionsis very similar to encoding of one message. All
that is necessary isto set up aloop in which the asn1BSE_<name> functions will be called. It is also possible to call
different asn1BSE_<name> functions one after another. An example showing how to do thisis as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC

159

Generated BER Functions

int min ()
{
i nt st at;
OSCTXT ctxt;
Enpl oyee enpl oyee;/* typedef generated by ASNIC */
const char* filename = “nmessage. dat”;
/[* Step 1: Initialize the context and stream */
if (berStrmnitContext (&ctxt) = 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1,
}
stat = rtxStreanfFileCreateWiter (&ctxt, filenane);
if (stat '=0) {
rtxErrPrint (&ctxt);
return stat;
}
for (;;) {
/* Step 2: Populate the structure to be encoded */
enpl oyee. nane = "SM TH";
/* Step 3: Call the generated encode function */
stat = asnlBSE_Enpl oyee (&ctxt, &enployee, ASNLEXPL);
/* Step 4: Check the return status and break the | oop
if error occurs */
if (stat '=0) {
...error processing...
br eak;
}
}
/[* Step 5: Close the stream */
rtxStreantl ose (&ctxt);
}

Generated Streaming C++ Encode Method Format and
Calling Parameters

C++ code generation of stream-based encoders is selected by using the —c++ and —stream compiler command line
options. In this case, ASN1C generates an EncodeTo method that wraps the C function call. This method provides a
more simplified calling interface because it hides things such as the context structure and tag type parameters.

160

Generated BER Functions

The calling sequence for the generated C++ class method is as follows:
stat = <object>. EncodeTo (<output Strean®p);

In this definition, <object> is an instance of the control class (i.e., ASN1C_<prodName>) generated for the given
production.

The <outputStream> placeholder represents an output stream object type. This is an object derived from an
ASN1EncodeStream class.

The function result variable st at returns the completion status. Error status codes are negative. Return status values
are defined in the rtxErrCodes.h include file.

Another way to encode a message using the C++ classes is to use the << streaming operator:
<out put St reant << <obj ect >;

Exceptions are not used in ASN1C C++, therefore, the user must fetch the status value following acall such asthisin
order to determineif it was successful. The getSatus method in the ASN1EncodeStream classis used for this purpose.

Also, the method Encode without parameters is supported for backward compatibility. In this case it is necessary to

create control class (i.e., ASN1C <prodName>) using an output stream reference as the first parameter and msgdata
reference as the second parameter of the constructor.

Procedure for Using the Streaming C++ Control Class Encode
Method

The procedure to encode a message directly to an output stream using the C++ classinterfaceis asfollows:

1. Create an OSRTOutputStream object for the type of output stream. Choices are OSRTFileOutputSream for afile,
OSRTMemoryOutputSream for amemory buffer, or OSRTSocketOutputSream for an IP socket connection.

2. Create an ASN1BERENcodeStream object using the stream object created in 1) as an argument.
3. Create avariable of the ASN1T_<name> type and populate it with the data to be encoded.

4. Create a variable of the generated ASN1C_<name> class specifying the item created in 2 as an argument to the
constructor.

5. Invoke the EncodeTo method or << operator.

A program fragment that could be used to encode an employee record is as follows. This example uses a file output
Stream:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
#i ncl ude "rtbersrc/ ASNLBEREncodeSt r eam h"
#i ncl ude "rtxsrc/ OSRTFi | eQut put Stream h"

main ()
{
i nt megl en;
const char* filenane = “nessage. dat”

/1l step 1l: construct output stream object.

161

Generated BER Functions

}

ASN1BEREncodeSt r eam out (new OSRTFi | eQut put Stream (fil enane));
if (out.getStatus () !'= 0) {

out.printErrorinfo ();

return -1,

}

/1 step 2: construct ASNLIC C++ generated cl ass.

ASNLT_Per sonnel Record nsgDat a;
ASN1C Per sonnel Record enpl oyee (nsgData);

/1 step 3: popul ate nsgData structure with data to be
/1 encoded. (note: this uses the generated assi gnment
/1 operator to assign a string).

msgDat a. name = “SM TH’;

/1 step 4: invoke << operator or EncodeTo net hod

out << enpl oyee;
/1 or enpl oyee. EncodeTo (out); can be used here.

/1 step 5: check status of the operation
if (out.getStatus () !'= 0) {

printf ("Encoding failed. Status = %\n", out.getStatus());
out.printErrorinfo ();

return -1,
}
if (trace) {

printf ("Encodi ng was successful\n");
}

Encoding a Series of Messages Using the Streaming C++ Control
Class Interface

Encoding a series of messages using the streaming C++ control classis similar to the C method of encoding. All that
is necessary isto create aloop in which EncodeTo or Encode methods will be called (or the overloaded << streaming
operator). It is also possible to call different EncodeTo methods (or Encode or operator <<) one after another. An
exampl e showing how to do thisisasfollows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
#i ncl ude "rtbersrc/ ASNLBEREncodeSt r eam h"
#i nclude "rtxsrc/ OSRTFi | eCut put St r eam h"

i nt

{

main ()

const OSCCTET* nsgptr;

OSCCTET nsgbuf [1024];

i nt nmsgl en;

const char* filenane = “nmessage. dat”

162

Generated BER Functions

/1 step 1: construct stream object.

ASN1BEREncodeSt r eam out (new OSRTFi | eQut put Stream (fil enane));
if (out.getStatus () !'= 0) {

out.printErrorinfo ();

return -1,

}
/1 step 2: construct ASNLC C++ generated cl ass.

ASNLT_Per sonnel Record nsgDat a;
ASN1C Per sonnel Record enpl oyee (nsgData);

for (;;) {
/1 step 3: popul ate nsgData structure with data to be
/1 encoded. (note: this uses the generated assi gnment
/1 operator to assign a string).

msgDat a. name = “SM TH’;

/1 step 4: invoke << operator or EncodeTo net hod

out << enpl oyee;
/1 or enpl oyee. EncodeTo (out); can be used here.

/1 step 5: fetch and check status
if (out.getStatus () !'= 0) {

printf ("Encoding failed. Status = %\n", out.getStatus());
out.printErrorinfo ();

return -1,
}
if (trace) {

printf ("Encodi ng was successful\n");
}

}
Generated BER Decode Functions

NOTE: This section assumes standard memory-buffer based decoding is to be done. If stream-based decoding is to
be done (specified by adding -stream to the ASN1C command-line), see the Generated BER Streaming Decode
Functions section for correct procedures on using the stream-based functions.

For each ASN.1 production defined in an ASN.1 source file, a C decode function is generated. This function will
decode an ASN.1 message into a C variable of the given type.

If C++ code generation isspecified, acontrol classisgenerated that contains a Decode method that wrapsthisfunction.
This function is invoked through the class interface to decode an ASN.1 message into the variable referenced in the
msgData component of the class.

163

Generated BER Functions

Generated C Function Format and Calling Parameters

The format of the name of each decode function generated is as follows:
asnlD [<prefi x>] <pr odNanme>

where <pr odName> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:

status = asnlD <name> (OSCTXT* pct xt,
<nane> *pval ue,
ASN1TagType taggi ng,
int [ength);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The variable
must be initialized using the rtInitContext run-time function before use.

The pval ue argument isapointer to avariable of the generated type that will receive the decoded data.

Thet aggi ng and | engt h arguments are for internal use when calls to decode functions are nested to accomplish
decoding of complex variables. At the top level, these parameters should always be set to the constants ASN1EXPL
and zero respectively.

The function result variable st at us returns the status of the decode operation. The return status will be zero if
decoding is successful or negative if an error occurs. Return status values are defined in the "asnltype.h” includefile.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C BER or DER decode function. This method must be
used if C code generation was done. This method can also be used as an aternative to using the control classinterface
if C++ code generation was done.

Before any decode function can be called; the user must first initialize a context variable. Thisis a variable of type
OSCTXT. This variable holds all of the working data used during the decoding of a message. The context variable
is declared as a normal automatic variable within the top-level calling function. It must be initialized before use.
This can be accomplished as follows:

OSCTXT ct xt;

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem */
printf (“context initialization failed (check license)\n");
return -1,

}

The next step is the specification of abuffer containing a message to be decoded. Thisis accomplished by calling the
xd_setp run-time library function. This function takes as an argument the start address of the message to be decoded.

164

Generated BER Functions

The function returns the starting tag value and overall length of the message. This makes it possible to identify the
type of message received and apply the appropriate decode function to decode it.

A decode function can then be called to decode the message. If the return status indicates success, the C variable
that was passed as an argument will contain the decoded message contents. Note that the decoder may have allocated
dynamic memory and stored pointers to objectsin the C structure. After processing on the C structureis complete, the
run-time library function rtxMemFree should be called to free the allocated memory.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

OSCCTET nsgbuf [1024] ;
ASNITAG nsgt ag;

i nt nmsgl en;

OSCTXT ctxt;

Per sonnel Record enpl oyee;

logic to read nessage into nsgbuf

/* Step 1: Initialize a context variable for decoding */

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1,

xd_setp (&ctxt, msgbuf, 0, &mrsgtag, &nsglen);

/* Step 2: Test nessage tag for type of nessage received */

/* (note: this is optional, the decode function can be */

/* called directly if the type of nessage is known).. */

if (msgtag == TV_Personnel Record)

/* Step 3: Call decode function (note: last two args */
/* should al ways be ASNIEXPL and 0).. */

status = asnlD Personnel Record (&ctxt,
&empl oyee,
ASNLEXPL, 0);
/[* Step 4: Check return status */
if (status == 0)
{
process received data in ‘enployee’ variable..

/* Renmenber to rel ease dynam c nenory when done! */

rtxMentree (&ctxt);

165

Generated BER Functions

el se
error processing...
el se

check for other known nessage types..

}
Decoding a Series of Messages Using the C Decode Functions

The above example is fine as a sample for decoding a single message, but what happensin the more typical scenario
of having a long-running loop that continuously decodes messages? It will be necessary to put the decoding logic
into aloop:

main ()
{
OSCCTET nsgbuf [1024] ;
ASNITAG nsgt ag;
i nt nmsgl en;
OSCTXT ctxt;
Per sonnel Record enpl oyee;

/* Step 1: Initialize a context variable for decoding */
if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/

printf (“context initialization failed (check license)\n”);
return -1,

}
for (;;) {
logic to read nessage into nsgbuf
xd_setp (&ctxt, msgbuf, 0, &mrsgtag, &nsglen);
/* Step 2: Test nessage tag for type of nessage received */
/* (note: this is optional, the decode function can be */

/* called directly if the type of nessage is known).. */

/* Now switch on initial tag value to determ ne what type of
nmessage was received.. */

switch (nmsgtag)

{
case TV_Personnel Record: /* conpiler generated constant */
{
status = asnlD Personnel Record (&ctxt,
&empl oyee,
ASNLEXPL, 0);

if (status == 0)
{

/* decodi ng successful, data in enployee */

166

Generated BER Functions

process received data..
el se
error processing...

}

br eak;

defaul t:
andl e unknown nessage type here */
} /* switch */

/* Need to reinitialize objects for next iteration */

rtxMenReset (&ctxt);

}

The only changes were the addition of thefor (;;) loop and the call to rtxMemReset that was added at the bottom of the
loop. Thisfunction resets the memory tracking parameters within the context to allow previously allocated memory to
be reused for the next decode operation. Optionally, rtxMemFree can be called to release all memory. Thiswill allow
the loop to start again with no outstanding memory allocations for the next pass.

The example above assumes that logic existed that would read each message to be processed into the same buffer for
every message processed inside the loop (i.e the buffer is reused each time). In the case in which the buffer already
contains multiple messages, encoded back-to-back, it is necessary to advance the buffer pointer in each iteration:

main ()
{
OSCCTET nsgbuf [1024] ;
ASNITAG nsgt ag;
i nt of fset = 0, nsglen, len;
OSCTXT ctxt;
Per sonnel Record enpl oyee;
FI LE* fp;

/* Step 1: Initialize a context variable for decoding */

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1,

}

if (fp = fopen (filename, "rb")) {
msgl en = fread (msgbuf, 1, sizeof(nsgbuf), fp);
}
el se {
handl e error

}

for (; offset < meglen;) {
xd_setp (&ctxt, msgbuf + offset, meglen - offset, &rsgtag, & en);

167

Generated BER Functions

/* Decode */
if (tag == TV_Personnel Record) {
/* Call conpiler generated decode function */

stat = asnlD Personnel Record (&ctxt, &enployee, ASNLEXPL, O0);
if (stat == 0) {

/* decodi ng successful, data in enpl oyee */

}
el se {
/* error handling */
return -1,
}
}
el se {
printf ("unexpected tag %x received\n", tag);
}

of fset += ctxt.buffer. bytelndex;
rtxMenReset (&ctxt);

}

Generated C++ Decode Method Format and Calling
Parameters

Generated decode functions are invoked through the class interface by calling the base class Decode method. The
calling sequence for this method is as follows:

status = <obj ect >. Decode ();

In this definition, <object> is an instance of the control class (i.e., ASN1C_<prodName>) generated for the given
production

An ASN1BERDecodeBuffer object reference is a required argument to the <object> constructor. This is where the
message start address and length are specified

The message length argument is used to specify the size of the message, if itisknown. In ASN.1 BER or DER encoded
messages, the overall length of the message is embedded in the first few bytes of the message, so this variable is
not required. It is used as a test mechanism to determine if a corrupt or partial message was received. If the parsed
message length is greater than this value, an error is returned. If the value is specified to be zero (the default), then
thistest is bypassed.

The function result variable st at us returns the status of the decode operation. The return status will be zero if
decoding is successful or anegative value if an error occurs. Return status values are defined in Appendix A of the C/
C++ Common Functions Reference Manual and online in the asnltype.h includefile.

Procedure for Using the C++ Control Class Decode Method

Normally when a message is received and read into a buffer, it can be one of several different message types.
So the first job a programmer has before calling a decode function is determining which function to cal. The
ASN1BERDecodeBuffer class has a standard method for parsing the initial tag/length from a message to determine the

168

Generated BER Functions

type of message received. This call is used in conjunction with a switch statement on generated tag constants for the
known message set in order to pick adecoder to call.

Onceit isknown which type of message has been received, an instance of agenerated message class can beinstantiated
and the decode function called. The start of message pointer and message length (if known) must be specified either
in the constructor call or in the call to the decode function itself.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
mai n ()
{

OSOCTET nsgbuf[1024];
ASNITAG nsgt ag;
i nt nsgl en, status;
logic to read nessage into nmsgbuf

/1 Use the ASNLBERDecodeBuffer class to parse the initial
/1 tag/length fromthe nessage..

ASN1BERDecodeBuf f er decodeBuffer (nsgbuf, |en);
status = decodeBuf fer. ParseTagLen (nsgtag, mnsglen);

if (status !'= 0) {
// handl e error

}

/1 Now switch on initial tag value to deterni ne what type of
/1l nmessage was received. .

switch (nmsgtag)

{
case TV_Personnel Record: // conpiler generated constant
{
ASNL1T_Per sonnel Record mnsgDat a;
ASNLC Personnel Record enpl oyee (decodeBuffer, nsgData);
if ((status = enpl oyee. Decode ()) == 0)
/1 decoding successful, data in nsgData
process received data..
}
el se
error processing...
}
case TV_ ...// handl e other known nessages

Note that the call to free memory is not required to release dynamic memory when using the C++ interface. This
is because the control class hides all of the details of managing the context and releasing dynamic memory. The

169

Generated BER Functions

memory is automatically released when both the message buffer object (ASN1BERMessageBuffer) and the control
class object (ASN1C_<ProdName>) are deleted or go out of scope. Reference counting of a context variable shared
by both interfaces is used to accomplish this.

Decoding a Series of Messages Using the C++ Control Class
Interface

The above example is fine as a sample for decoding a single message, but what happens in the more typical scenario
of having a long-running loop that continuously decodes messages? The logic shown above would not be optimal
from a performance standpoint because of the constant creation and destruction of the message processing objects.
It would be much better to create all of the required objects outside of the loop and then reuse them to decode and
process each message.

A code fragment showing away to do thisis asfollows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

OSCCTET nsgbuf [1024];

ASNITAG nmsgt ag;

i nt nmsgl en, st at us;

/1l Create nmessage buffer, ASNLT, and ASNLC objects
ASN1BERDecodeBuf f er decodeBuffer (nsgbuf, |en);

ASNLT_Per sonnel Record enpl oyeeDat a;
ASN1C Personnel Record enpl oyee (decodeBuffer, enpl oyeeData);

for (;;) {
logic to read nessage into nsgbuf
status = decodeBuffer.ParseTagLen (nsgtag, nsglen);

if (status !'= 0) {
/1 handl e error

}

/1 Now switch on initial tag value to determ ne what type of
/1l message was received. .

switch (nmsgtag)

{
case TV_Personnel Record: // conpiler generated constant
{
if ((status = enpl oyee. Decode ()) == 0)
{
/1 decoding successful, data in enpl oyeeDat a
process received data..
}
el se

170

Generated BER Functions

error processing...

}

br eak;

defaul t:
/1 handl e unknown nessage type here

} // switch
/1 Need to reinitialize objects for next iteration
if (lisLastlteration) enployee.nnenfFreeAll ();

} // end of |oop

Thisisquite similar to the first example. Note that we have pulled the ASN1T_Employee and ASN1C_Employee object
creation logic out of the switch statement and moved it above the loop. These objects can now be reused to process
each received message.

The only other change was the call to employee.memFreeAll that was added at the bottom of the loop. Since we can’t
count on the objects being deleted to automatically rel ease allocated memory, we need to do it manually. This call will
free all memory held within the decoding context. Thiswill allow the loop to start again with no outstanding memory
allocations for the next pass.

If the buffer already contains multiple BER messages encoded back-to-back then it is necessary to modify the buffer
pointer in each iteration. The getBytelndex method should be used at the end of loop to get the current offset in the
buffer. This offset should be used with the decode buffer object’s setBuffer method call at the beginning of the loop
to determine the correct buffer pointer and length:

OSUI NT32 of fset = O;
for (; offset < nmeglen;) {

/1 set buffer pointer and its length to decode

decodeBuffer.setBuffer (&wsgbuf[offset], nsglen - offset);
int curlen = (int)(nmsglen - offset);

status = decodeBuffer.ParseTagLen (nsgtag, curlen);

if (status !'= 0) {
/1 handl e error

}

/1 Now switch on initial tag value to determ ne what type of
/1l message was received. .

switch (nmsgtag)
{

case TV_Personnel Record: // conpiler generated constant

{
if ((status = enpl oyee. Decode ()) == 0)

{

/1 decodi ng successful, data in enpl oyeeDat a

171

Generated BER Functions

process received data..
el se
error processing...

}

br eak;

defaul t:
/1 handl e unknown nessage type here

} // switch

/1 get new of fset
of fset += decodeBuffer.getBytelndex ();

/1l Need to reinitialize objects for next iteration (if it is not
/1 last iteration)

if (offset < nsglen) enployee.menfFreeAll ();
} // end of |oop

BER Decode Performance Enhancement
Techniques

There are a number of different things that can be done in application code to improve BER decode performance.
These include adjusting memory allocation parameters, using compact code generation, using decode fast copy, and
using initialization functions.

Dynamic Memory Management

By far, the biggest performance bottleneck when decoding ASN.1 messagesisthe allocation of memory from the heap.
Each call to new or malloc is very expensive.

The decoding functions must allocate memory because the sizes of many of the variables that make up a message
are not known at compile time. For example, an OCTET STRING that does not contain a size constraint can be an
indeterminate number of bytesin length.

ASN1C does two things by default to reduce dynamic memory allocations and improve decoding performance:

1. Uses static variables wherever it can. Any BIT STRING, OCTET STRING, character string, or SEQUENCE OF
or SET OF construct that contains a size constraint will result in the generation of a static array of elements sized
to the max constraint bound.

2. Uses a specia nibble-allocation algorithm for allocating dynamic memory. This algorithm allocates memory in
large blocks and then splits up these blocks on subsequent memory allocation requests. Thisresultsin fewer calls
to the kernel to get memory. The downside is that one request for a few bytes of memory can result in a large
block being allocated.

Common run-time functions are available for controlling the memory allocation process. First, the default size of a
memory block as allocated by the nibble-all ocation algorithm can be changed. By defaullt, thisvalueis set to 4K bytes.
The run-time function rtMemSetDefBIkS ze can be called to change this size. This takes a single argument - the value
to which the size should be changed.

172

Generated BER Functions

It is also possible to change the underlying functions called from within the memory management abstraction layer
to obtain or free heap memory. By default, the standard C malloc, realloc, and free functions are used. These can
be changed by calling the rtMemSetAllocFuncs function. This function takes as arguments function pointers to the
allocate, reallocate, and free functions to be used in place of the standard C functions.

Another run-time memory management function that can improve performanceisrtMemReset. Thisfunction is useful
when decoding messagesin aloop. It isused instead of rtMemFree at the bottom of the loop to make dynamic memory
availablefor decoding the next message. Thedifferenceisthat rtMemReset does not actually free the dynamic memory.
It instead just resets the internal memory management parameters so that memory already allocated can be reused.
Therefore, all the memory required to handle message decoding is normally allocated within the first few passes of
the loop. From that point on, that memory is reused thereby making dynamic memory allocation a negligent issuein
the overall performance of the decoder.

A more detailed explanation of these functions and other memory management functions can be found in the C/ C+
+Common Run-Time Library Reference Manual.

Compact Code Generation

Using the compact code generation option (-compact) and lax validation option (-lax) can also improve decoding
performance.

The -compact option causes code to be generated that contains no diagnostic or error trace messages. In addition, some
status checks and other non-critical code are removed providing aslightly less robust but faster code base.

The —ax option causes all constraint checks to be removed from the generated code.

Performance intensive applications should also be sure to link with the compact version of the base run-time libraries.
These libraries can be found in the lib_opt (for optimized) subdirectory. These run-time libraries aso have al
diagnostics and error trace messages removed as well as some non-critical status checks.

Decode Fast Copy

“Fast Copy” isaspecia run-time flag that can be set for the decoder that can substantially reduce the number of copy
operations that need to be done to decode a message. The copy operations are reduced by taking advantage of the fact
that the data contents of some ASN.1 types already exist in decoded form in the message buffer. Therefore, thereis
no need to allocate memory for the data and then copy the data from the buffer into the allocated memory structure.

Asan example of what fast copy does, consider asimple ASN.1 SEQUENCE consisting of an element a, an INTEGER
and b, an OCTET STRING:

Sinmpl e ::= SEQUENCE ({
a | NTEGER,
b OCTET STRI NG

}

Assume an encoded value of this type contains avalue of a= 123 (hex 7B) and b contains the hex octets 0x01 0x02
0x03. The generated variable for the OCTET STRING will contain a data pointer. So rather than allocate memory for
this string and copy the datato it, fast copy will simply store a pointer directly to the datain the buffer:

173

Generated BER Functions

Simple.a =123

Simple.b.numocts = 3
Simple.b.data = ptr

Message buffer:

02 | 01 b | 04 | 03 | 01 02 | 03

The pointer stored in the data structure points directly at data in the message buffer. No memory allocation or copy
is done.

The user must keep in mind that if this technique is used, the message buffer containing the decoded message must be
available aslong asthe type variable containing the decoded dataisin use. Thiswill not work in a producer-consumer
threading model where one thread is decoding messages and the next thread is processing the contents. The producer
thread will overwrite the buffer contents and therefore data referenced in the decoded message type variable that the
consumer is processing.

Thiswill also not work if the message buffer is an automatic variable in afunction and the decoded result typeisbeing
passed out. The result type variable will point at datain the buffer variable that has gone out of scope.

To set fast copy, the rtSetFastCopy function must be invoked with the initialized context variable that will be used to
decode amessage. This should be done once prior to entering theloop that will be used to decode a stream of messages.

Using Initialization Functions

Initialization functions are generated by the ASN1C compiler when the -geninit option is added to the ASN1C
command-line. These functions can be used as an alternative to memset’ing a variable to zero to prepare it to receive
decoded data. The advantageisthat theinitialization functions are smarter and know exactly what within the structures
needs to be zeroed as opposed to blindly clearing everything. So, for example, large byte arrays used to hold OCTET
STRING datawill not be zeroed. This can add up to significant performance improvementsin the long run, particular
in complex, deeply-nested ASN.1 types.

If initialization functions are generated, the generated decode logic will use them wherever it can in place of callsto
zero memory.

BER/DER Deferred Decoding

Another way to improve decoding performance of large messagesisthrough the use of deferred decoding. Thisalows
for the sel ective decoding of only parts of amessagein asingle decode function call. When combined with the fast copy
procedure defined above, this can significantly reduce decoding time because large parts of messages can be skipped.

Deferred decoding can be done on elements defined within a SEQUENCE, SET or CHOICE construct. It is done by
designating an element to be an open type by using the <isOpenType/> configuration setting. This setting causes the

174

Generated BER Functions

ASNI1C compiler to insert an Asn1OpenType placeholder in place of the type that would have normally been used
for the element. The data in its original encoded form will be stored in the open type container when the message is
decoded. If fast copy isused, only apointer to thedatain the message buffer isstored so large copies of dataare avoided.

Thedatawithin the deferred decoding open type container can befully decoded later by using aspecial decode function
generated by the ASN1C compiler for this purpose. The format of this function is as follows:

asnlD <Pr odNanme> <El ement Name>_OpenType (OSCTXT* pctxt, <El ement Type>* pval ue)

Here <ProdName> is replaced with name of the type assignment and <ElementName > is replaced with name of the
element. In thisfunction, the argument pctxt is used to pass the a pointer to a context variableinitialized with the open
type data and the pvalue argument will hold the final decoded data value.

In following example, decoding of the element id is deferred:

Identifier ::= SEQUENCE ({
i d | NTEGER,
oi d OBJECT | DENTI FI ER

}

The following configuration file is required to indicate the element id is to be processed as an open type (i.e. that it
will be decoded later):

<asnlconfi g>
<nodul e>
<name>nmodul enane</ nane>
<pr oduct i on>
<name>l denti fi er </ nane>
<el enent >
<name>i d</ nanme>
<i sCpenType/ >
<el enent/ >
<pr oducti on/ >
<nmodul e/ >
<asnlconfig/ >

In the generated code, the element id type will be replaced with an open type (Asn1OpenTypefor C or Asn1TOpenType
for C++) and the following additional function is generated:

EXTERN i nt asnlD | dentifier_id_OpenType (OSCTXT* pctxt, OSINT32* pval ue);

In the Identifier decode function, element id is decoded as an open type.

Generated BER Streaming Decode Functions

BER messages can be directly read and decoded from an input stream such as afile, network or memory stream using
BER streaming decode functions. The ASN1C compiler -stream option is used to generate decoders of this type. For
each ASN.1 production defined in an ASN.1 source file, a C streaming decode function is generated. This function
will decode an ASN.1 message into a C variable of the given type.

If C++ code generation is specified, a control class is generated that contains a DecodeFrom method that wraps this
function. Thisfunction isinvoked through the classinterface to decode an ASN.1 message into the variable referenced
in the msgData component of the class.

175

Generated BER Functions

Inthisversion, there are three types of streams: file, socket and memory. The most useful are file and socket streams. It
ispossibleto decode datadirectly from afile or socket without intermediate copying into memory. If the full amount of
datais not available for reading then the behavior of these streams will be different: the file and memory input streams
will report an error, the socket input stream will block until datais available or an 1/O error occurs (for example, the
remote side closes the connection).

Generated Streaming C Function Format and Calling
Parameters

The format of the name of each streaming decode function generated is as follows:
asnlBSD [<prefi x>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:

status = asnlBSD <name> (OSCTXT* pctxt,
<nane> *pval ue,
ASN1TagType tagging,
int length);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The variable
must be initialized using the ber SrminitContext run-time function before use.

Thepval ue argument is a pointer to avariable of the generated type that will receive the decoded data.

Thet aggi ng and | engt h arguments are for internal use when calls to decode functions are nested to accomplish
decoding of complex variables. At the top level, these parameters should always be set to the constants ASN1EXPL
and zero respectively.

The function result variable status returns the status of the decode operation. The return status will be zero if decoding
is successful or negative if an error occurs. Return status values are defined in the rtxErrCodes.h includefile.

Procedure for Calling Streaming C Decode Functions

This section describes the step-by-step procedure for calling astreaming C BER decode function. This procedure must
befollowed if C code generation was done. This procedure can also be used as an alternative to using the control class
interface if C++ code generation was done.

Before any decode function can be called; the user must first initialize a context variable. Thisis a variable of type
OSCTXT. Thisvariable holds all of the working data used during the decoding of a message. The context variableis
declared as a normal automatic variable within the top-level calling function. It must beinitialized before use. This
can be accomplished by using the ber SrminitContext function.

OSCTXT ctxt; // context variable

176

Generated BER Functions

if (berStrmnitContext (&ctxt) = 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n");
return -1,

}

The next step isto create a stream object within the context. This object is an abstraction of the output device to which
the datais to be encoded and is initialized by calling one of the following functions:

e rtxStreamFileOpen

rtx&reamFileAttach
* rtxStreamSocketAttach

e rtxSreamMemoryCreate

rtxtreamMemoryAttach

The flags parameter of these functions should be set to the OSRTSTRMF_INPUT constant value to indicate an input
stream is being created (see the C/C++ Common Run-Time Library Reference Manual for afull description of these
functions).

A simplified version of the Open functions are the CreateReader functions:

* rtxStreamFileCreateReader

 rtxSreamMemoryCreateReader

* rtxStreamSocketCreateReader

After initializing the context and popul ating avariable of the structure to be encoded, adecode function can becalled to
decode amessage from the stream. If the return status indicates success, the C variable that was passed as an argument
will contain the decoded message contents. Note that the decoder may have allocated dynamic memory and stored
pointers to objects in the C structure. After processing on the C structure is complete, the run-time library function
rtxMemFree should be called to free the allocated memory.

After stream processing is complete, the stream is closed by invoking the rtxSreamClose function.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude “enpl oyee. h” /* include file generated by ASNLIC */
#include "rtxsrc/rtxStreanfile. h”
main ()
{
ASN1TAG nsgt ag;
i nt nmsgl en;
OSCTXT ctxt;
Per sonnel Record enpl oyee;
const char* filename = “nmessage. dat”

/* Step 1: Initialize a context variable for decoding */

177

Generated BER Functions

if (berStrmnitContext (&ctxt) = 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n");
return -1,

}

/* Step 2: Open the input streamto read data */

stat = rtxStreanFil eCreat eReader (&ctxt, filenane);
if (stat '=0) {

rtxErrPrint (&ctxt);

return stat;

/* Step 3: Test nessage tag for type of nessage received */
/* (note: this is optional, the decode function can be */
/* called directly if the type of nessage is known).. */

if ((stat = berDecStrnPeekTagAndLen (&ctxt, &tag, & en)) = 0) {
rtxErrPrint (&ctxt);
return stat;

}
if (msgtag == TV_Personnel Record)
{
/* Step 4: Call decode function (note: last two args */
/* should al ways be ASNIEXPL and 0).. */
status = asnlBSD_Personnel Record (&ct xt,
&empl oyee,
ASNLEXPL, O0);
/[* Step 5: Check return status */
if (status == 0)
{
process received data in ‘enployee’ variable..
}
el se
error processing...
}
el se

check for other known nessage types..
/* Step 6: Close the stream*/
rtxStreantl ose (&ctxt);
/* Renmenber to rel ease dynam c nenory when done! */

rt FreeCont ext (&ctxt);
}

178

Generated BER Functions

Decoding a Series of Messages Using the Streaming C Decode
Functions

The above example is fine as a sample for decoding a single message, but what happens in the more typical scenario
of having a long-running loop that continuously decodes messages? It will be necessary to put the decoding logic
into aloop.

A code fragment showing away to do thisis asfollows:

#i ncl ude “enpl oyee. h” /* include file generated by ASNLIC */
#include "rtxsrc/rtxStreanfile. h”

main ()

{

ASN1TAG nsgt ag;
int msglen, stat;

OSCTXT ct xt;
Per sonnel Record enpl oyee;
const char* filename = “nmessage. dat”

/* Step 1: Initialize a context variable for decoding */

if (berStrmnitContext (&ctxt) = 0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1,

}

/* Step 2: Open the input streamto read data */

stat = rtxStreanFil eCreat eReader (&ctxt, filenane);
if (stat '=0) {

rtxErrPrint (&ctxt);

return stat;

}
for (;;) {

/* Step 3: Test nessage tag for type of nessage received */
/* (note: this is optional, the decode function can be */
/* called directly if the type of nessage is known).. */

if ((stat = berDecStrnPeekTagAndLen (&ctxt, &tag, & en)) = 0) {
rtxErrPrint (&ctxt);
return stat;

if (msgtag == TV_Personnel Record)

/* Step 4: Call decode function (note: last two args */
/* should al ways be ASNIEXPL and 0).. */

stat = asnlBSD Personnel Record (&ctxt,
&empl oyee,
ASNLEXPL, 0);

179

Generated BER Functions

/[* Step 5: Check return status */

if (stat == 0)

process received data in ‘enployee’ variable..
el se
error processing...
el se

check for other known nessage types..
/* Need to reset all nenory for next iteration */
rtxMenReset (&ctxt);

} /* end of loop */

/* Step 6: Close the stream*/

rtxStreantl ose (&ctxt);

/* Renenber to rel ease dynam c nenory when done! */

rt FreeCont ext (&ctxt);
}

The only changes were the addition of thefor (;;) loop and the call to rtxMemReset that was added at the bottom of the
loop. Thisfunction resets the memory tracking parameters within the context to allow previously allocated memory to
be reused for the next decode operation. Optionally, rtxMemFree can be called to release all memory. Thiswill allow
the loop to start again with no outstanding memory allocations for the next pass.

Generated Streaming C++ Decode Method Format and
Calling Parameters

Generated C streaming decode functions are invoked through the C++ class interface by calling the generated
DecodeFFrom method. The calling sequence for this method is as follows:

status = <obj ect >. DecodeFrom (<i nput Streanp);

In this definition, <object> is an instance of the control class (i.e., ASN1C_<prodName>) generated for the given
production.

The <inputStream> placeholder represents an input stream object type. This is an object derived from an
ASN1DecodeSream class.

The function result variable st at returns the completion status. Error status codes are negative. Return status values
are defined in the rtxErr Codes.h include file.

Another way to decode message using the C++ class interface is to use the >> stream operator:

<i nput St reank >> <obj ect >;

180

Generated BER Functions

Exceptions are not used in ASN1C C++, therefore, the user must fetch the status value following acall such asthisin
order to determineif it was successful. The getSatus method in the ASN1DecodeStream class is used for this purpose.

Also, the method Decode without parameters is supported for backward compatibility. In this case it is necessary to
create a control class object (i.e., ASN1C_<prodName>) using an input stream reference as the first parameter and a
reference to a variable of the generated type as the second parameter of the constructor.

Procedure for Using the Streaming C++ Control Class Decode
Method

Normally the receiving message can be one of several different message types. It is therefore necessary to determine
the type of message that was received so that the appropriate decode function can be called to decode it. The
ASN1BERDecodeStream class has standard methods for parsing theinitial tag/length from amessage to determine the
type of message received. These calls are used in conjunction with a switch statement on generated tag constants for
the known message set. Each switch case statement contains logic to create an object instance of a specific ASN1C
generated control class and to invoke and then to invoke that object’ s decode method.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude "Enpl oyee. h" /1 include file generated by ASNLC
#i ncl ude "rtbersrc/ ASNLBERDecodeSt ream h"
#i nclude "rtxsrc/ OSRTFi | el nput Stream h"

main ()
{
ASNLTAG t ag;
int i, len;
const char* filename = "nessage. dat”;

OSBOOL trace = TRUE;
/] Decode

ASN1BERDecodeStream in (new OSRTFi | el nput Stream (fil enane));
if (in.getStatus () != 0) {

in.printErrorinfo ();

return -1,

}

if (in.peekTagAndLen (tag, len) !'= 0) {
printf ("peekTagAndLen failed\n");
in.printErrorinfo ();
return -1,

}

/1 Now switch on initial tag value to determ ne what
/1 type of nessage was received..

switch (nsgtag)
{
case TV_Personnel Record: // conpiler generated
/1 const ant
{
ASNLT_Per sonnel Record nsgDat a;
ASN1C Per sonnel Record enpl oyee (nsgData);

181

Generated BER Functions

in >> enpl oyee;

if (in.getStatus () != 0) {
printf ("decode of Personnel Record failed\n");
in.printErrorinfo ();

return -1,
}
/1 or enpl oyee. DecodeFrom (i n);
br eak;
}
case TV_ ...// handl e other known messages
}
}
return O;

}

Note that the call to free memory and the stream close method are not required to release dynamic memory when
using the C++ interface. Thisis because the control class hides all of the details of managing the context and releasing
dynamic memory. The memory isautomatically released when both the input stream object (ASN1BERDecodeSiream
and derived classes) and the control class object (ASN1C_<ProdName>) are deleted or go out of scope. Reference
counting of a context variable shared by both interfaces is used to accomplish this.

Decoding a Series of Messages Using the C++ Control Class
Interface

The above example is fine as a sample for decoding a single message, but what happens in the more typical scenario
of having a long-running loop that continuously decodes messages? The logic shown above would not be optimal
from a performance standpoint because of the constant creation and destruction of the message processing objects.
It would be much better to create al of the required objects outside of the loop and then reuse them to decode and
process each message.

A code fragment showing away to do thisis asfollows:

#i ncl ude "Enpl oyee. h" /1 include file generated by ASNLC
#i ncl ude "rtbersrc/ ASNLBERDecodeSt ream h"
#i nclude "rtxsrc/ OSRTFi | el nput Stream h"

int min ()
{
ASNLITAG t ag;
int i, len;
const char* filename = "nessage. dat"”;
CSBOOL trace = TRUE;

/] Decode

ASN1BERDecodeStream in (new OSRTFi | el nput St ream (fil enane));
if (in.getStatus () != 0) {

in.printErrorinfo ();

return -1,

182

Generated BER Functions

}

ASNLT_Per sonnel Record nsgDat a;
ASN1C Per sonnel Record enpl oyee (nsgData);

for (;:) {
if (in.peekTagAndLen (tag, len) !'= 0) {
printf ("peekTagAndLen failed\n");
in.printErrorinfo ();
return -1,

}

/1 Now switch on initial tag value to determ ne what
/1 type of nessage was received..

switch (nmsgtag)
{

case TV_Personnel Record: // conpiler generated
/1 const ant

in >> enpl oyee;
if (in.getStatus () != 0) {
printf ("decode of Personnel Record failed\n");

in.printErrorinfo ();
return -1,

/1 or enpl oyee. DecodeFrom (i n);

}

case TV_ ...// handl e other known messages

}

/1l Need to reinitialize objects for next iteration
enpl oyee. nenfFreeAl | ();
} // end of |oop

return O;

}

Thisisquite similar to the first example. Note that we have pulled the ASN1T Employee and ASN1C_Employee object
creation logic out of the switch statement and moved it above the loop. These objects can now be reused to process
each received message.

The only other change was the call to employee.memFreeAll that was added at the bottom of theloop. Since the objects
are not deleted to automatically release allocated memory, we need to do it manually. This call will free all memory
held within the decoding context. This will allow the loop to start again with no outstanding memory allocations for
the next pass.

183

Chapter 10. Generated PER Functions

Generated PER Encode Functions

PER encode/decode functions are generated when the -per, -perindef or -uperswitch is specified on the command line.
For each ASN.1 production defined in the ASN.1 source file, a C PER encode function is generated. This function
will convert a populated C variable of the given typeinto a PER encoded ASN.1 message.

If C++ code generationisspecified, acontrol classisgenerated that containsan Encode method that wrapsthisfunction.
This function is invoked through the class interface to encode an ASN.1 message into the variable referenced in the
msgData component of the class.

Generated C Function Format and Calling Parameters

The format of the name of each generated PER encode function is as follows:
asnlPE_[<prefi x>] <pr odName>

where <pr odNane> is the name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function is as follows:
status = asnlPE <nane> (OSCTXT* pctxt, <nane>[*] val ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

Theval ue argument contains the value to be encoded or holds a pointer to the value to be encoded. Thisvariableis
of the type generated from the ASN.1 production. The object is passed by value if it is a primitive ASN.1 data type
such asBOOLEAN, INTEGER, ENUMERATED, etc.. It is passed using apointer referenceif itisastructured ASN.1
type value. Check the generated function prototype in the header file to determine how the value argument is to be
passed for agiven function.

The function result variable st at returns the status of the encode operation. Status code O (0) indicates the function
was successful. Note that this return value differs from that of BER encode functions in that the encoded length of
the message component is not returned — only an OK status indicating encoding was successful. A negative value
indicates encoding failed. Return status values are defined in the "asnltype.h" include file. The error text and a stack
trace can be displayed using the rtErrPrint function.

Generated C++ Encode Method Format and Calling
Parameters

Generated encode functions are invoked through the class interface by calling the base class Encode method. The
calling sequence for this method is as follows:

stat = <object>. Encode ();

184

Generated PER Functions

In this definition, <object> is an object of the class generated for the given production. The function result variable
st at returnsthe status value from the PER encode function. This status valuewill be 0 (0) if encoding was successful
or anegative error status value if encoding fails. Return status values are defined in the "asnltype.h" includefile.

The user must call the encode buffer class methods getMsgPtr and getMsgLen to obtain the starting address and length
of the encoded message component.

Populating Generated Structure Variables for Encoding

See the section Populating Generated Sructure Variables for Encoding for a discussion on how to populate variables
for encoding. Thereisno differencein how it is done for BER versus how it is done for PER.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C PER encode function. This method must be used if
C code generation was done. This method can also be used as an aternative to using the control class interface if C
++ code generation was done.

Before a PER encode function can be called, the user must first initialize an encoding context block structure. The
context block isinitialized by calling the rtinitContext to initialize the block. The user then must call pu_setBuffer to
specify a message buffer to receive the encoded message. Specification of a dynamic message buffer is possible by
setting the buffer address argument to null and the buffer size argument to zero. The pu_setBuffer function also allows
for the specification of aligned or unaligned encoding.

An encode function can then be called to encode the message. If the return statusindicates success (0), then the message
will have been encoded in the given buffer. PER encoding starts from the beginning of the buffer and proceeds from
low memory to high memory until the message is complete. This differs from BER where encoding was done from
back-to-front. Therefore, the buffer start addressis where the encoded PER message begins. The length of the encoded
message can be obtained by calling the pe_GetMsgLen run-time function. If dynamic encoding was specified (i.e.,
a buffer start address and length were not given), the run-time routine pe_GetMsgPtr can be used to obtain the start
address of the message. This routine will also return the length of the encoded message.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

OSCCTET nsgbuf[1024];

int msglen, stat;

OSCTXT ct xt;

OSBOOL al i gned = TRUE;

Enpl oyee enpl oyee; /* typedef generated by ASNLC */
/* Popul ate enpl oyee C structure */

enpl oyee. nane. gi venNane = "SM TH';

/* Allocate and initialize a new context pointer */
stat = rtlnitContext (&ctxt);

if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");

185

Generated PER Functions

rtxErrPrint (&ctxt);
return stat;

}

pu_set Buffer (&ctxt, msgbuf, mnsglen, aligned);

if ((stat = asnlPE_Enpl oyee (&ctxt, &enployee)) == 0) {
msgl en = pe_GCet MsgLen (&ctxt);

}

el se

error processing...

}

In general, static buffers should be used for encoding messages where possible as they offer a substantia performance
benefit over dynamic buffer allocation. The problem with static buffers, however, isthat you are required to estimate
in advance the approximate size of the messages you will be encoding. There is no built-in formulato do this, the size
of an ASN.1 message can vary widely based on data types and other factors.

If performanceis not asignificant issue, then dynamic buffer allocation isagood alternative. Setting the buffer pointer
argument to NULL inthecall to pu_setBuffer specifiesdynamic allocation. Thistellsthe encoding functionsto allocate
abuffer dynamically. The address of the start of the message is obtained after encoding by calling the run-timefunction
pe_GetMsgPtr .

The following code fragment illustrates PER encoding using a dynamic buffer:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

OSCCTET *nsgptr;

int msglen, stat;

OSCTXT ct xt;

OSBOOL al i gned = TRUE;

Enpl oyee enpl oyee;/* typedef generated by ASNIC */

enpl oyee. nane. gi venNane = "SM TH';

stat = rtlnitContext (&ctxt);

if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");
rtxErrPrint (&ctxt);
return stat;

}

pu_setBuffer (&ctxt, 0, 0, aligned);

if ((stat = asnlPE_Enpl oyee (&ctxt, &enployee)) == 0) {
megptr = pe_GCet MsgPtr (&ctxt, &nmsglen);

}

el se

186

Generated PER Functions

error processing...

}

It isalso possible to encode directly to a stream interface. To do this, the call to pu_setBuffer above would be replaced
with a call to create a stream writer within the context such as rtxSreamFileCreateWriter. The call to the generated
PER encode function would not change - it will automatically know to use the stream interface instead of a memory
buffer.

Encoding a Series of PER Messages Using the C Encode
Functions

A common encoding application isthe repetitive encoding of a series of the same type of message over and over again.
For example, a sensor may be updating data and this needs to be encoded an transmitted on a recurring basis.

If auser was to repeatedly initialize and free the context structure used in the encoding of a message, performance
would be adversely affected. This is not necessary however, because the context can be reused to allow multiple
messages to be encoded into the same output buffer. An example showing how to do thisisasfollows (thisis abstracted
from the c/sample_per/infoObject sample program):

#i ncl ude "I nfoQbject. h” /* include file generated by ASNLIC */
#defi ne MAXMSGLEN 1024

int min (int argc, char** argv)

{
| u_Rel easeConmand r el easeConmand;
Protocol | E_Field protocol I Es[1];
OSCTXT ct xt;
OSOCTET msgbuf [MAXMSGLEN], *nsgptr;
0SSl ZE | en;

/* Encode a nessage to insert as open type */

| en = encodeCause (bufl, sizeof(bufl), aligned, verbose);
if (len == OSNULLINDEX) return -1;

/* Popul ate final nessage structure with data from encoded open type */

if (rtlnitContext (&ctxt) !'= 0) {
rtxErrPrint (&ctxt);
return -1,

o) o

0;;

((stat = asnlPE_| u_Rel easeConmand (&ctxt, &rel easeConmand)) == 0) {
/* Do sonething with encoded nessage.. */

megptr = pe_GCet MsgPtr64 (&ctxt, & en);

for (i
i f

*—~ 1l

187

Generated PER Functions

el se {
printf ("Encoding failed\n");
rtxErrPrint (&ctxt);
return -1,

}

/* update protocol IDin next message */
if (++i < count) {

prot ocol I ES[0] . i d++;

pe_resetBuffer (&ctxt);
}

el se break;

}

In this case, the call to the function pe_resetBuffer at the end of the loop is what allows the encode buffer to be used
for the next message. Note the comment above that says'Do something with the encoded message'. The message must
be processed at this point because it will be overwritten in the buffer when the next message is encoded.

Procedure for Using the C++ Control Class Encode
Method

The procedure to encode a message using the C++ class interface is as follows:

1.

Instantiate an ASN.1 PER encode buffer object (ASN1PEREncodeBuffer) to describe the buffer into which the
message will be encoded. Two overloaded constructors are available. The first form takes as arguments a static
encode buffer and size and a Boolean value indicating whether aligned encoding is to be done. The second form
only takes the Boolean aligned argument. Thisform is used to specify dynamic encoding.

. Instantiate an ASN1T_<ProdName> object and populate it with data to be encoded.
. Instantiate an ASN1C_<ProdName> object to associate the message buffer with the data to be encoded.
. Invoke the ASN1C_<ProdName> object Encode method.

. Check the return status. The return value is a status value indicating whether encoding was successful or not.

Zero indicates success. If encoding failed, the status value will be a negative number. The encode buffer method
printErrorinfo can be invoked to get a textual explanation and stack trace of where the error occurred.

. If encoding was successful, get the start-of-message pointer and message length. The start-of-message pointer is

obtained by calling the getMsgPtr method of the encode buffer object. If static encoding was specified (i.e., a
message buffer address and size were specified to the PER Encode Buffer class constructor), the start-of-message
pointer is the buffer start address. The message length is obtained by calling the getMsgLen method of the encode
buffer object.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

const OSOCTET* msgptr;
OSCCTET nsgbuf [1024];

188

Generated PER Functions

int msglen, stat;
OSBOOL al i gned = TRUE;

/1 step 1l: instantiate an instance of the PER encode
/1 buffer class. This exanple specifies a static
/1 message buffer..

ASN1PEREncodeBuf f er encodeBuffer (nsgbuf,
si zeof (msgbuf),
al i gned);

/] step 2: popul ate nsgbData with data to be encoded

ASNLT_Per sonnel Record nsgDat a;
nmsgDat a. nane. gi venNane = "SM TH";

/1 step 3: instantiate an instance of the ASNLC <ProdNane>
/1 class to associate the encode buffer and nessage data..

ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);
/1 steps 4 and 5: encode and check return status

if ((stat = enpl oyee. Encode ()) == 0)

{
printf ("Encodi ng was successful\n");
printf ("Hex dunp of encoded record:\n");
encodeBuf f er. hexDump ();
printf ("Binary dunp:\n");
encodeBuf f er. bi nDunmp (" enpl oyee");

/] step 6: get start-of-nessage pointer and nessage | ength.
/1 start-of-message pointer is start of nsgbuf
/1 call getMsgLen to get message |ength..

msgptr = encodeBuffer.getMgPtr (); // will return &rsgbuf
| en = encodeBuffer.get MsgLen ();
}

el se

{
printf ("Encoding failed\n");
encodeBuffer.printErrorinfo ();
exit (0);

}

/1 megptr and | en now describe fully encoded nessage

In general, static buffers should be used for encoding messages where possible as they offer asubstantial performance
benefit over dynamic buffer allocation. The problem with static buffers, however, is that you are required to estimate
in advance the approximate size of the messages you will be encoding. There is no built-in formulato do this, the size
of an ASN.1 message can vary widely based on data types and other factors.

189

Generated PER Functions

If performance is not a significant issue, then dynamic buffer allocation is a good alternative. Using the form of the
ASN1PEREnNcodeBuffer constructor that does not include buffer address and size arguments specifies dynamic buffer
allocation. This constructor only requires a Boolean value to specify whether aligned or unaligned encoding should
be performed (aligned istrue).

The following code fragment illustrates PER encoding using a dynamic buffer:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

OSCCTET* nsgptr;

int meglen, stat;

OSBOOL al i gned = TRUE;

/1l Create an instance of the conpiler generated class.
/1 This exanpl e does dynani c encodi ng (no nessage buffer
/1 is specified)..

ASN1PEREncodeBuf f er encodeBuffer (aligned);

ASNLT_ Personnel Record nsgDat a;

ASNLC Personnel Record enpl oyee (encodeBuffer, nsgData);
/1 Popul ate nsgbata within the class variable

nsgDat a. nane. gi venNane = "SM TH";

/1 Encode

if ((stat = enpl oyee. Encode ()) == 0)

{
printf ("Encodi ng was successful\n");
printf ("Hex dunp of encoded record:\n");
encodeBuf fer. hexDunmp ();
printf ("Binary dunp:\n");
encodeBuf f er. bi nDunp ("enpl oyee");
/1 Get start-of-nessage pointer and |length
nsgptr = encodeBuffer.getMgPtr ();
| en = encodeBuffer.getMglLen ();

}

el se

{
printf ("Encoding failed\n");
encodeBuffer.printErrorinfo ();
exit (0);

}

return O;

}

It isalso possible to encode a PER message to a stream rather than amemory buffer. To do this, you would first declare
avariable of one of the OSRT output stream classes. This would then be associated with the encode buffer through

190

Generated PER Functions

the ASN1PERencode buffer declaration. Everything after that would be similar to the memory buffer based program.
The preceding program fragment rewritten to do streaming output to afile would look like this:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
mai n ()
{ .

Int stat;

OSBOOL al i gned = TRUE;

const char* filenane = "nmessage_out. per";

}

/1 Create an instance of the conpiler generated class.
/1 This exanple wite output to a file stream.

OSRTFi | eQut put Stream fostrm (fil enane);
ASN1PEREncodeBuf f er encodeBuffer (fostrm aligned);
ASNLT_Per sonnel Record mnsgDat a;

ASN1C Personnel Record enpl oyee (encodeBuffer, mnsgData);
/1 Popul ate nmsgbata within the class variable

nmsgDat a. nane. gi venNane = "SM TH';

/1 Encode

if ((stat = enpl oyee. Encode ()) == 0)

{
printf ("Encoding was successful\n");
printf ("Hex dunp of encoded record:\n");
encodeBuf f er. hexDunmp ();
printf ("Binary dunmp:\n");
encodeBuf f er. bi nDunp ("enpl oyee");

}

el se

{
printf ("Encoding failed\n");
encodeBuffer.printErrorinfo ();
exit (0);

}

return O;

Note that the encodeBuffer.hexDump and encodeBuffer.binDump commands work despite the fact that the output has
been written to a stream. This is because a capture buffer is used when tracing is enabled to record all of the encoded
information. If memory istight, a user should ensure that trace output is turned off when using the stream.

Encoding a Series of PER Messages using the C++
Interface

When encoding a series of PER messages using the C++ interface, performance can be improved by reusing the
message processing objects to encode each message rather than creating and destroying the objects each time. A

191

Generated PER Functions

detailed exampl e of how to do thiswas given in the section on BER message encoding. The PER casewould be similar
with the PER function calls substituted for the BER calls. As was the case for BER, the encode message buffer object
init method can be used to reinitialize the encode buffer between invocations of the encode functions.

Generated PER Decode Functions

PER encode/decode functions are generated when the -per switch is specified on the command line. For each ASN.1
production defined in the ASN.1 source file, a C PER decode function is generated. This function will parse the data
contents from a PER-encoded ASN.1 message and populate a variable of the corresponding type with the data.

If C++ code generation is specified, acontrol classisgenerated that contains a Decode method that wrapsthisfunction.
This function is invoked through the class interface to encode an ASN.1 message into the variable referenced in the
msgData component of the class.

Generated C Function Format and Calling Parameters

The format of the name of each generated PER decode function is as follows:
asnlPD_[<prefi x>] <pr odName>

where <pr odNamne> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:
status = asnlPD <nane> (OSCTXT* pctxt, <nane>* pval ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewhere in his or her program.

Thepval ue argument isapointer to avariableto hold the decoded result. Thisvariableis of the type generated from
the ASN.1 production. The decode function will automatically allocate dynamic memory for variable length fields
within the structure. This memory is tracked within the context structure and is released when the context structure
isfreed.

The function result variable st at returns the status of the decode operation. Status code 0 (0) indicates the function
was successful. A negative valueindicates decoding failed. Return status values are defined in the "asnltype.h" include
file. The reason text and a stack trace can be displayed using the rtErrPrint function described later in this document.

Generated C++ Decode Method Format and Calling
Parameters

Generated decode functions are invoked through the class interface by calling the base class Decode method. The
calling sequence for this method is as follows:

status = <obj ect>. Decode ();

In this definition, <object> is an object of the class generated for the given production.

192

Generated PER Functions

An ASN1PERDecodeBuffer object must be passed to the <object> constructor prior to decoding. This is where the
message start address and length are specified. A Boolean argument is also passed indicating whether the message to
be decoded was encoded using aligned or unaligned PER

The function result variable st at us returns the status of the decode operation. The return status will be zero (0)
if decoding is successful or a negative value if an error occurs. Return status values are documented in the C/C++
Common Functions Reference Manual and in the rtxErrCodes.h includefile.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C PER decode function. This method must be used if
C code generation was done. This method can also be used as an aternative to using the control class interface if C
++ code generation was done.

Unlike BER, the user must know the ASN.1 type of a PER message before it can be decoded. Thisis because the type
cannot be determined at run-time. There are no embedded tag values to reference to determine the type of message
received.

The following are the basic stepsin calling a compiler-generated decode function:

1. Prepare a context variable for decoding

2. Initialize the data structure to receive the decoded data

3. Cdll the appropriate compiler-generated decode function to decode the message

4. Freethe context after use of the decoded data is complete to free allocated memory structures

Before a PER decode function can be called, the user must first initialize acontext block structure. The context block is
initialized by either calling the rtNewContext function (to allocate adynamic context block), or by calling rtlnitContext
toinitialize astatic block. The pu_setBuffer function must then be called to specify a message buffer that contains the
PER-encoded message to be decoded. Thisfunction also allowsfor the specification of aigned or unaligned decoding.

The variable that is to receive the decoded data must then be initialized. This can be done by either initializing the
variable to zero using memset, or by calling the ASN1C generated initialization function.

A decode function can then be called to decode the message. If the return statusindicates success (0), then the message
will have been decoded into the given ASN.1 type variable. The decode function may automatically allocate dynamic
memory to hold variable length variables during the course of decoding. This memory will be tracked in the context
structure, so the programmer does not need to worry about freeing it. It will be released when the context is freed.

Thefinal step of the procedure isto free the context block. This must be done regardless of whether the block is static
(declared on the stack and initialized using rtInitContext), or dynamic (created using rtNewContext). The function to
free the context is rtFreeContext.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

OSCCTET nsgbuf [1024];
ASN1TAG nsgt ag;

int msglen, stat;
OSCTXT ct xt;

OSBOOL al i gned = TRUE;

193

Generated PER Functions

Per sonnel Record enpl oyee;
logic to read nessage into nsgbuf
/* This exanple uses a static context block */
/* step 1: prepare the context block */
stat = rtlnitContext (&ctxt);
if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");

rtErrPrint (&ctxt);
return stat;

}

pu_set Buffer (&ctxt, msgbuf, mnsglen, aligned);

/* step 2: initialize the data variable */
asnllnit_Personnel Record (&enpl oyee);

/* step 3: call the decode function */

stat = asnlPD _Personnel Record (&ctxt, &enpl oyee);

if (stat == 0)

{
process received data..

}

el se {
/* error processing... */
rtxErrPrint (&ctxt);

}

/* step 4: free the context */

rt FreeCont ext (&ctxt);

An input stream can be used instead of a memory buffer as the data source by replacing the pu_setBuffer call above
with one of the rtxStream* CreateReader functions to set up afile, memory, or socket stream as input.

Procedure for Using the C++ Control Class Decode

Method

The following are the steps are involved in decoding a PER message using the generated C++ class:

1. Instantiate an ASN.1 PER decode buffer object (ASN1IPERDecodeBuffer) to describe the message to be decoded.
The constructor takes as arguments a pointer to the message to be decoded, the length of the message, and a flag

indicating whether aligned encoding was used or not.

2. Instantiate an ASN1T_<ProdName> object to hold the decoded message data.

194

Generated PER Functions

3. Instantiate an ASN1C_<ProdName> object to decode the message. This class associ ates the message buffer object
with the object that isto receive the decoded data. The results of the decode operation will be placed in the variable

declared in step 2.

4. Invoke the ASN1C_<ProdName> object Decode method.

5. Check the return status. The return value is a status value indicating whether decoding was successful or not. Zero
(0) indicates success. If decoding failed, the status value will be a negative number. The decode buffer method
PrintErrorinfo can be invoked to get atextual explanation and stack trace of where the error occurred.

6. Release dynamic memory that was allocated by the decoder. All memory associated with the decode context is
released when both the ASN1PERDecodeBuffer and ASN1C_<ProdName> objects go out of scope.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

OSOCTET nsgbuf [1024] ;
i nt nmsgl en, stat;
OSBOOL al i gned = TRUE;

logic to read nessage into nsgbuf
/] step 1l: instantiate a PER decode buffer object
ASN1PERDecodeBuf f er decodeBuffer (nsgbuf, nsglen, aligned);
/] step 2: instantiate an ASNLT_<ProdNane> obj ect
ASNLT_Per sonnel Record nsgDat a;
/] step 3: instantiate an ASNLC <ProdNane> obj ect
ASN1C Per sonnel Record enpl oyee (decodeBuffer, nsgData);
/1 step 4: decode the record
stat = enpl oyee. Decode ();

/1l step 5: check the return status

if (stat == 0)

{ process received data..
}
el se {
/1 error processing..
decodeBuffer.PrintErrorinfo ();
}
/] step 6: free dynamic nenory (will be done automatically

/1 when both the decodeBuffer and enpl oyee objects go out
/1 of scope)..

195

Generated PER Functions

}

A stream can be used as the data input source instead of a memory buffer by creating an OSRT input stream object in
stepl and associating it with the decodeBuffer object. For example, to read from afile input stream, the decodeBuffer
declaration in step 1 would be replaced with the following two statements:

CSRTFi | el nput Stream i strm (fil enane);
ASN1PERDecodeBuf f er decodeBuffer (istrm aligned);

Decoding a Series of Messages Using the C++ Control
Class Interface

The above example is fine as a sample for decoding a single message, but what happensin the more typical scenario
of having a long-running loop that continuously decodes messages? The logic shown above would not be optimal
from a performance standpoint because of the constant creation and destruction of the message processing objects.
It would be much better to create all of the required objects outside of the loop and then reuse them to decode and
process each message.

A code fragment showing away to do thisis asfollows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

OSOCTET msgbuf [1024] ;

i nt nmsgl en, stat;

OSBOOL al i gned = TRUE;

/] step 1l: instantiate a PER decode buffer object
ASN1PERDecodeBuf f er decodeBuffer (nsgbuf, nsglen, aligned);
/] step 2: instantiate an ASNLT_<ProdNane> obj ect

ASNLT_Per sonnel Record nsgDat a;

/] step 3: instantiate an ASNLC <ProdNane> obj ect

ASN1C Per sonnel Record enpl oyee (decodeBuffer, nsgData);

/1 loop to continuously decode records

for (;;) {

logic to read nessage into nsgbuf

stat = enpl oyee. Decode ();
/1 step 5: check the return status

if (stat == 0)

{

process received data..
}
el se {

/1 error processing..

196

Generated PER Functions

decodeBuffer.PrintErrorinfo ();

}

/] step 6: free dynam c nmenory
enpl oyee. nenfFreeAl | ();

/1 1f reading unaligned data, it is necessary to do a byte align operation to nov
/1 to the next octet boundary before decoding the next nessage..

decodeBuffer. byteAign();

}

The only difference between this and the previous example is the addition of the decoding loop and the modification
of step 6 inthe procedure. The decoding loop is an infinite loop to continuously read and decode messages from some
interface such as a network socket. The decode calls are the same, but before in step 6, we were counting on the
message buffer and control objects to go out of scope to cause the memory to be released. Since the objects are now
being reused, thiswill not happen. So the call to the memFreeAll method that is defined in the ASN1C Type base class
will force all memory held at that point to be released.

Performance Considerations: Dynamic Memory
Management

Please refer to Performance Considerations: Dynamic Memory Management in the BER Decode Functions section
for adiscussion of memory management performance issues. All of the issues that apply to BER and DER also apply
to PER aswell.

Generated Unaligned PER (UPER) Functions

Undligned PER (UPER) encode and decode functions are generated when the -uper command-line option is specified.
The generated functions are essentially the same as the functions generated when the -per option is specified as
described above. The function name format and calling parameters are the same. The only differenceisasmall savings
in code size in which code to alignment operations for the aligned case is removed.

Note that code generated with the -per option can be used to do unaligned encoding by setting the aligned flag to false
in the call to pu_set Buf f er . This must aso be done even if UPER code is generated. Code generated with the -
uper option cannot be used to do aligned encoding.

PER Bit Tracing

PER provides very compact bit representations of data at the cost of complexity and, therefore, legibility. Whileit's
fairly simple to decode trivial messages by hand, assistance from toolsis quite useful in real-life scenarios. Objective
Systems provides such tools, both in our ASN.1 Viewer and Editor tool (ASN1VE) as well as our ASN1C software
development kit.

To print out a hit trace using ASNI1C, invoke the appropriate functions after encoding or decoding a
message, and a marked-up binary dump of the PER data is produced. The employee sample program
illustrates the use of hit tracing. For C, the pu_bi ndunp function creates the binary trace output. For C++,
ASN1PERMessageBuf f er: : bi nDunp serves the same purpose.

The requirements for bit tracing are:

197

Generated PER Functions

e Generate code using the—t r ace option.
» Compile generated code with _ TRACE defined (e.g. compilewith/ D_TRACE).

Asabrief example, here is some output from the employee sample, using aligned PER:

Dump of decoded hit fields:
employee childrenPresent
IXXXXXXX 80

employee.name.givenName length
-------- 00000100 -------= ======== =-04---- -.--

employee.name.givenName data
---------------- 01001010 01101111 ----4a6f --Jo

01101000 01101110 ----=-== ===-=--- 686e---- hn--

Here, adescription can be seen of the field that was decoded, followed by 4 columns of abase 2 representation of the
relevant input data, followed by a column with a hexadecimal representation of the same data, followed by a column
with an ASCII representation of the same data. The hexadecimal and ASCII representations are only printed after all
bitsfor afull byte have been processed, so these representations might not be printed on every line, and when they are
printed, might correspond to binary bits on several preceeding lines.

The x valuesindicate padding bits used in aligned PER.

198

Chapter 11. Generated Octet Encoding
Rules (OER) Functions

Generated OER Encode Functions

OER encode/decode functions are generated when the -oer or -coer switch is specified on the command line. For each
ASN.1 production defined in the ASN.1 source file, a C OER encode function is generated. This function will convert
apopulated C variable of the given type into an OER-encoded ASN.1 message. If the -coer switch is specified, then
the encode and decode operations will be done using the x696 (ITU-T X.696 / 1SO/IEC 8825-7:2014) canonical rules.

If C++ code generationisspecified, acontrol classisgenerated that containsan Encode method that wrapsthisfunction.
This function is invoked through the class interface to encode an ASN.1 message into the variable referenced in the
msgData component of the class.

Generated C Function Format and Calling Parameters

The format of the name of each generated OER encode function is as follows:
CERENc_|[<pr ef i x>] <pr odNane>

where <pr odNane> is the name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function is as follows:
status = OEREnc_<nane> (OSCTXT* pctxt, <nane>[*] val ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

Theval ue argument contains the value to be encoded or holds a pointer to the value to be encoded. Thisvariableis
of the type generated from the ASN.1 production. The object is passed by value if it is a primitive ASN.1 data type
suchasBOOLEAN, INTEGER, ENUMERATED, etc.. It ispassed using apointer referenceif itisastructured ASN.1
type value. Check the generated function prototype in the header file to determine how the value argument is to be
passed for agiven function.

The function result variable st at returns the status of the encode operation. Status code 0 (0) indicates the function
was successful. Note that this return value differs from that of BER encode functions in that the encoded length of
the message component is not returned — only an OK status indicating encoding was successful. A negative value
indicates encoding failed. Return status values are defined in the "asnltype.h" include file. The error text and a stack
trace can be displayed using the rtxErrPrint function.

If the code is generated using the -coer switch, then the encoding will be canonical. If the code is generated using
the -oer switch, the encoding can be made canonical by setting the appropriate flag in the context prior to calling the
encode function:

rtxct xt Set Fl ag(pct xt, ASNLCANON) ;

199

Generated Octet Encoding Rules (OER) Functions

Generated C++ Encode Method Format and Calling
Parameters

Generated encode functions are invoked through the class interface by calling the base class Encode method. The
calling sequence for this method is as follows:

stat = <object>. Encode ();

In this definition, <object> is an object of the class generated for the given production. The function result variable
st at returnsthe status val ue from the OER encode function. This statusvalue will be 0 (0) if encoding was successful
or anegative error status value if encoding fails. Return status values are defined in the "asnltype.h" include file.

The user must call the encode buffer class methods getMsgPtr and getMsglLen to obtain the starting address and length
of the encoded message component.

If the code is generated using the -coer switch, then the encoding will be canonical. If the code is generated using
the -oer switch, the encoding can be made canonical by setting the appropriate flag in the context prior to calling the
encode function:

ASN1CEREncodeBuf f er encodeBuffer;;
OSCTXT* pctxt = encodeBuffer.getCtxtPtr();
rtxCt xt Set Fl ag(pct xt, ASNLCANON) ;

Populating Generated Structure Variables for Encoding

See the section Populating Generated Structure Variables for Encoding for a discussion on how to populate variables
for encoding. There is no differencein how it is done for BER versus how it is done for OER.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C OER encode function. This method must be used if
C code generation was done.

Before an OER encode function can be called, the user must first initialize an encoding context block structure. The
context block isinitialized by calling the rtinitContext function.

If the code is generated using the -coer switch, the encoding will be canonical without the user needing to take any
additional steps. But if the code is generated using the -oer switch, in order to make the encoding canonical, the user
must set the ASN1CANON flag in the context using the rtxCtxtSetFlag function.

The user then has the option to do stream-based or memory-based encoding. If stream-based is to be done, the user
must call a rtxStreamCreateWriter function for the type of stream to which data will be written. For example, if the
user wishesto write data to afile, the rtxStreamFileCreateWriter function would be called.

To do memory-based encoding, the rtxl nitContextBuffer function would be called. This can be used to specify use of a
static or dynamic memory buffer. Specification of adynamic buffer is possible by setting the buffer address argument
to null and the buffer size argument to zero.

An encode function can then be called to encode the message. If the return status indicates success (0), then the
message will have been encoded in the given buffer or written to the given stream. OER encoding starts from the
beginning of the buffer and proceeds from low memory to high memory until the message is complete. This differs
from definite-length BER where encoding was done from back-to-front. Therefore, the buffer start addressiswherethe

200

Generated Octet Encoding Rules (OER) Functions

encoded OER message begins. The length of the encoded message can be obtained by calling the rtxCtxtGetMsglLen
run-time function. If dynamic encoding was specified (i.e., a buffer start address and length were not given), the
rtxCtxtGetMsgPtr run-time function can be used to obtain the start address of the message. Thisroutinewill also return
the length of the encoded message. If amemory stream was used, the message start address and length can be obtained

by calling the rtxSreamMemoryGetBuffer function.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h

main ()

{

Per sonnel Record enpl oyee;

OSCTXT ctxt;

OSCCTET* msgptr;

i nt i, len, stat;

const char* filename = "nessage. dat”;

/* Popul ate enpl oyee C structure */

asnllnit_Personnel Record (&enpl oyee);
enpl oyee. nane. gi venNane = "SM TH';

/* Initialize context */
stat = rtlnitContext (&ctxt);

if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");
rtxErrPrint (&ctxt);
return stat;

}

/* Set canonical encoding if desired. */
rtxCt xt Set Fl ag(&t xt, ASNLCANON) ;

/* Create menory output stream */
stat = rtxStreamvenoryCreateWiter (&ctxt, 0, 0);
if (stat < 0) {
printf ("Create menory output streamfailed\n");
rtxErrPrint (&ctxt);

rt FreeCont ext (&ctxt);
return stat;

}

/* Encode */
stat = OEREnc_Personnel Record (&ctxt, &enpl oyee);

msgptr = rtxStreamvenoryGet Buffer (&ctxt, & en);

201

/* include file generated by ASNLIC */

Generated Octet Encoding Rules (OER) Functions

if (trace) {
printf ("Hex dunp of encoded record:\n");
rt xHexDunmp (nsgptr, |en);

}

In general, static buffers should be used for encoding messages where possible as they offer a substantia performance
benefit over dynamic buffer allocation. The problem with static buffers, however, isthat you are required to estimate
in advance the approximate size of the messages you will be encoding. Thereis no built-in formulato do this, the size
of an ASN.1 message can vary widely based on data types and other factors.

The use of streams is a good alternative for large messages as the entire encoded message does not need to fit into
memory.

Procedure for Using the C++ Control Class Encode
Method

The procedure to encode a message using the C++ class interface is as follows:

1

Instantiate an ASN.1 OER encode buffer object (ASN1OEREncodeBuffer) to describe the buffer into which the
message will be encoded. Two overloaded constructors are available. The first form takes as arguments a static
encode buffer and size. The second form has no arguments. This form is used to specify dynamic encoding.

. If the code is generated using the -coer switch, the encoding will be canonical without the user needing to take any

additional steps. But if the code is generated using the -oer switch, in order to make the encoding canonical, the
user must set the ASN1ICANON flag in the context using the rtxCitxtSetFlag function.

. Instantiate an ASN1T_<ProdName> object and populate it with datato be encoded.
. Instantiate an ASN1C_<ProdName> aobject to associate the message buffer with the data to be encoded.
. Invoke the ASN1C_<ProdName> object Encode method.

. Check the return status. The return value is a status value indicating whether encoding was successful or not.

Zero indicates success. If encoding failed, the status value will be a negative number. The encode buffer method
printErrorinfo can be invoked to get atextual explanation and stack trace of where the error occurred.

. If encoding was successful, get the start-of-message pointer and message length. The start-of-message pointer is

obtained by calling the getMsgPtr method of the encode buffer object. If static encoding was specified (i.e., a
message buffer address and size were specified to the OER Encode Buffer class constructor), the start-of-message
pointer is the buffer start address. The message length is obtained by calling the getMsgLen method of the encode
buffer object.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

const OSOCTET* nsgptr;
OSCCTET nsgbuf [1024];
int msglen, stat;

/1 step 1l: instantiate an instance of the OER encode

202

Generated Octet Encoding Rules (OER) Functions

/1 buffer class. This exanple specifies a static
/1 message buffer..

ASN1CEREncodeBuf f er encodeBuf fer (nsgbuf, sizeof (msgbuf));
/1 Specify canonical encoding if desired.

OSCTXT* pctxt = encodeBuffer.getCQxtPtr();

rt xCt xt Set Fl ag(pct xt, ASNLCANON) ;

/] step 2: populate nsgbData with data to be encoded
ASNLT_Per sonnel Record nsgDat a;

nmsgDat a. nane. gi venNane = "SM TH";

/1 step 3: instantiate an instance of the ASNLC <ProdNane>
/1 class to associate the encode buffer and nessage data..
ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);

/1 steps 4 and 5: encode and check return status

if ((stat = enpl oyee. Encode ()) == 0)

{
printf ("Encodi ng was successful\n");
printf ("Hex dunp of encoded record:\n");
encodeBuf f er. hexDump ();
/] step 6: get start-of-nessage pointer and nessage | ength.
/1 start-of-message pointer is start of nsgbuf
/1 call getMsgLen to get message |ength.
msgptr = encodeBuffer.getMgPtr (); // will return &rsgbuf
| en = encodeBuffer.get MsgLen ();
}
el se
{
printf ("Encoding failed\n");
encodeBuffer.printErrorinfo ();
exit (0);
}

/1 megptr and | en now describe fully encoded nessage

In general, static buffers should be used for encoding messages where possible as they offer asubstantial performance
benefit over dynamic buffer allocation. The problem with static buffers, however, is that you are required to estimate
in advance the approximate size of the messages you will be encoding. There is no built-in formulato do this, the size

of an ASN.1 message can vary widely based on data types and other factors.

If performance is not a significant issue, then dynamic buffer allocation is a good alternative. Using the form of the
ASN1OEREnNcodeBuffer constructor that does not include buffer address and size arguments specifies dynamic buffer

alocation.

203

Generated Octet Encoding Rules (OER) Functions

Generated OER Decode Functions

OER encode/decode functions are generated when the -oer switch or the - coer switch is specified on the command
line. For each ASN.1 production definedin the ASN.1 sourcefile, aC OER decode function isgenerated. Thisfunction
will parse the data contents from an OER-encoded ASN.1 message and populate a variable of the corresponding type
with the data. If the - coer switch is specified, then the encode and decode operations will be done using the x696
(ITU-T X.696 / ISO/IEC 8825-7:2014) canonical rules.

If C++ code generation isspecified, acontrol classis generated that contains a Decode method that wrapsthisfunction.
This function is invoked through the class interface to encode an ASN.1 message into the variable referenced in the
msgData component of the class.

Generated C Function Format and Calling Parameters

The format of the name of each generated OER decode function is as follows:
OERDec_[<pr ef i x>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:
status = OERDec_<nane> (OSCTXT* pctxt, <nane>* pval ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

Thepval ue argument isapointer to avariableto hold the decoded result. Thisvariableis of the type generated from
the ASN.1 production. The decode function will automatically allocate dynamic memory for variable length fields
within the structure. This memory is tracked within the context structure and is released when the context structure
isfreed.

The function result variable st at returns the status of the decode operation. Status code 0 (0) indicates the function
was successful. A negative value indicates decoding failed. Return status values are defined in the "asnlErrCodes.h"
and "rtxErrCodes.h" header files. The reason text and a stack trace can be displayed using the rtxErrPrint function
described later in this document.

If the code is generated using the -coer switch, then the decoding will be canonical. If the code is generated using
the -oer switch, the decoding can be made canonical by setting the appropriate flag in the context prior to calling the
decode function:

rtxCt xt Set Fl ag(pct xt, ASNLCANON) ;
Generated C++ Decode Method Format and Calling
Parameters

Generated decode functions are invoked through the class interface by calling the base class Decode method. The
calling sequence for this method is as follows:

204

Generated Octet Encoding Rules (OER) Functions

status = <obj ect>. Decode ();
In this definition, <object> is an object of the class generated for the given production.

An ASN1OERDecodeBuffer object must be passed to the <object> constructor prior to decoding. This is where the
message start address and length are specified.

The function result variable st at us returns the status of the decode operation. The return status will be zero (0)
if decoding is successful or a negative value if an error occurs. Return status values are documented in the C/C++
Common Functions Reference Manual and in the rtxErrCodes.h includefile.

If the code is generated using the -coer switch, then the decoding will be canonical. If the code is generated using
the -oer switch, the decoding can be made canonical by setting the appropriate flag in the context prior to calling the
decode function:

ASN1CERDecodeBuf f er decodeBuf fer;;
OSCTXT* pctxt = decodeBuffer.getCxtPtr();
rtxCt xt Set Fl ag(pct xt, ASNLCANON) ;

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C OER decode function.

Unlike BER, the user must know the ASN. 1 type of an OER message beforeit can be decoded. Thisisbecausethetype
cannot be determined at run-time. There are no embedded tag values to reference to determine the type of message
received.

The following are the basic stepsin calling a compiler-generated decode function:

1. Prepare a context variable for decoding

2. Initialize the data structure to receive the decoded data

3. Call the appropriate compiler-generated decode function to decode the message

4. Freethe context after use of the decoded data is complete to free allocated memory structures

Before an OER decode function can be called, the user must first initialize a context block structure. The context block
isinitialized by calling the rtinitContext function.

If the code is generated using the -coer switch, the decoding will be canonical without the user needing to take any
additional steps. But if the code is generated using the -oer switch, in order to make the decoding canonical, the user
must set the ASN1ICANON flag in the context using the rtxCtxtSetFlag function.

The user then has the option to do stream-based or memory-based decoding. If stream-based is to be done, the user
must call a rtxStreamCreateReader function for the type of stream from which data will be read. For example, if the
user wishesto read data from afile, the rtxStreamFileCreateReader function would be called.

To do memory-based decoding, the ritxlnitContextBuffer function would be called. The message to be decoded must
reside in memory. The arguments to this function would then specify the message buffer in which the data to be
decoded exists.

The variable that is to receive the decoded data must then be initialized. This can be done by either initializing the
variable to zero using memset, or by calling the ASN1C generated initialization function.

A decode function can then be called to decode the message. If the return status indicates success (0), then the message
will have been decoded into the given ASN.1 type variable. The decode function may automatically allocate dynamic

205

Generated Octet Encoding Rules (OER) Functions

memory to hold variable length variables during the course of decoding. This memory will be tracked in the context
structure, so the programmer does not need to worry about freeing it. It will be released when the either the context is
freed or explicitly when the rtxMemFree or rixMemReset functionis called.

Thefinal step of the procedure isto free the context block. This must be done regardless of whether the block is static
(declared on the stack and initialized using rtInitContext), or dynamic (created using rtNewContext). The function to
free the context is rtFreeContext.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

OSOCTET* pMsgBuf;
int len, stat;

OSCTXT ct xt;
Per sonnel Record enpl oyee;
const char* filename = "nessage. dat”;

/* step 1: initialize context */
stat = rtlnitContext (&ctxt);

if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");
rtErrPrint (&ctxt);
return stat;

}

/* Specify canonical decoding if desired. */
rtxCt xt Set Fl ag(&t xt, ASNLCANON) ;

/* step 2: read input file into a nenory buffer */

stat = rtxFil eReadBinary (&ctxt, filenanme, &pMsgBuf, & en);
if (0 == stat) {
stat = rtxlnitContextBuffer (&ctxt, pMsgBuf, |en);

}

if (0 !=stat) {
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return stat;

}

/* step 3: initialize the data variable */
asnllnit_Personnel Record (&enpl oyee);

/* step 4: call the decode function */

stat = OERDec_Personnel Record (&ctxt, &enpl oyee);

if (stat == 0)
{

206

Generated Octet Encoding Rules (OER) Functions

process received data..

}

el se {
/* error processing... */
rtxErrPrint (&ctxt);

}

/* step 4: free the context */

rt FreeCont ext (&ctxt);
}

An input stream can be used instead of a memory buffer as the data source by replacing the rtxFileReadBinary code
block above with one of the rtxStreamCreateReader functionsto set up afile, memory, or socket stream asinput.

Procedure for Using the C++ Control Class Decode
Method

The following are the steps are involved in decoding a OER message using the generated C++ class:

1

Instantiate an ASN.1 OER decode buffer object (ASN1OERDecodeBuffer) to describe the message to be decoded.
The constructor takes as arguments a pointer to the message to be decoded, the length of the message.

. If the code is generated using the -coer switch, the decoding will be canonical without the user needing to take any

additional steps. But if the code is generated using the -oer switch, in order to make the decoding canonical, the
user must set the ASNICANON flag in the context using the rtxCtxtSetFlag function.

. Instantiate an ASN1T_<ProdName> object to hold the decoded message data.

. Instantiate an ASN1C_<ProdName> object to decode the message. This class associates the message buffer object

with the object that isto receive the decoded data. The results of the decode operation will be placed in the variable
declared in step 2.

. Invoke the ASN1C_<ProdName> object Decode method.

. Check the return status. The return value is a status value indicating whether decoding was successful or not. Zero

(0) indicates success. If decoding failed, the status value will be a negative number. The decode buffer method
PrintErrorinfo can be invoked to get atextual explanation and stack trace of where the error occurred.

. Release dynamic memory that was allocated by the decoder. All memory associated with the decode context is

released when both the ASN1OERDecodeBuffer and ASN1C_<ProdName> objects go out of scope.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

OSOCTET msgbuf [1024] ;
i nt nmsgl en, stat;

logic to read nessage into nsgbuf
/1 step 1l: instantiate a CER decode buffer object

ASN1CERDecodeBuf f er decodeBuf fer (nsgbuf, nsglen);

207

Generated Octet Encoding Rules (OER) Functions

/1 Specify canonical decoding if desired.

OSCTXT* pctxt = decodeBuffer.getCQxtPtr();

rt xCt xt Set Fl ag(pct xt, ASNLCANON) ;

/] step 2: instantiate an ASNLT_<ProdNane> obj ect
ASNLT_Per sonnel Record nsgDat a;

/] step 3: instantiate an ASNLC <ProdNane> obj ect
ASN1C Per sonnel Record enpl oyee (decodeBuffer, nsgData);
/1 step 4: decode the record

stat = enpl oyee. Decode ();

/1 step 5: check the return status

if (stat == 0)

{ process received data..
}
el se {
/1 error processing..
decodeBuffer.PrintErrorinfo ();
}
/] step 6: free dynamic nenory (will be done automatically

/1 when both the decodeBuffer and enpl oyee objects go out
/1 of scope)..

}

A stream can be used as the data input source instead of a memory buffer by creating an OSRT input stream object in
stepl and associating it with the decodeBuffer object. For example, to read from afile input stream, the decodeBuffer
declaration in step 1 would be replaced with the following two statements:

CSRTFi | el nput Stream i strm (fil enane);
ASN1CERDecodeBuf f er decodeBuffer (istrm;

Decoding a Series of Messages Using the C++ Control
Class Interface

The above example is fine as a sample for decoding a single message, but what happensin the more typical scenario
of having a long-running loop that continuously decodes messages? The logic shown above would not be optimal
from a performance standpoint because of the constant creation and destruction of the message processing objects.
It would be much better to create all of the required objects outside of the loop and then reuse them to decode and
process each message.

A code fragment showing away to do thisis asfollows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC

208

Generated Octet Encoding Rules (OER) Functions

main ()

{

}

The only difference between this and the previous example is the addition of the decoding loop and the modification
of step 6 inthe procedure. The decoding loop is an infinite loop to continuously read and decode messages from some
interface such as a network socket. The decode calls are the same, but before in step 6, we were counting on the
message buffer and control objects to go out of scope to cause the memory to be released. Since the objects are now
being reused, thiswill not happen. So the call to the memFreeAll method that is defined in the ASN1C_Type base class

OSOCTET msgbuf [1024] ;
i nt nmsgl en, stat;

/] step 1l: instantiate a CER decode buffer object
ASN1CERDecodeBuf f er decodeBuf fer (nsgbuf, nsglen);
/] step 2: instantiate an ASNLT_<ProdNane> obj ect
ASNLT_Per sonnel Record nsgDat a;

/] step 3: instantiate an ASNLC <ProdNane> obj ect

ASN1C Per sonnel Record enpl oyee (decodeBuffer, nsgData);

/1 loop to continuously decode records

for (;;) {

logic to read nessage into nsgbuf

stat = enpl oyee. Decode ();
/1 step 5: check the return status

if (stat == 0)

{
process received data..
}
el se {
/1 error processing..
decodeBuffer.PrintErrorinfo ();
}

/] step 6: free dynam c nmenory

enpl oyee. nenFreeAl | ();

will force al memory held at that point to be released.

Performance Considerations: Dynamic Memory

Management

Please refer to Performance Considerations: Dynamic Memory Management in the BER Decode Functions section
for adiscussion of memory management performance issues. All of the issues that apply to BER and DER also apply

to OER aswell.

209

Chapter 12. Generated Medical Device
Encoding Rules (MDER) Functions

Note

MDER isavailable only as a professional compiler option. The encoding and decoding functions are built on
top of ASN1C's streaming functions and will not work with the typical buffer-based implementations seenin
BER or PER. When introduced in version 6.4, no C++ implementation for MDER was available.

The Medical Device Encoding Rules (MDER) are described in |EEE standard 11073-20601-2008, Annex F. This
standard describes a simplified encoding to be used across medical devices. ASN1C can generate encoders and
decoders for specifications based on the | EEE standard, which uses a strict subset of ASN.1.

To generate encoding and decoding functions, use the - mder switch on the command-line or select the appropriate
option in the GUI. The following sections describe the generated encoding and decoding functions. Descriptions of
the MDER run time functions may be found in our C MDER Runtime Library Reference Manual.

Generated MDER Encode Functions

Generated C Function Format and Calling Parameters

The format of the name of each generated encode function is as follows:
VDERENc_[<pr ef i x>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function follows:

stat = MDEREnc_<nane> (OSCTXT* pct xt,
<nane>* pval ue);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application.
The user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The
variableshouldbeinitialized usingther t | ni t Cont ext run-timelibrary function (seethe C MDERRuntimeLibrary
Reference Manual for a complete description of this function).

The pval ue argument holds a pointer to the data to be encoded and is of the type generated from the ASN.1
production.

The function result variable st at returns an error status code if encoding fails. Return status values are defined in
theasnlt ype. h includefile.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C MDER encode function.

210

Generated Medical Device
Encoding Rules (MDER) Functions

Before any encode function can be called; the user must first initialize an encoding context. Thisis a variable of type
OSCTXT. Thisvariable holds all of the working data used during the encoding of a message. The context variable is
declared as a normal automatic variable within the top-level calling function. It must beinitialized before use. This
can be accomplished by usingther t | ni t Cont ext function asfollows:

OSCTXT ct xt;

if (rtlnitContext (&ctxt) !'=0) {
/* initialization failed, could be a Iicense problem*/
printf (“context initialization failed (check license)\n”);
return -1;

}

After initializing the context and populating avariable of the structure to be encoded, an encode function can be called
to encode the message.

A program fragment that could be used to encode a simple release request PDU is as follows:

#i nclude "I EEE-11073-20601- ASN1. h" /* include file generated by ASNLIC */

int min (void) {
ApduType *pdat a; /* typedef generated by ASNIC */
OSCTXT ctxt;
OSCCTET* msgptr;
i nt st at;

/* Step 1: Initialize the context and set the buffer pointer */

stat = rtlnitContext (&ctxt);

if (stat '=0) {
/* initialization failed, could be a Iicense problem*/
rtxErrPrint (&ctxt);
return stat;

}

/* Step 2: Populate the structure to be encoded */

pdata = rtxMemAl | ocType (&ctxt, ApduType);
asnllinit_ApduType (pdata);

pdata->t = T_ApduType_rlraq;

pdata->u.rlrq = rtxMemAl | ocTypeZ (&ctxt, R rqApdu);
pdat a->u. rlrqg->reason = normal;

/* Step 3: Call the generated encode function */
stat = MDEREnc_ApduType (&ctxt, pdata);

/* Step 4: Check the return status. */

if (stat < 0) {

rtxErrPrint (&ctxt);
return stat;

211

Generated Medical Device
Encoding Rules (MDER) Functions

stat = rtFreeContext (&ctxt);

if (stat '=0) {
printf ("Error freeing context!\n");
return stat;

}

return O;

}

Encoding a Series of Messages Using the C Encode
Functions

Encoding a series of messagesin MDER is very similar to encoding a series of messagesin any other set of encoding
rules. Performance can beimproved by callingr t xMenReset to avoid allocating new memory for dynamic message
structures, as in the code below:

/* initialize context, et c. */

for (5 ;) {

/* initialize / popul ate nessage structure to be encoded */
/* call MDEREnc_<nessageType> (...); */

/* call rtxMenReset when finished encoding: */
rtxMenmReset (pctxt);

}

More details may be found in the sample programsincluded in the ASN1C software development kit.

Generated MDER Decode Functions

Generated C Function Format and Calling Parameters

The format of the name of each decode function generated is as follows:
VDERDec_[<pr ef i x>] <pr odNanme>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:
st atus = MDERDec_<nane> (OSCTXT* pctxt, <nanme> *pval ue);
In this definition, <name> denotes the prefixed production name defined above.
The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The

user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The variable
must beinitialized using ther t | ni t Cont ext run-time function before use.

212

Generated Medical Device
Encoding Rules (MDER) Functions

Thepval ue argument is a pointer to avariable of the generated type that will receive the decoded data.

The function result variable st at us returns the status of the decode operation. The return status will be greater

than or equal to zero if decoding is successful or negative if an error occurs. Return status values are defined in the
"asnltype.h" includefile.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C MDER decode function. This method must be used
if C code generation was done. This method can also be used as an alternative to using the control class interface if
C++ code generation was done.

Before any decode function can be called; the user must first initialize a context variable. This is a variable of type
OSCTXT. This variable holds all of the working data used during the decoding of a message. The context variable
is declared as a normal automatic variable within the top-level calling function. It must be initialized before use.
This can be accomplished as follows:

OSCTXT ct xt;
int stat;

stat = rtlnitContext (&ctxt);
if (stat '=0) {
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return stat;

}

The next step isto create a stream reader that will read from the given source. In our example, we read from afile, but
it is also possible to read data from a socket or other source as well.

A decode function can then be called to decode the message. If the return status indicates success, the C variable
that was passed as an argument will contain the decoded message contents. Note that the decoder may have allocated
dynamic memory and stored pointers to objectsin the C structure. After processing on the C structure is complete, the
run-time library functionr t xMenfr ee should be called to free the alocated memory.

A program fragment that could be used to decode a simple PDU type follows:

#i ncl ude | EEE- 11073- 20601- ASNL. h /* include file generated by ASNLIC */
#include "rtxsrc/rtxStreanfile. h"

int main (void)
{
ApduType dat a;
OSCTXT ctxt;
const char* filename = "nessage. dat"”;
i nt st at;

/* Step 1: Initialize a context variable for decoding */

stat = rtlnitContext (&ctxt);

if (stat '=0) {
/* initialization failed, could be a Iicense problem*/
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);

213

Generated Medical Device
Encoding Rules (MDER) Functions

return stat;

}

/[* Step 2: Initialize a streamreader */

stat = rtxStreanFil eCreat eReader (&ctxt, filenane);
if (0 !=stat) {

rtxErrPrint (&ctxt);

rt FreeCont ext (&ctxt);

return stat;

}
/* Step 3: decode */
asnllinit_ApduType (&data);

stat = MDERDec_ApduType (&ctxt, &data);
if (stat '=0) {
printf ("decode of data failed\n");
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return -1,

}

Decoding a Series of Messages Using the C Decode
Functions

Decoding a series of messagesisvery similar to the method used for other encoding rules. MDER, however, issimpler.
Users need not concern themselves with idiosyncrasies like byte alignment or length markers.

Short pseudo-code is shown below. As in the encoding example, rt xMenReset is used at the end of the loop to
avoid allocating new memory for dynamic data structures. This helps to improve performance.

/* initialize context, et c. */

for (5 ;) {

/* initialize data structure */
/* call NMDERDec_ <nane> function */
/* perform operations on decoded structure */

/* reset menory: */
stat = rtxMenReset (&ctxt);

}

More details may be found in the sample programsincluded in the ASN1C software development kit.

Two-Phase Messaging

MDER is specified using ITU-T X.208, which uses a two-phase method for encoding and decoding ANY DEFI NED
BY types. These types are used to allow flexibility in message transmission by specifying a"hol€" in a message to be
filled in by atype specified by an object identifier.

214

Generated Medical Device
Encoding Rules (MDER) Functions

Let us assume for sake of example that we wish to transmit a message that has a generic header and a payload defined
by some object identifier. We must first encode the payload and attach it to the message. Then we can encode the
whole message and transmit it. Because this takes two steps, we call this two-phase encoding.

Theinverse holds for decoding. The whole message isfirst decoded. The payload may then be identified and decoded
according to its specific type.

This section describes how to perform two-phase encoding and decoding using the MDER Run Time Library.
Examples are also provided in the distribution.

Two-phase Encoding

We demonstrate an example of two-phase encoding using communication with an electrocardiogram. This code is
based on the ASN.1 specification provided in |EEE 11073-20601-2008 and submitted drafts for an application of this

type.

Two-phase encoding requires the use of multiple encoding contexts to encode both the header and payload. They must
therefore be declared with the rest of the pertinent variables:

ApduType apdu;

Aar gApdu aarq;

Dat aPr ot o* pDat aPr ot o;

PhdAssoci ati onl nfornmati on phdAssocl nfo;

OSCTXT ctxt, ctxt?2;

OSCCTET* nsgptr;

i nt | en;

const char* filename = "nessage. dat";

We first populate and encode the payload; specific details will vary depending on the application:

/* Popul ate and encode PhdAssoci ati onl nformation */
OSCRTLMEMSET (&phdAssocl nfo, 0, sizeof (phdAssocl nfo));

phdAssocl nf o. prot ocol _versi on. nunmbi ts
phdAssocl nf o. prot ocol _ver si on. dat a[0]

= 32,
= 0x40;
phdAssocl nf o. encodi ng_rul es. nunbits = 16;
rtxSetBit (phdAssocl nfo.encoding rul es.data, 16, Encodi ngRul es_nder);

phdAssocl nf o. nonencl at ure_versi on. nunbits = 32;
rtxSetBit (phdAssocl nfo.nonencl ature_version.data, 32,
Nonencl at ur eVer si on_nom ver si onl);

phdAssocl nfo. functional _units. numbits = 32;

phdAssocl nf o. system type. nunbits = 32;
rtxSetBit (phdAssocl nfo.systemtype.data, 32, Systemlype_sys_ type_agent);
{
static const OSCCTET sysld[] = {
0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38
}
phdAssocl nfo. system i d. nunocts = (OSU NT32) 8;
phdAssocl nfo. system.id. data = (OSOCTET*) sysld;

}

215

Generated Medical Device
Encoding Rules (MDER) Functions

phdAssocl nfo. dev_config_id = extended_config_start;

phdAssocl nf o. dat a_req_node_capab. data_req_node_fl ags. nunbits = 16;
phdAssocl nfo. data_req_node_capab. data_req_i nit_agent _count = 1;
phdAssocl nf o. dat a_req_node_capab. data_req_i nit_nanager_count = O;

/* Create menory output stream */
stat = rtxStreamvenoryCreateWiter (&ctxt, 0, 0);
if (stat < 0) {
printf ("Create menory output streamfailed\n");
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return stat;

}

/* Encode */
stat = MDEREnc_PhdAssoci ationlnformation (&ctxt, &phdAssoclnfo);

msgptr = rtxStreamvenoryGet Buffer (&ctxt, & en);

In brief, the data structures used for the payload are initialized to zero using the OSCRTLMEMSET macro, which here
acts just like the C runtime library menset function. The data used for populating this example are taken from a
draft specification.

After filling in the necessary fields, ther t xSt r eamMenor yCr eat eW i t er function is used to create a memory
stream for encoding the payload. More information on this function can be found in the C/C++ Common Run Time
Library manual. In case of failure, errors are trapped and reported.

Finally, the proper MDERENCc functionis called to encode the data. A pointer to the message content isretrieved using
ther t xSt r eamvenor yGet Buf f er function. This pointer isused later to fill in the contents of the payload.

After encoding the payload, the rest of the message content must be populated and encoded:

/* Initialize 2nd context structure */
stat = rtlnitContext (&ctxt?2);

/* Popul ate apdu with test data */

OSCRTLMEMSET (&aarq, O, sizeof (AargApdu));

aar . assoc_version. nunbits = 32;

rtxSetBit (aarg.assoc_version.data, 32, AssociationVersion_assoc_versionl);

pDat aProto = rtxMenAl | ocType (&ctxt?2, DataProto);
pDat aPr ot o- >data_proto_id = data_proto_id_20601;
pDat aPr ot 0- >dat a_prot o_i nfo. nunocts = | en;

pDat aPr ot o- >dat a_proto_i nfo. data = nmsgptr;

rtxDLi st Append (&ctxt2, &aarq.data_proto_|ist, pDataProto);

Themsgpt r variableisused heretofill inthe contentsof thedat a_pr ot o_i nf o structure. Therest of the contents
areinitialized and then encoded:

apdu.t = T_ApduType_aarq;
apdu. u. aargq = &aargq;

/* Create menory output stream */

216

Generated Medical Device
Encoding Rules (MDER) Functions

stat = rtxStreamvenoryCreateWiter (&ctxt2, 0, 0);
if (stat < 0) {
printf ("Create menory output streamfailed\n");
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);

}

/* Encode */
stat = MDEREnc_ApduType (&ctxt2, &apdu);

Again, amemory stream writer is used here for encoding, but other options exist to write to afile or a socket.

Two-phase Decoding

Two-phase decoding is the reverse operation of two-phase encoding. In this scenario, a message is received and
decoded. The header and payload are contained in the message, and the payload type and content must be decoded
after the message is received.

This example shows how to decode the message encoded in the previous section. As before, some setup is required
to perform the decode:

ApduType dat a;

OSCTXT ctxt;

OSBOOL trace = TRUE, verbose = FALSE;
const char* filenane = "message. dat";

i nt i, stat;

/* Initialize context structure */
stat = rtlnitContext (&ctxt);
if (stat '=0) {

rtxeErrPrint (&ctxt);

return stat;

}
rtxSet Di ag (&ctxt, verbose);

Inthiscase, thecontentisread fromaninput file, soafilestreamiscreated usingr t xSt r eanti | eCr eat eReader .
Thereafter, the PDU data type is initialized using its initialization function and the message is decoded with the
generated MDERDec function:

/* Create file input stream*/
stat = rtxStreanFil eCreat eReader (&ctxt, filenane);
if (0!=stat) {

rtxErrPrint (&ctxt);

rt FreeCont ext (&ctxt);

return stat;

}

asnllinit_ApduType (&data);

/* Call conpiler generated decode function */
stat = MDERDec_ApduType (&ctxt, &data);
if (stat '=0) {
printf ("decode of ApduType failed\n");
rtxErrPrint (&ctxt);

217

Generated Medical Device
Encoding Rules (MDER) Functions

rt FreeCont ext (&ctxt);
return -1,

rtxStreant ose (&ctxt);

The second phase of the decode can now proceed. Because the open type data can appear in alist, awhi | e loop is
used to cycle through the data:

/* Decode APDU open type data */
if (data.t == T_ApduType_aarq) {
OSRTDLi st Node* pnode = data.u.aarqg->data_proto_list. head;
while (0 !'= pnode) {
PhdAssoci ati onl nformati on phdAssocl nf o;
Dat aPr ot o* pDat aProto = (DataProto*) pnode->dat a;

/* Create menory input stream*/
stat = rtxStreamvenoryCr eat eReader
(&ct xt, (OSOCTET*) pDat aProt o->data_proto_info. data,
pDat aPr ot 0- >dat a_prot o_i nf 0. nunoct s) ;

Noteherethat ther t xSt r eamVenor yCr eat eReader functionisused to stream datafrom the previously decoded
message. It pointsto the octets held inside of the open type. After initializing the stream reader, the data can be decoded
into the appropriate structure using the corresponding MDERDec function:;

/* Decode PhdAssoci ationl nfornation */
asnllnit_PhdAssoci ationl nfornati on (&phdAssocl nfo);

stat = MDERDec_PhdAssoci ationlnformation (&ctxt, &phdAssoclnfo);
if (stat '=0) {

printf ("decode of ApduType failed\n");

rtXxerrPrint (&ctxt);

rt FreeCont ext (&ctxt);

return -1;

}

rtxStreant ose (&ctxt);

pnode = pnode- >next;

218

Chapter 13. Generated XML Functions

Overview

X.693 specifies XER ("XML Encoding Rules"). There are three variants of XER given: BASIC-XER (often just XER
for short), canonical XER, and EXTENDED-XER. Into this mix, Objective Systems has added its own encoding rules
which we'll call OSys-XER. OSys-XER is very similar to XER, but has a few variations that are meant to produce
XML documents more closely aligned with what you might get if you were using XML Schema to specify your
abstract syntax. Generally, OSys-XER produces fewer tags. The differences between these two sets of encoding rules
are discussed in more detail below.

ASNI1C supports BASIC-XER, canonical XER, and OSys-XER. It has for some time supported EXTENDED-XER
viadirect compilation of XSD. In version 6.5.0, we have begun to add direct support for EXTENDED-XER by adding
support for some of the XER encoding instructions. Nonetheless, EXTENDED-XER is most fully support today via
direct compilation of XSD. By compiling X SD, you can abtain behavior much the same aswith OSys-XER, and more.

Depending on the circumstances, the generated code may support more than one set of encoding rules. In these
cases, the OSASN1 XER and OSXMLC14Nflags (setusingr t xCt xt Set Fl ag) are used to choose, at runtime, which
encoding rulesto follow. OSASN1 XER should be set when using BASIC-XER, canonical XER, or EXTENDED-XER.
For canonical XER, OSXMLC14N must aso be set. The table below describes the possihilities.

Note that you may usethe -xsd switch when generating XML encoders and decoders. The XML schema produced from
the ASN.1 specification using the -xsd switch can be used to validate the XML messages generated using the XML
encode functions. Similarly, an XML instance can be validated using the generated XML schema prior to decoding.

What is Gener ated
Generated code supports BASIC-XER, canonical

Compiler Invocation

-xer flag is used to compile ASN.1 without XER encoding

instructions XER, and OSysXER. Set the flags described
above to choose the desired encoding
a runtime. Generated PDU methods (eg.

ASN1C_MyType::Decode, ASNI1C_MyType:Encode,
XmIEnc_MyType PDU, XmlDec_ MyType PDU) will
automatically set OSASNLXER for you, meaning that
these can ONLY be used for XER.

-xsd produces schema that validates BASIC-XER
encodings.

-xer or -xml flag is used to comple ASN.1 with supported
XER encoding instructions (if any instructions are not
supported, all instructions areignored, and the above entry
in thistable applies)

Generated code supports EXTENDED-XER only. You
should set the OSASN1 XER flag. If you are using the PDU
methods, it will be automatically set for you.

-xsd produces schema that validates EXTENDED-XER
encodings. As of thiswriting, thisis not fully supported.

-xml used to compile ASN.1

Thisis the same asthe first entry (using -xer) except that
the generated PDU methods will NOT automatically set
OSASN1 XERfor you. Thismeansyou will get OSys-XER
encodings unless you set the flag yourself.

-xsd produces schema that validates OSys-XER
encodings.

219

Generated XML Functions

Compiler Invocation What is Gener ated

-xml used to compile XSD Generated code supports EXTENDED-XER only. You

should set the OSASN1L XERflag. If you are using the PDU
methods, it will be automatically set for you.

Differences between OSys-XER and XER
(BASIC-XER)

OSys-XER differsfrom (BASIC-)XER in the following ways:

OSys-XER uses an XSD list (aspace-delimited list of strings) to represent a SEQUENCE OF X, where X isany of
thefollowing types: BOOLEAN, ENUMERATED, GeneralizedTime, INTEGER, OBJECT IDENTIFIER, OCTET
STRING, REAL, RELATIVE-OID, or UTCTime. Similarly, aBIT STRING with named bitsis encoded asan XSD
list (consisting of the named bit identifiers).

For example, the ASN.1 specification “A ::= SEQUENCE OF INTEGER” with value “{ 12 3}” would produce
the following encoding in XER:

<A><INTEGER>1</INTEGER><INTEGER>2</INTEGER><INTEGER>3</INTEGER>
in OSys-XER, it would be the following:
<A>12 3

The OSys-XER encoding for a SEQUENCE OF CHOICE wraps each repetition in an element. In XER, each
occurrence of the CHOICE isan XML element and it is not further wrapped.

For example, given My Type ::= SEQUENCE OF CHO CE { a A, b B }, XER might produce a sequence
of <a> and elements, while OSys-XER will produce a series of <CHOICE> elements, or, if the CHOICE type
were named My Choi ce, aseries of <MyChoice> elements.

The values of the BOOLEAN data type are expressed as the lower case words “true” or “false” with no delimiters.
In XER, the values are <true/> and <false/>.

Enumerated token values are expressed as the identifiers themselves instead of as empty XML elements (i.e.
elements wrapped in ‘< />"). For example, a value of the ASN.1 type “Colors ::= ENUMERATED { red, blue,
green }” equal to “red” would simply be “<color>red</color>" instead of “<color><red/></color>".

The special REAL vaues<NOT-A-NUMBER/>, <PLUS-INFINITY/>and <MINUS-INFINITY /> are represented
asNaN, INF and -INF, respectively.

GeneralizedTime and UTCTime values are transformed into the XSD representation for dateTime (YYYY-
MMDDTHH: MM:SS[.SSSS|[(Z|(+]-)HH:MM)]) when encoded to XML. When an XML document is decoded, the
time format is transformed into the ASN.1 format.

When encoding/decoding a type as the root element of an XML document, OSys-XER will typically give the root
element name alowercase first letter. By contrast, XER uses the NonParameterizedTypeName, which will have an
uppercase first letter, for the root element.

EXTENDED-XER

EXTENDED-XER (specified in X.693) alows you to vary the XML encoding of ASN.1 by using XER encoding
instructions. ASN1C supports EXTENDED-XER in two different ways: by compiling XSD and by compiling ASN.1
with XER encoding instructions. Support for XER encoding instructionsin ASN.1 is limited.

220

Generated XML Functions

This section relates to our support for XER encoding instructions. If some features you need are not supported, you
might consider using direct compilation of XSD.

How to Generate Code for EXTENDED-XER

If your ASN.1 contains XER encoding instructions, ASN1C will automatically generate code for EXTENDED-
XER instead of BASIC-XER. This is true whether you use - xer or - xml on the command line. If, however, any
unsupported encoding instructions are found, ASN1C will ignore all XER encoding instructions, since it would not
be capable of supporting EXTENDED-XER for that specification.

Supported Instructions and Brief Summary

ASN1C supports these instructions: ATTRI BUTE and BASE64. Very brief summaries of the effects of these
instructions follow.

« ATTRI BUTE: Thisinstruction causes a component of a sequence to be encoded as an XML attribute.

» BASE64: Thisinstruction causes octet strings to be encoded in a base64 representation, rather than a hexadecimal
one.

Limitations

The following are limitations related to EXTENDED-XER:

» For BASE64: ASN1C only supports BASE64 on octet strings. Using BASE64 with octet stings having contents
constraints, open types, or restricted character stringsis not supported.

* For encoder's options: ASN1C decoders do not support the following encoder's options allowed by EXTENDED-
XER:

 encoding named bits as empty elements
« encoding named numbers as empty elements

» Enforcement of Encoding Instruction Restrictions: ASN1C does not check that you are using encoding instructions
properly. Misapplication of encoding instructions has undefined results. For example, X.693 does not generally
alow ATTRI BUTE to be applied to a sequence type (there are a few cases where it can be); such an application
produces malformed XML.

In particular, when applying ATTRI BUTE to a restricted character string type, the type should be restricted to
excludethe control characterslisted in X.680 15.15.5, since these control characters are encoded as empty elements.
(Another solution would be to use ATTRI BUTE and BASE64 together, except that ASN1C does not currently
support BASE64 for restricted character strings.) ASN1C will not enforce this rule, but you will get malformed
XML if you try to encode a string having control characters as an attribute.

» XSD Generation: The - xsd switch does not currently generate XSD that can be used to validate EXTENDED-
XER encodings. (Actually, in the worst cases, it is not possible to produce X SD that validates precisely the set of
valid EXTENDED-XER encodings; the closest approximations would either fail to reject some invalid encodings
or fail to accept some valid encodings. Thisis aresult of the encoder's options, which can produce mixed content
models and XML Schema's limited abilities to constrain mixed content models.)

Working with generated EXTENDED-XER code

Working with the code generated for EXTENDED-XER isthe same asfor XER, except that you must be sure to have
set the OSASNL XER context flag. The generated PDU encoders and decoders should automatically set OSASNLXER

221

Generated XML Functions

for you, but if you are not using these methods, you should be sure to set the OSASNLXER flag yourself, using
rt xCt xt Set Fl ag.

For encoding and decoding, you will work with the "XML" (as opposed to the "XER") runtime. Thisis actualy true
for BASIC-XER also, unless you are using the deprecated, old style XER.

Finally, there is a sample reader and writer program in c/ sanpl e_xer/ enpl oyee- exer and cpp/
sanpl e_xer/ enpl oyee- exer, should you need to see an example.

Generated XML Encode Functions

XML C encode and decode functions allow data in a populated variable to be formatted into an XML document.

For each ASN.1 production defined in the ASN.1 source file, a C XML encode function is generated. In the case
of XML schema, a C encode function is generated for each type and global element declaration. This function will
convert apopulated C variable of the given type into an XML encoded message (i.e. an XML document).

If C++ code generationisspecified, acontrol classisgenerated that containsan Encode method that wrapsthisfunction.
This function is invoked through the class interface to encode an ASN.1 message into the variable referenced in the
msgData component of the class.

Generated C Function Format and Calling Parameters

The format of the name of each generated XML encode function is as follows:
[<nanespace>] Xm Enc_[<pr ef i x>] <pr odNane>

where <namespace> is an optional C namespace prefix, <pr odName> is the name of the ASN.1 production for
which the function is being generated and <pr ef i x> is an optional prefix that can be set via a configuration file
setting. The configuration setting used to set the prefix is the <typePrefix> element. This element specifies a prefix
that will be applied to all generated typedef names and function names for the production. <namespace> is set using
the ASN1C -namespace command-line argument. Note that this should not be confused with the notion of an XML
namespace.

The calling sequence for each encode function is as follows:

status = <ns>Xm Enc_<name> (OSCTXT* pctxt, <nanme>[*] val ue,
const OSUTF8CHAR* el emNane,
const OSUTF8CHAR* nsPrefix);

In this definition, <ns> is short for <namespace> and <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to a variable of this type declared somewherein his or her program.

Theval ue argument containsthe valueto be encoded or holds apointer to the value to be encoded. Thisvariableis of
the type generated from the ASN.1 production. The object is passed by valueif it isaprimitive ASN.1 data type such
asBOOLEAN, INTEGER, ENUMERATED, etc.. It is passed using a pointer referenceif it isastructured ASN.1 type
value (in this case, the name will be pvalue instead of value). Check the generated function prototype in the header
file to determine how this argument isto be passed for a given function.

The elemName and nsPrefix arguments are used to pass the XML element name and namespace prefix respectively.
The two arguments are combined to form a qualified name (QName) of the form <nsPrefix:elemName>. If elemName

222

Generated XML Functions

isnull or empty, then no element tag is added to the encoded content. If nsPrefix is null or empty, the element name
isapplied as alocal name only without a prefix.

The function result variable st at returns the status of the encode operation. Status code zero indicates the function
was successful. A negative value indicates encoding failed. Return status values are defined in the rtxErrCodes.h
include file. The error text and a stack trace can be displayed using the rtxErrPrint function.

In addition to the XML encode function generated for types, a different type of encode function is generated for
Protocol Data Units (PDU’s). These are typesin an ASN.1 specification that are not referenced by any other types.
In an XML schema specification, these are global elements that are not reference within any other types or global
elements.

The format of the aPDU encode function is the same name format as above with the suffix _PDU. Thisfunction does
not contain the elemName and nsPrefix arguments - these are built into the function as defined in the schema. For this
reason, calling PDU functionsis usually more convenient than calling the equivalent function for the referenced type.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling C XML encode functions. This procedure is similar to
that for the other encoding methods except that some of the functions used are specific to XML.

Before an XML encode function can be called, the user must first initialize an encoding context block structure. The
context block isinitialized by calling rtXmlInitContext to initialize acontext block structure. The user then must call the
rtXml SetEncBufPtr function to specify a message buffer to receive the encoded message. Specification of adynamic
message buffer is possible by setting the buffer address argument to null and the buffer size argument to zero.

An encode function can then be called to encode the message. If the return status indicates success, then the message
will have been encoded in the given buffer. XML encoding starts from the beginning of the buffer and proceeds from
low memory to high memory until the message is complete. This differs from BER where encoding was done from
back-to-front. Therefore, the buffer start address is where the encoded XML message begins. If a dynamic message
buffer was used, the start address of the encoded message can be obtained by calling the rtXmlEncGetMsgPtr function.
Since the encoded XML message is nothing more than a null-terminated string in a memory buffer, the standard C
library function strlen can be used to obtain the length.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
int min (int argc, char** argv)
{

Per sonnel Record enpl oyee;

OSCTXT ct xt ;

OSCCTET nmsgbuf [4096] ;

i nt stat;

/* Initialize context and set encode buffer pointer */
stat = rtXm I nitContext (&ctxt);
if (0!=stat) {
printf ("context initialization failed\n");
rtxErrPrint (&ctxt);
return stat;

}

rt Xm Set EncBuf Ptr (&ctxt, nsgbuf, sizeof (nmsgbuf));

223

Generated XML Functions

/* Popul ate variable with data to be encoded */
enpl oyee. nane. gi venNanme = “John”;

/* Encode data */
stat = Xm Enc_Personnel Record_PDU (&ctxt, &enpl oyee);

if (stat) == 0) {
/* Note: message can be treated as a null-term nated string
in menory */
printf ("encoded XM. nessage:\n");
puts ((char*)nsgbuf);
printf ("\n");

}

el se
error processing...

}

rt FreeContext (&ctxt); /* release the context pointer */

Generated C++ Encode Method Format and Calling
Parameters

When C++ code generation is specified using the -xml switch, the generated EncodeTo and DecodeFrom methods in
the PDU control class are set up to encode complete XML documents including the start document header as well as
namespace attributes in the main el ement tag.

Generated encode functions are invoked through the class interface by calling the base class Encode method. The
calling sequence for this method is as follows:

stat = <object>. Encode ();
In this definition, <object> is an object of the class generated for the given production. The function result variable
st at returnsthe statusvalue from the XML encode function. This status valuewill be zero if encoding was successful

or anegative error status value if encoding fails. Return status values are defined in the rtxErrCodes.h include file.

The user must call the encode buffer class methods getMsgPtr and getMsglLen to obtain the starting address and length
of the encoded message component.

Procedure for Using the C++ Control Class Encode
Method

The procedure to encode a message using the C++ class interface is as follows:

1. Instantiate an XML encode buffer object (OSXMLEncodeBuffer) to describe the buffer into which the message will
be encoded. Constructors are available that allow a static message buffer to be specified. The default constructor
specifies use of a dynamic encode buffer.

2. Instantiate an ASN1T_<type> object and populate it with data to be encoded.

3. Instantiate an ASN1C_<type> object to associate the message buffer with the data to be encoded.

224

Generated XML Functions

4. Invoke the ASN1C_<type> object Encode or EncodeTo method.

5. Check the return status. The return value is a status value indicating whether encoding was successful or not.
Zero indicates success. If encoding failed, the status value will be a negative number. The encode buffer method
printErrorinfo can be invoked to get atextual explanation and stack trace of where the error occurred.

6. If encoding was successful, get the start-of-message pointer and message length. The start-of-message pointer is
obtained by calling the getMsgPtr method of the encode buffer object. If static encoding was specified (i.e., a
message buffer address and size were specified to the XML Encode Buffer class constructor), the start-of-message
pointer is the buffer start address. The message length is obtained by calling the getMsglLen method of the encode
buffer object.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

OSOCTET msgbuf [4096] ;
i nt nmsgl en, stat;

/1 step 1l: instantiate an instance of the XML encode

/1 buffer class. This exanple specifies a static

/1 message buffer..

OSXMLEncodeBuf f er encodeBuffer (msgbuf, sizeof(nmsgbuf));
/] step 2: popul ate nsgbData with data to be encoded
ASNLT_Per sonnel Record nsgDat a;

nmsgDat a. nane. gi venNane = "SM TH";

/1 step 3: instantiate an instance of the ASNLC <ProdNane>
/1 class to associate the encode buffer and nessage data..
ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);

/1 steps 4 and 5: encode and check return status

if ((stat = enpl oyee. Encode ()) == 0)

{
printf ("encoded XM. nessage:\n");
printf ((const char*)nsgbuf);
printf (“\n");
/] step 6: get start-of-nessage pointer and nessage | ength.
/1 start-of-message pointer is start of nsgbuf
/1 call getMsgLen to get message |ength.
msgptr = encodeBuffer.getMgPtr (); // will return &rsgbuf
| en = encodeBuffer.get MsgLen ();
}
el se
{

225

Generated XML Functions

printf ("Encoding failed\n");
encodeBuffer.printErrorinfo ();
exit (0);

}

/1 megptr and | en now describe fully encoded nessage

Generated XML Decode Functions

For each ASN.1 production defined in the ASN.1 source file, a C XML decode function is generated. This function
will parse the data contents from an XML message of the corresponding ASN.1 or XML schema type and populate
avariable of the C type with the data.

If C++ code generation is specified, a control class is generated that contains a DecodeFrom method that wraps this
function. Thisfunction isinvoked through the class interface to encode an ASN.1 message into the variable referenced
in the msgData component of the class.

Generated C Function Format and Calling Parameters

The format of the name of each generated XML decode function is as follows:
[<nanmespace>] Xm Dec_|[<pr ef i x>] <pr odNane>

where <nanespace> is an optional C namespace prefix, <pr odNane> is the name of the ASN.1 production for
which the function is being generated and <pr ef i x> is an optional prefix that can be set via a configuration file
setting. The configuration setting used to set the prefix is the <typePrefix> element. This element specifies a prefix
that will be applied to all generated typedef names and function names for the production. <namespace> is set using
the ASN1C -namespace command-line argument. Note that this should not be confused with the notion of an XML
namespace.

The calling sequence for each decode function is as follows:
status = <ns>Xm Dec_<name> (OSCTXT* pctxt, <name>* pval ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewhere in his or her program.

Thepval ue argument isapointer to avariable to hold the decoded result. Thisvariableis of the type generated from
the ASN.1 production. The decode function will automatically allocate dynamic memory for variable length fields
within the structure. This memory is tracked within the context structure and is released when the context structure
isfreed.

The function returns the status of the decode operation. Status code zero indicates the function was successful. A
negative valueindicates decoding failed. Return status values are defined in the rtxErrCodes.h includefile. The reason
text and a stack trace can be displayed using the rtxErrPrint function.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C XML decode function. This method must be used
if C code generation was done. This method can also be used as an alternative to using the control class interface if
C++ code generation was done.

226

Generated XML Functions

These are the steps involved calling a compiler-generated decode function:

1. Prepare a context variable for decoding

2. Open an input stream for the XML document to be decoded

3. Decode theinitial tag value to figure out what type of message was received (optional).

4. Call the appropriate compiler-generated decode function to decode the message

5. Freethe context after use of the decoded data is complete to free allocated memory structures

Before a C XML decode function can be called, the user must first initialize a context block structure. The context
block structure isinitialized by calling the rtXmlInitContext function.

An input stream is then opened using one of the rtxSream functions. If the data is to be read from a file, the
rtxStreamFileCreateReader function can use used. Similar functions exist for opening a memory or socket-based
stream.

If the user knows the type of XML message that is to be processed, he can directly call the decode function at this
point. If not, the user may call the rtXmlpMatchSartTag method to match theinitial tag in the message with aknown
start tag. The user can continue to do this until amatch is found with one of the expected message types. Note that the
rtXmlpMarkLastEvent function must be called if the tag is to be reparsed to attempt another match operation.

A decode function can then be called to decode the message. If the return statusindicates success (0), then the message
will have been decoded into the given ASN.1 type variable. The decode function may automatically allocate dynamic
memory to hold variable length variables during the course of decoding. This memory will be tracked in the context
structure, so the programmer does not need to worry about freeing it. It will be released when the context is freed.
Thefinal step of the procedure isto free the context block. The function to free the context is rtFreeContext.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by ASNLIC */
main ()
{

Per sonnel Record dat a;

OSCTXT ct xt;

OSBOOL trace = TRUE, verbose = FALSE;

const char* filename = "nmessage. xm";

int i, stat;

logic to read nessage into nsgbuf
/* This exanple uses a static context block */
/* step 1: initialize the context block */
stat = rtXm I nitContext (&ctxt);
if (stat '=0) {

rtxErrPrint (&ctxt);
return stat;

227

Generated XML Functions

/* step 2: open an input stream */

stat = rtxStreanFil eCreat eReader (&ctxt, filenane);
if (stat '=0) {

rtxErrPrint (&ctxt);

return -1,

/* step 3: attenpt to match the start tag to a known val ue */
if (0 == rtXm pMatchStart Tag (&ctxt, OSUTF8("Enmpl oyee”)) {

/* Note that it is necessary to mark the |last event active in
the pull-parser to that it can be parsed again in the PDU
decode function. */

rt Xm pMar kLast Event Active (&ctxt);

/* step 4: call the decode function */

stat = Xm Dec_Personnel Record_PDU (&ctxt, &data);

if (stat == 0)

{
process received data..

}

el se {
/* error processing... */
rtxErrPrint (&ctxt);

}

}

/* can check for other possible tag matches here.. */
/* step 5: free the context */

rt FreeCont ext (&ctxt);
}

Generated C++ Decode Method Format and Calling
Parameters

Generated decode functions are invoked through the class interface by calling the base class Decode or DecodeFrom
methods. The calling sequence for this method is as follows:

status = <obj ect>. Decode ();
In this definition, <object> is an object of the class generated for the given production.

An OSXMLDecodeBuffer object must be passed to the <object> constructor prior to decoding. This is where the
message stream containing the XML document to be decoded is specified. Several constructors are available allowing
the specification of XML input from afile, memory buffer, or another stream.

The function result variable st at us returns the status of the decode operation. The return status will be zero if
decoding is successful or a negative value if an error occurs. Return status values are documented in the C/C++
Common Functions Reference Manual and in the rtxErrCodes.h includefile.

228

Generated XML Functions

Procedure for Using the C++ Control Class Decode
Method

The following are the steps are involved in decoding an XML message using the generated C++ class:

1.

Instantiate an XML decode buffer object (OSXMLDecodeBuffer) to describe the message to be decoded. There are
several choices of constructorsthat can be used including one that takes the name of afile which containsthe XML
message, one the allows a memory buffer to be specified, and one that allows an existing stream object to be used.

. Instantiate an ASN1T_<ProdName> object to hold the decoded message data.

. Instantiate an ASN1C_<ProdName> object to decode the message. This class associates the message buffer object

with the object that isto receive the decoded data. The results of the decode operation will be placed in the variable
declared in step 2.

. Invoke the ASN1C_<ProdName> object Decode or DecodeFrom method.

. Check the return status. The return value is a status value indicating whether decoding was successful or not.

Zero indicates success. If decoding failed, the status value will be a negative number. The decode buffer method
printErrorinfo can be invoked to get a textual explanation and stack trace of where the error occurred.

. Release dynamic memory that was allocated by the decoder. All memory associated with the decode context is

released when both the OSXMLDecodeBuffer and ASN1C_<ProdName> objects go out of scope.

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /1 include file generated by ASNLC
main ()
{

const char* filename = "nmessage. xm";

OSBOOL verbose = FALSE, trace = TRUE;

int i, stat;

logic to read nessage into nsgbuf
/1 step 1l: instantiate an XM. decode buffer object
OSXM_DecodeBuf f er decodeBuffer (fil enane);
/] step 2: instantiate an ASNLT_<ProdNane> obj ect
ASNLT_Per sonnel Record nsgDat a;
/1 step 3: instantiate an ASNLC <ProdNane> obj ect
ASN1C Per sonnel Record enpl oyee (decodeBuffer, nsgData);
/1 step 4: decode the record
stat = enpl oyee. Decode ();

/1l step 5: check the return status

229

Generated XML Functions

if (stat == 0)
{
process received data..
}
el se {
/1 error processing..
decodeBuffer.PrintErrorinfo ();
}
/] step 6: free dynamic nenory (will be done automatically

/1 when both the decodeBuffer and enpl oyee objects go out
/1 of scope)..

230

Chapter 14. Generated JER (JSON
Encoding Rules) Functions

JavaScript Object Notation (JSON) is aminimal format for exchanging data. This marries a well-known simple text
format (JSON) with arobust and mature schemalanguage (ASN.1) and provides a possible interchange between JSON
and ASN.1 binary formats like BER or PER.

Asof version 7.3, ASN1C supports ITU-T X.697 JER. BACKWARD COMPATIBILITY: Prior versions (starting
with asnlc 6.6) used proprietary encoding rules for JSON, as thiswork predated the development of ITU-T X.697. If
you need to work with our proprietary encoding rules, you must use the command-line arguments -compat 729 (or an
older version number). We urge you to upgrade to using X.697 JER.

Our proprietary rules, and differences with X.697, are available on our website [http://www.obj-sys.com/docs
JSONEnNcodingRules.pdf].

To generate encoding and decoding functions, use the - j son switch on the command-line or select the appropriate
option in the GUI. The following sections describe the generated encoding and decoding functions. Descriptions of the
JSON run time functions may be found in our C JSON Runtime Library Reference Manual. C++ classes are described
in the C++ JSON Runtime Libarary Reference Manual.

Generated JSON Encode Functions

Generated C Function Format and Calling Parameters

The format of the name of each generated encode function is as follows:
asnlJsonEnc_[<prefi x>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each encode function follows:

stat = asnlJsonEnc_<nane> (OSCTXT* pct xt,
<name>* pval ue);

In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. This is a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application.
The user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The
variable should beinitiadlized using ther t | ni t Cont ext run-timelibrary function (see the C JSON Runtime Library
Reference Manual for a complete description of this function).

The pval ue argument holds a pointer to the data to be encoded and is of the type generated from the ASN.1
production.

The function result variable st at returns an error status code if encoding fails. Return status values are defined in
theasnlt ype. h includefile.

231

http://www.obj-sys.com/docs/JSONEncodingRules.pdf
http://www.obj-sys.com/docs/JSONEncodingRules.pdf
http://www.obj-sys.com/docs/JSONEncodingRules.pdf

Generated JER (JSON Encoding Rules) Functions

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C JISON encode function.

Before any encode function can be called; the user must first initialize an encoding context. Thisis a variable of type
OSCTXT. Thisvariable holds all of the working data used during the encoding of a message. The context variable is
declared as a normal automatic variable within the top-level calling function. It must beinitialized before use. This
can be accomplished by using ther t | ni t Cont ext function asfollows:

OSCTXT ct xt;

if (rtlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf ("context initialization failed (check license)\n");
return -1,

}

After initializing the context and populating avariable of the structure to be encoded, an encode function can be called
to encode the message.

A complete example may be found in the enpl oyee sample program, here edited for brevity:

st at rtinitContext (&ctxt);
stat = rtxStreanFileCreateWiter (&ctxt, filenane);
if (stat '=0) {

printf ("Unable to create file stream\n");

rtxErrPrint(&ctxt);
return stat;

}

rtxSet Di ag (&ctxt, verbose);
asnllnit_Personnel Record (&enpl oyee);
/* popul ate enpl oyee structure */

stat = asnlJsonEnc_Personnel Record (&ctxt, &enployee);

Encoding a Series of Messages

Encoding a series of messagesin JSON is similar to encoding a series of messages in any other set of encoding rules:
iterate through the input data using aloop, using r t xMenReset to improve performance by reusing memory:

/* initialize context, et c. */

for (; ;) {

/* initialize / popul ate message structure to be encoded */

/* call NMDEREnc_<messageType> (...); */

232

Generated JER (JSON Encoding Rules) Functions

/* call rtxMenReset when finished encoding: */
rtxMenReset (pctxt);

Generated C++ Encoding Methods

Generated C++ encoding methods use the control classes and the OSJSONEncodeBuffer and
OSJSONCut put St r eamclasses to accomplish encodings, as in the following code snippet:

OSJSONEncodeBuf fer encodeBuffer (0, 0);
encodeBuffer.setDi ag (verbose);

ASNLT_Per sonnel Record nsgDat a;
ASN1C Per sonnel Record enpl oyee (encodeBuffer, nsgData);

/* Popul ate structure of generated type here */
/1 Encode

if ((stat = enpl oyee. Encode ()) == 0) {
if (trace) {
printf ("Encodi ng was successful\n");
printf ("%\n", (const char *)encodeBuffer.getMgPtr());

The generated control class (ASN1C_Per sonnel Recor d) contains methods for encoding (Encode). It unites the
message data(heldin ASN1T_Per sonnel Recor d) and the encoding buffer (0SJ SONEncodeBuf f er) to encode
the JSON message.

Encoding a Series of Messages using the C++ Control
Class

Encoding a series of messagesisvirtualy identical in the C++ case asit iswith C:

for (; ;) {
/1 logic for populating the data type

stat = enpl oyee. Encode();
if (stat == 0) {
/1 encodi ng was successful

}
el se {

/1 error handling
}

encodeBuffer.init()

233

Generated JER (JSON Encoding Rules) Functions

The magjor difference in this case is that the i ni t method is called at the end of the loop rather than the C runtime
functionrt xMenReset . Thei ni t method serves the same purpose.

Generated JSON Decode Functions

Generated C Function Format and Calling Parameters

The format of the name of each decode function generated is as follows:
asnlJsonDec_|[<pr efi x>] <pr odNane>

where <pr odNamne> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each decode function is as follows:
status = asnlJsonDec_<nane> (OSCTXT* pctxt, <name> *pval ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The variable
must beinitialized using ther t | ni t Cont ext run-time function before use.

Thepval ue argument is a pointer to avariable of the generated type that will receive the decoded data.

The function result variable st at us returns the status of the decode operation. The return status will be greater
than or equal to zero if decoding is successful or negative if an error occurs. Return status values are defined in the
"asnltype.h" includefile.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C JSON decode function. This method must be used
if C code generation was done. This method can also be used as an alternative to using the control class interface if
C++ code generation was done.

Before any decode function can be called; the user must first initialize a context variable. Thisis a variable of type
OSCTXT. This variable holds al of the working data used during the decoding of a message. The context variable
is declared as a normal automatic variable within the top-level calling function. It must be initialized before use.
This can be accomplished as follows:

OSCTXT ct xt;
int stat;

stat = rtlnitContext (&ctxt);
if (stat '=0) {
rtxeErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return stat;

234

Generated JER (JSON Encoding Rules) Functions

The next step is to create a reader that will read from the given source. In our example, we read from afile, but it is
also possible to read data from a socket or other source as well. Alternatively, a decode buffer may also be used.

A decode function can then be called to decode the message. If the return status indicates success, the C variable
that was passed as an argument will contain the decoded message contents. Note that the decoder may have allocated
dynamic memory and stored pointers to objectsin the C structure. After processing on the C structureis complete, the
run-time library function r t xMenfr ee should be called to free the allocated memory.

A program fragment that could be used to decode a simple PDU type follows:

/* Init context structure */

if (rtlnitContext (&ctxt) !'= 0) {
printf ("Error initializing context\n");
return -1;

}

stat = rtxStreanFil eCreat eReader (&ctxt, filenane);

if (stat '=0) {
printf ("Unable to open % for reading.\n", filenane);
rtxXErrPrint(&ctxt);
rt FreeCont ext (&ct xt);
return stat;

}

rtxSet Di ag (&ctxt, verbose);

/* Decode */
asnllnit_Personnel Record (&enpl oyee);

stat = asnlJsonDec_Personnel Record (&ctxt, &enployee);

This example follows the enpl oyee samplein the distribution kit.

Decoding a Series of Messages Using the C Decode
Functions

Decoding a series of messagesis very similar to the method used for other encoding rules.

Short pseudo-code is shown below. As in the encoding example, rt xMenReset is used at the end of the loop to
avoid allocating new memory for dynamic data structures. This helps to improve performance.

/* initialize context, et c. */
for (5 ;) {
/* initialize data structure */
/* call asnlJsonDec_<nane> function */

/* perform operations on decoded structure */

/* reset menory: */
stat = rtxMenReset (&ctxt);

235

Generated JER (JSON Encoding Rules) Functions

}

More details may be found in the sample programsincluded in the ASN1C software development kit.

Generated C++ Encoding Methods

Generated C++ decoding methods use the control classes and the OSJSONDecodeBuffer and
OSJSONI nput St r eamclasses to accomplish decoding, as in the following code snippet:

OSJSONDecodeBuf fer encodeBuffer (fil enane);
decodeBuffer.setDi ag (verbose);

ASNLT_ Per sonnel Record nsgDat a;
ASNLC Personnel Record enpl oyee (decodeBuffer, nsgData);

/* Popul ate structure of generated type here */
/| Decode

if ((stat = enpl oyee. Decode ()) == 0) {
if (trace) {
printf ("Encodi ng was successful\n");
printf ("%\n", (const char *)decodeBuffer.getMgPtr());

The generated control class (ASNLC_Per sonnel Recor d) contains methods for encoding (Encode). It unitesthe
message data(heldin ASN1T_Per sonnel Recor d) and the encoding buffer (0SJ SONEnc odeBuf f er) to encode
the JSON message.

Decoding a Series of Messages using the C++ Control
Class

Decoding a series of messagesis virtually identical in the C++ case asit iswith C:

for (5 ;) {

stat = enpl oyee. Decode();
if (stat == 0) {
/1 decodi ng was successful

}
el se {

/1 error handling
}

decodeBuffer.init()

The magjor difference in this case is that the i ni t method is called at the end of the loop rather than the C runtime
functionrt xMenReset . Thei ni t method serves the same purpose.

236

Chapter 15. Generated 3GPP Layer 3
(3GL3) Functions

Generated 3GPP Layer 3 Encode Functions

3GPP Layer 3 encode/decode functions are generated when the -3gl3 switch is specified on the command line. For
each ASN.1 production defined inthe ASN.1 sourcefile, aC 3GPP Layer 3 encode function isgenerated. Thisfunction
will convert a populated C variable of the given typeinto a 3GPP layer 3 encoded message.

C++ is not directly supported for 3GPP Layer 3; however, it is possible to call the generated C functions from a C
++ program.

Generated C Function Format and Calling Parameters

The format of the name of each generated 3GPP layer 3 encode function is as follows:
x3GL3Enc_[<pr ef i x>] <pr odNane>

where <pr odNane> is the name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

It is also possible to change the 'x3GL3' prefix at the beginning of the function name by using the <pr ot ocol >
configuration setting. For example, an APl was generated for the Non-Access Stratum (NAS) protocol within the
ASNI1C package. A protocol setting of NAS was used for this, so al encode function names begin with 'NASEnc '
instead of 'x3GL3Enc_'.

The calling sequence for each encode function is as follows:
status = x3GA.3Enc_<nanme> (OSCTXT* pctxt, <name>[*] val ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

Theval ue argument contains the value to be encoded or holds a pointer to the value to be encoded. Thisvariableis
of the type generated from the ASN.1 production. The object is passed by value if it is a primitive ASN.1 data type
suchasBOOLEAN, INTEGER, ENUMERATED, etc.. It ispassed using apointer referenceif it isastructured ASN.1
type value. Check the generated function prototype in the header file to determine how the value argument is to be
passed for a given function.

The function result variable st at returns the status of the encode operation. Status code 0 (0) indicates the function
was successful. Note that this return value differs from that of BER encode functions in that the encoded length of
the message component is not returned — only an OK status indicating encoding was successful. A negative value
indicates encoding failed. Return status values are defined in the "asnltype.h" include file. The error text and a stack
trace can be displayed using the rtxErrPrint function.

Itis possibleto add extraargumentsto 3GPP Layer 3 encode functions through the use of the <addarg> configuration
setting. Thisis normally done to pass data from container type member variables into an encode function.

237

Generated 3GPP Layer 3 (3GL3) Functions

Populating Generated Structure Variables for Encoding

See the section Populating Generated Structure Variables for Encoding for a discussion on how to populate variables
for encoding.

The only difference in populating encode member variables for the general case and for 3GPP layer 3 hasto do with
an element configured to be alength variable viathe <i s3G_engt h/ > configuration setting. A value populated in
thisfield will beignored and replaced with the actual length of the encoded data.

Procedure for Calling C Encode Functions

This section describes the step-by-step procedure for calling a C 3GL 3 encode function.

Before a 3GL 3 encode function can be called, the user must first initialize an encoding context block structure. The
context block isinitialized by calling the rtInitContext function.

Only memory-buffer based encoding is supported for 3GPP layer 3 because the message sizes are generally small
(normally less than 256 bytes).

To do memory-based encoding, the rtxl nitContextBuffer function would be called. This can be used to specify use of a
static or dynamic memory buffer. Specification of adynamic buffer is possible by setting the buffer address argument
to null and the buffer size argument to zero.

An encode function can then be called to encode the message. If the return status indicates success (0), then the
message will have been encoded in the given buffer or written to the given stream. 3GL 3 encoding starts from the
beginning of the buffer and proceeds from low memory to high memory until the message is complete. This differs
from definite-length BER where encoding was done from back-to-front. Therefore, the buffer start addressiswherethe
encoded 3GL 3 message begins. The length of the encoded message can be obtained by calling the rtxCtxtGetMsgLen
run-time function. If dynamic encoding was specified (i.e., a buffer start address and length were not given), the
rtxCixtGetMsgPtr run-time function can be used to obtain the start address of the message. Thisroutinewill also return
the length of the encoded message.

A program fragment that could be used to encode a 3G NAS Identity Request message is as follows:

#i ncl ude "rt3gppsrc/ TS24008Msgs. h" /* include file generated by ASNLC */

main ()
{
TS24008Msg_PDU pdu;
TS24008Msg_I dentit yRequest i dReq;

OSCTXT ct xt;

OSOCTET nmsgbuf [256], *nmsgptr;

i nt i, len, stat;

const char* filenane = "nessage. dat";

/* Initialize context structure */

stat = rtlnitContext (&ctxt);

if (0 !=stat) {
printf ("rtlnitContext failed; status = %\n", ret);
rtxerrPrint (&ctxt);
return ret;

238

Generated 3GPP Layer 3 (3GL3) Functions

/* Popul ate C structure */

pdu. | 3Hdr Opts.t = T_TS24007L3_L3Hdr Opti ons_ski pl nd;
pdu. | 3Hdr Opt s. u. ski pl nd = 0;
asnlSet TC _TS24008Msg_PDU obj I dentityRequest (&ctxt, &pdu, & dReq);

OSCRTLMEMSET (& dReq, 0, sizeof (idReq));
i dReq. val ue. typeOl dent = TS24008I E_IdentityTypeVal ue_typeOfldent _inei;

/* Encode */
rtxCtxt Set Buf Ptr (&ctxt, msgbuf, sizeof (msgbuf));

stat = NASEnc_TS24008Msg_PDU (&ct xt, &pdu);

if (0 !=stat) {
printf ("encode PDU failed; status = %l\n", ret);
rtxErrPrint (&ctxt);
return ret;

}

megptr = rtxCt xt Get MsgPtr (&ctxt);
len = rtxCtxt Get MsgLen (&ctxt);

}

In general, static buffers should be used for encoding messages where possible as they offer a substantia performance
benefit over dynamic buffer alocation. In the case of L3 messages, most are small because the length field is sized to
hold asingle octet. It istherefore possible to size the buffer at 256 bytes which is the maximum size.

Generated 3GPP Layer 3 Decode Functions

3GPP Layer 3 decode functions are generated when the -3gl3 switch is specified on the command line. For each ASN.1
production defined in the ASN.1 source file, a C 3GL 3 decode function is generated. This function will parse the data
contents from a 3GPP layer 3 binary message and populate a variable of the corresponding type with the data.

Generated C Function Format and Calling Parameters

The format of the name of each generated decode function is as follows:
x3G.3Dec_|[<pr efi x>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

It is also possible to change the 'x3GL3' prefix at the beginning of the function name by using the <pr ot ocol >
configuration setting. For example, an APl was generated for the Non-Access Stratum (NAS) protocol within the
ASNI1C package. A protocol setting of NAS was used for this, so al decode function names begin with 'NASDec '
instead of 'x3GL3Dec .

The calling sequence for each decode function is as follows:

239

Generated 3GPP Layer 3 (3GL3) Functions

status = x3@.3Dec_<nanme> (OSCTXT* pctxt, <name>* pval ue);
In this definition, <name> denotes the prefixed production name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. Thisis a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

Thepval ue argument isapointer to avariableto hold the decoded result. Thisvariableis of the type generated from
the ASN.1 production. The decode function will automatically allocate dynamic memory for variable length fields
within the structure. This memory is tracked within the context structure and is released when the context structure
isfreed.

The function result variable st at returns the status of the decode operation. Status code O (0) indicates the function
was successful. A negative value indicates decoding failed. Return status values are defined in the "asn1ErrCodes.h"
and "rtxErrCodes.h" header files. The reason text and a stack trace can be displayed using the rtxErrPrint function
described later in this document.

Itis possibleto add extraarguments to 3GPP Layer 3 decode functions through the use of the <addarg> configuration
setting. Thisis normally doneto pass data from container type member variables into a decode function.

Procedure for Calling C Decode Functions

This section describes the step-by-step procedure for calling a C 3GL 3 decode function.

A Protocol DataUnit (PDU) functionisnormally defined that includesall of the message that make up agiven protocol.
These are grouped together using an Information Object Set that sets up arelation between the protocol discriminator/
message type field combination and the associated message datatype. This PDU function isthen called to decode both
the header and payload datain one call.

Thefollowing are the basic stepsin calling the PDU decode function:

1. Prepare a context variable for decoding

2. Initialize the data structure to receive the decoded data

3. Call the PDU decode function to decode the message

4. Freethe context after use of the decoded data is complete to free allocated memory structures

Before a3GL 3 decode function can be called, the user must first initialize a context block structure. The context block
isinitialized by calling the rtInitContext function.

Only memory-buffer based encoding is supported for 3GPP layer 3 because the message sizes are generally small
(normally less than 256 bytes).

To do memory-based decoding, the rtxlnitContextBuffer function would be called. The message to be decoded must
reside in memory. The arguments to this function would then specify the message buffer in which the data to be
decoded exists.

The PDU variable that is to receive the decoded data must then be initialized. This can be done by either initializing
the variable to zero using memset, or by calling the ASN1C generated initialization function.

The PDU decode function can then be called to decode the message. If the return status indicates success (0), then the
message will have been decoded into the PDU type variable. The decode function may automatically allocate dynamic
memory to hold variable length variables during the course of decoding. This memory will be tracked in the context

240

Generated 3GPP Layer 3 (3GL3) Functions

structure, so the programmer does not need to worry about freeing it. It will be released when the either the context is
freed or explicitly when the rtxMemFree or rtxMemReset functionis called.

Thefinal step of the procedure isto free the context block. This must be done regardless of whether the block is static
(declared on the stack and initialized using rtlnitContext), or dynamic (created using rtNewContext). The function to
free the context is rtFreeContext.

A program fragment that could be used to decode a 3G NAS PDU is as follows:

#i ncl ude "rt3gppsrc/ TS24008Msgs. h" /* include file generated by ASNLIC */

main ()
{
TS24008Msg_PDU dat a;
OSCTXT ctxt;
OSOCTET* nmsgbuf ;
const char* filename = "nessage.dat";
i nt st at;
OsSI ZE | en;

/* step 1: initialize context */
stat = rtlnitContext (&ctxt);

if (stat '=0) {
printf (“rtlnitContext failed (check Iicense)\n");
rtErrPrint (&ctxt);
return stat;

}

/* step 2: read input file into a nenory buffer */

stat = rtxFil eReadBinary (&ctxt, filenanme, &pMsgBuf, & en);
if (0 == stat) {
stat = rtxlnitContextBuffer (&ctxt, pMsgBuf, |en);

}

if (0!=stat) {
rtxErrPrint (&ctxt);
rt FreeCont ext (&ctxt);
return stat;

}

/* step 3: set protocol version nunber */

rt xCt xt Set Pr ot ocol Version (&ctxt, 8);

/* step 4: call the decode function */

stat = NASDec_TS24008Msg_PDU (&ctxt, &data);

if (stat == 0)
{

}

process received data..

241

Generated 3GPP Layer 3 (3GL3) Functions

el se {
/* error processing... */
rtxErrPrint (&ctxt);

}

/* step 4: free the context */

rt FreeCont ext (&ctxt);

242

Chapter 16. CSN.1 Described

CSN.1 (Concrete Syntax Notation 1) isanotation used to describe the concrete representation of data, i.e. the encoding.
It is noteworthy for its use as the notation for describing message and information element encodingsin various 3GPP
technical specifications. In this chapter, we describe the CSN.1 notation. In the following chapter, we describe how
we map CSN.1to ASN.1.

3GPP 24.007 Annex B describes CSN.1. In practice, however, this description is incomplete; it does not cover al of
the syntax actually used by the 3GPP technical specifications. Other documents (e.g. 3GPP 44.018) reference "CSN.1
Specification, Version 2.0" and provide a dead URL. Searching the internet, we did find some additional, unofficial
information on CSN.1. We aso found an order form to order the specification from the author, located in France. In
short, an official description of CSN.1 is not readily available. Therefore, we've made do with what information we
could find and what could be inferred from usage; our interpretation of CSN.1 may therefore not be entirely according
to the official specification.

The CSN.1 grammar presented in this document is not from any official source. Also, itisasimplified version of the
grammar as used by our parser (e.g., the rules presented here do not reflect operator precedence).

A note on the grammar syntax: it is basically bison grammar syntax, with a shorthand for repetition: x* means zero
or more x; X+ means one or more x; x? means 0 or 1 x.

Definitions

multi-word name A name which contains spaces.
CSN.1 Lexical Items
Literals

Thereare5literals: '0', '1', 'L, 'H', and 'null'. Not surprisingly, '0' representsa 0 bit and '1' represents a'l1' bit. The 'null’
terminal, not surprisingly, matches the empty string. Then we have 'L’ and 'H.

The bit value of an 'L' or 'H' depends on the position within the encoding. Take the bit pattern 0x2B (‘0010 1011')
and repeat it infinitely many times. Line up your entire encoding with this pattern. The value of ‘L' at a given position
in the encoding is the value of the bit at the corresponding position in the pattern. The value of 'H' is the opposite of
the value of 'L'. So, for example, given an encoding of '0010 1011' (which matches the pattern exactly), you have the
encoding for 'LLLL LLLL'". Given an encoding of '1101 0100' (the negation of the pattern), you have the encoding
for 'HHHH HHHH'. '0111 1110' is the encoding for 'LHLH LHLH'. All of these examples assume that the encoding
given is at the beginning of the entire encoding. In order to determine the value for an L or H bit, you have to know
your position relative to the start of the entire encoding.

Names

CSN.1 complicates names by allowing many symbols to appear in names (e.g. *), including even spaces(!). Without
some additional rules, this can create ambiguities. We didn't have accessto aformal specification so we invented some
rules. We define three kinds of names.

IDENTIFIER Anidentifier is used as a function name. It must begin with an aphabetic character, then may
be followed by any number of alphanumerics or underscores.

BASIC_ NAME A basic nameisjust that: basic. It consists of al phanumeric, underscore, and space characters. It
may not begin or end with a space. Additionally, the characters'0', '1', ‘L', and 'H' are excluded
because of their use as literals and potential ambiguities.

243

CSN.1 Described

EXTENDED_NAMEAnN extended name allowsfor an extended set of characterscomparedto BASIC_NAME. Infact,
it allows any character except for: '<',">",'(", "), "', and '=". It must begin and end with anon space
character. There are two places where an EXTENDED_NAME may appear:

 asthe argument for afunction in an exponent
* inside angle brackets, after the '<' and before any "', '(", or ">' character.

Every BASIC_NAME is aso an EXTENDED_NAME. When the grammar calls for an
EXTENDED_NAME, any namethat isalso aBASIC_NAME isvalid.

Module

CSN.1 does not have the notion of amodule. We have introduced this rule as away to assist in the mapping of CSN.1
to ASN.1

Modul e :
"ASNLIMODULE' ':' asnl typeReference ';' DefinitionList

DefinitionLi st
DefinitionList Definition
| Definition
Definition : '<' EXTENDED NAME '>' '::=" CSNIString ';'

The Mbdul e production makes up the entire content of a CSN.1 specification. It allows the CSN.1 author to specify
the ASN.1 moduleinto whichthe CSN.1 shall bemapped. Theasn1_t ypeRef er ence specifiesthe ASN.1 module
name.

asnl_typeRef er ence must beavalid ASN.1 typereference.

Def i ni ti on definesa CSN.1 string and givesit aname, allowing it to be used elsewhere by reference.

Labels and References

Angle brackets are used both for labeling substrings as well as for referencing defined strings by name.

Label Prefix : EXTENDED NAME ':'

Angl eBracket String :

'<' Label Prefix BASI C_NAME Exponent Expr? Subcl ass ' >'
| '<' Label Prefix CSNLString '>'
| '<' EXTENDED NAME Par enExponent Opt Subcl assOpt ' >

1. Thefirst two alternatives specify alabel for the string that follows. A label may be used to communicate to readers
the semantics of the labeled string. A label name may also be used as a reference to the labeled string by using its
name in exactly one place: the argument for a function inside an exponent.

2. The first and third aternatives constitute a reference to a defined string. In the case of the first aternative, the
BASI C_NAME isthe referenced name whilein the third alternative the EXTENDED NAME is the referenced name.

244

CSN.1 Described

The referenced name will normally correspond to the EXTENDED NAME of aDef i ni ti on. However, aswill be
discussed elsewhere, when there is not a match, we assume that the name will be resolved at the ASN.1 level.

. Thefirst and third alternatives both allow (or require, for the first) asubclass expression. A subclass expression can

only be applied to references, and thereforeit is not allowed in the second aternative.

. The second alternative can also represent areference. Thiswill bethe caseif the CSN1St r i ng isaBASI C_NAME.

In that case, however, the BASI C_NAME must not be a multi-word name. If the CSN1Stri ng is not a
BASI C_NAME, then the second alternative is simply labeling the given string.

. The third alternative lets you reference any defined string (not just ones whose name isa BASI C_NAME, asin the

first and second alternatives). Y ou may optionally provide an exponent and/or a subclass expression. A labdl is
not allowed in this alternative because if it were, there would be a conflict between it and the second alternative,
since someinputs (e.g. a- b) could be parsed as either an EXTENDED NAME or aCSN1St ri ng (an Excl usi on
in the case of a- b).

. When using the third alternative, exponents must use the parenthetical notation. An attempt to use the * notation

will havethe* treated as part of the name: use <pi g(4) > not <pi g* 4>. Thelatter would be treated as areference
to the name "pig*4".

. According to an unofficial source, <nyl abel : a b> issupposed to be interpreted as <nyl abel : <a

b>>. However, we report an error in this case and require you to use the extra brackets. The reason for thisis that
<mayl abel : a b> ismatched by the second alternative, so that "ab" istaken to be a CSN1St ri ng. But,
in order to avoid ambiguities involved in using multi-word names outside of angle brackets, we report an error
whenever amulti-word name isused for aCSNLSt r i ng.

8. Inorder apply alabel to an EXTENDED NAME, simply useextraanglebrackets: <nyl abel : <crazy- nane>>

BasicString

Basi cString :
IOI |I1I |ILI |IH |Inulll
Angl eBracket String
Br aceExpr

Optional String /* not supported */
Truncat edString

Br aceExpr

"{* CSNLString '}

Truncat edStri ng:

"{* CSNiString '}" ‘'/[I'

Optional String :

"[' CSNLString ']°

. Basi ¢St ri ng covers those strings which are self-contained: the literal bits, 'null’, and expressions enclosed in

some kind of brackets/parentheses/braces.

. ThebracesinaBr aceExpr have no real meaning except to set off part of astring and control operator precedence.

. Truncat edSt r i ng indicatesthat the string inside the curly braces may be truncated in the encoding. If the string

inside the curly bracesisaConcat enat i on, any member of that Concat enat i on, along with all subsequent

245

CSN.1 Described

members, may be absent. Notethat if any member isitself enclosed in curly braces, that member is present or absent
asawhole. Thatis,{ <a> { <c> <d> } }// canmatch ab but not abc.

4, Optional String is the syntax for an optional string, but we do not currently support this. We have not
encountered any use of this notation in 3GPP technical specifications.

CSN1String

CSNLString :
SendExpr essi on

| Al ternation

| I ntersection

| Excl usi on

| Concat enat i on

| BASI C_NAME Exponent Expr*

| Basi cString Exponent Expr*

A CSN.1 string defines aset of acceptable bit strings. Strings are combined using various operations. These operations

aregiven in order of precedence, highest to lowest:

Table 16.1. CSN.1 Operations from highest to lowest precedence.

exponentiation (an exponent is applied to indicate repetition)

concatenation

exclusion (disallowing certain strings that would otherwise be accepted)

alternation ‘ intersection | error alternatives

send (specifying a particular string the encoder should send, allowing decoders to accept other strings too)

The BASI C_NAME in the sixth alternative shall not be a multi-word name.

Alternation
Al ternation :

CSN1String '|' CSNLIString
| CSN1String ‘'or' CSN1String
| CSNi1String '!' CSNLIString

The'|' and 'or' operators are equivalent.

AnAl t er nat i on matchesany string that is matched by either of the operands. The'l" operator issimilar to the other
operators except that a match on the right hand operand is counted as an error.

Concatenation

Concat enati on:
CSN1String BasicString Exponent Expr*
| CSN1St ri ng BASI C_NAME Exponent Expr *

246

CSN.1 Described

There is no operator for the concatenation operation. Instead, one simply lists the things to be concatenated together.

The lack of a concatenation operator, together with the allowance of spaces in a BASI C_NAME gives rise to
an ambiguity: is "foo bar" a single BASI C_NAME or the concatenation of two names? To resolve this, we let
BASI C_NAME match as many characters as possible, and then in contextswhere thereis possible ambiguity, we report
an error if amulti-word nameis used.

The BASI C_NAME in the second alternative shall not be a multi-word name.

Exponents

Exponents are used to indicate repetition.

Exponent Expr
"(" ExpressionOrStar ')’
| "*' Ml t Expr Term

| (O (O

Expressi onOr St ar
AddEXxpr

| (O

Par enExponent Opt
/[*enmpty*/
| "(" ExpressionOrStar ')’

AddEXxpr

AddExpr '-' Ml t Expr
| AddExpr '+ Ml t Expr
| Mul t Expr
Mul t Expr

Mul t Expr "*" Mul t Expr Term
| Mul t Expr /" Mul t ExprTerm
| Mul t Expr Ter m

Mul t Expr Term :

| NTEGER
| "(' AddExpr ')’
| Functi onCal |

FunctionCal |l :
IDENTIFIER ' (' EXTENDED NAME ')'

1. An exponent can be wrapped in parenthesis (first alternative of ExponentExpr) or else introduced by an asterisk
(second alternative). The third alternative is equivalent to (*) and is used to indicate O to infinity repetitions. All
exponent expressions other than "(*)" and "**" indicate a fixed number of repetitions, though this fixed number
may not be known statically if the exponent uses a function.

2. Exponents may use the usual mathematical operators.

247

CSN.1 Described

3. 3GPP 24.007 does not discuss the use of functionsin exponents. The following information about functionsis based
on non-officia sources.

4. The function name is given by the | DENTI FI ER. The name really can be anything, including user defined
functions, but the definition of the functionsis not part of the CSN.1 notation. All functionstake a single argument,
an EXTENDED _NAME, whichisareferenceto alabeled string that appearsin the encoding prior to the string having
the exponent.

5. There are two predefined functions: val and len. In practice, we have only seen val used. Function val returns the
integer value of the referenced string, interpreted as a non-negative binary integer. Function len returns the number
of hitsfor the referenced string.

Exclusion

Excl usi on:
CSN1String '-' CSNLString
| CSN1String 'exclude' CSN1String

The '-' and 'exclude’ operators are equivalent. The Exclusion matches any string that matches the left hand operand
and does not match the right hand operand.

Intersection

I ntersection:
CSNi1String '& CSNLIString
| CSN1String 'and' CSNL1String

The'&' and 'and' operators are equivalent. The Intersection matches any string that is matched by both operands.

Send Expression

SendExpr essi on :
CSN1String '='" CSNLString
| CSN1String 'send” CSNIString

The '=" and 'send' operators are equivalent. The left hand operand represents the string that should be matched by a
decoder. The right hand operand represents the string that should be sent by an encoder. Naturaly, the right hand
operand should provide a value that can be accepted by the left hand operand.

Subclass Expressions

Subcl ass:
'==" CSN1String
| "1 =" | NTEGER

Subcl assOpt :
/[* empty */
| Subcl ass

248

CSN.1 Described

1. A subclass expression is meant to be applied to a reference as a way of further restricting the referenced string
(3GPP 24.007 does not discuss subclassing; this comment is based on non-official resources). This makesit away
of specifying that a particular value should be present in the encoding and that this string is one of those strings
matched by the given reference. For example, <message_type: bit(4) == 0101>isaway of saying
message_typeisa4-hit value and should be '0101".

In practice, subclass expressions are applied not only to references, but also to exponentiated references (asin the
above example, where it is applied to bit(4)).

2. The CSN1St ri ng in thefirst alternative must be astring of one or more literals.

3. The second alternative specifies an integer value. Obviously, this requires knowing how many bits should be used
to encode that integer value, which means the reference (with exponent, if given) must have a fixed length.

249

Chapter 17. Mapping CSN.1 to ASN.1

Introduction

In this chapter, we discuss our mapping from CSN.1to ASN.1. Thereis no standard procedure for this mapping; what
we present here is our own invention. The purpose of this mapping is ultimately to be able to generate data-binding
code from the CSN.1 - code that includes structures that mirror the data defined in the CSN.1, along with code for
encoding those structures into a bit string according to the CSN.1 definition, and decoding in the reverse direction.

For adescription of CSN.1, along with the grammar we use to describe CSN.1, please refer to the previous chapter.

The purpose of this chapter isto help you understand how we generate code from CSN.1 by explaining theintermediate
step that our compiler internally performs (the CSN.1 to ASN.1 conversion). This chapter is not required reading;
you might skip it for now and return to it if needed. Note that you can see the resulting ASN.1 that is generated from
CSN.1 by adding the- asnl <fi | ename> option to the compiler command line; this tells the compiler to output
the ASN.1to afile.

The challenge in defining the mapping is that CSN.1 is a concrete syntax. To a certain degree, by naming (labeling)
parts of the notation, semantics are conveyed, but the notation is still a concrete notation, not an abstract notation like
ASN.1. In order to generate data structures from CSN.1 in away similar to what asnlc does for ASN.1, we need to
recognize patterns in the CSN.1 and infer the semantics. That's what our CSN.1 to ASN.1 mapping does. Once we
internally map the CSN.1 into ASN.1, we can generate code for it, just aswe do for ASN.1.

Onthe surface, the mapping procedure might seem simple, but asemi-formal description of the mappingiscomplex, for
avariety of reasons. First, there are multiple possible mappings, so there are choices to be made. Also, not everything
inthe CSN.1 represents application data (some bits are auxiliary - they are purely apart of the encoding) so some parts
of the CSN.1 probably shouldn't be mapped into ASN.1 at al, but yet must be accounted for, somehow.

Just toillustrate, consider the following simple example as a way to highlight the difference between CSN.1 (being
concrete) and ASN.1 (being abstract). This CSN.1 calls for a single bit (either a 0 or 1) in the encoding: <val ue:
bi t >. First, note that we have chosen to name the bit "value" - naming is not required in CSN.1. That itself presents
a challenge. Next, observe that this CSN.1 could correspond to either of the following componentsin ASN.1 (and
arguably other less obvious possibilities), and nothing in the CSN.1 tells us which is intended:

val ue BOOLEAN
val ue I NTEGER (0..1)

As another example, you might think CSN.1 alternation mapsdirectly to ASN.1 CHO CE. But, consider this example:
{ 0] 1 <foobar : <foo><bar>> }

Here you have something called "foobar" that may or may not be present in the encoding, depending on whether a
one or zero bit preceedes it. That sounds more like an optional component of a SEQUENCE than two alternatives
inaCHOICE!

It also happens that sometimes the context affects how something is mapped. This is why the mapping procedure
presented hereisal gorithmic and does not specify how each CSN.1 operation (concatenation, alternation, ...) ismapped
into ASN.1.

The mapping process must also specify encoding rules. If you map CSN.1 to ASN.1, that ASN.1 can't produce bit
strings that are valid according to the CSN.1 unless you specify some encoding rules. That's a challenge, however,
because none of the standard ASN.1 encoding rulesfit the bill, and the only standardized notation for defining custom

250

Mapping CSN.1to ASN.1

ASN.1 encoding rules (ECN) is extremely complicated and, we believe, insufficient for this task. For this reason, the
mapping presented here will use prose to describe how the ASN.1 types that are produced should be encoded so as
to correspond to the CSN.1 from which they were derived.

General Procedure

The general mapping procedure is to iterate over the Def i ni ti ons inthe Def i ni ti onLi st and to map each
Defini tion asfollows.

1. Let csnstr bethe CSN1St ri ng of the Def i ni ti on. Invoke the CSN1String mapping procedure for csnstr.

2. If the mapping of csnstr produces either an ASN.1 type or an ASN.1 component, then an ASN.1
TypeAssi gnnent , TA, isproduced for thisDef i ni ti on. The "typereference” for TA isobtained by invoking
the procedure for mapping a CSN.1 name to a typereference. The "Type" for TA is specified in the following
clauses. If the mapping of csnstr did not produce any ASN.1, then no ASN.1 is produced for thisDef i ni ti on.

3. If an ASN.1 type, T, was produced, thisis the type for TA.

4. Otherwise, if an ASN.1 component, C, was produced, the type for TA isa SEQUENCE, S, defined as follows.

a. Sshall consist of asingle component, namely C.

b. If C was produced without alabel name, the component name shall be "component-1".

c¢. Otherwise (C was produced with alabel name), the component name shall be obtained by invoking the procedure
for mapping a CSN.1 nameto an ASN.1 identifier.

d. The optionality and type for C will already have been specified by the procedure that produced C.
e. Theencoding for Sisthe encoding for C, which will have been specified by the procedure that produced C.

Finaly, if any of the procedures invoked for mapping the Def i ni ti ons intheDefi ni ti onLi st specified that
the special LHTy pe should be produced, then produce the special LHTy pe defined as follows:

1. The ASN.1 definitionisgivenasLHType :: = ENUMERATION { I bit(0), hbit(1l) }

2. The encoding for LHType is a single bit, an L for Ibit and and H for hbit (see the discussion of L/H bits in the
section on CSN.1 syntax).

All of the ASN.1 items produced by these procedure are added to the ASN.1 module identified by the
asnl_t ypeRef er ence giveninthe Modul e.

Note
The mapping procedures (this oneincluded) do not ensure that type or component names are unique. If unique

names are not produced so that the ASN.1 isin error, then the CSN.1 specification is considered to bein error
aswell, for the purposes of the mapping. To resolve this problem, the CSN.1 must be adjusted.

Mapping CSN.1 name to ASN.1 identifier

A CSN.1 nameis mapped to an ASN.1 identifier as follows:

1. Apply the name character conversion procedure (see below) to the name.

251

Mapping CSN.1to ASN.1

2. If the name begins with an uppercase character, correct this as follows.

a Locate the end of the first word within the name. For this purpose, a word does not include a numeric digit or
a hyphen.

b. If the entire name has no lowercase | etters, lowercase the entire name.
c. Otherwiseg, if thefirst word has some lowercase |etters, lowercase the first character of the name.

d. Otherwise, if the name does not begin with a lowercase letter (it begins with a hyphen or digit) prepend the
character 'a to the result.

3. This completes the procedure. The nameisavalid ASN.1 identifier.

The name character conversion procedure ensures the name consists of charactersthat arevalid for an ASN. 1 identifier
or typereference. The procedure is as follows.

1. Convert any character that isnot legal in an ASN.1 identifier into a hyphen.
2. Replace any sequence of hyphen characters with a single hyhpen.

3. If the name ends with a hyphen, remove it. (It cannot end with multiple hyphens due to the previous step.)

Mapping CSN.1 name to ASN.1 typereference

A CSN.1 name is mapped to an ASN.1 typereference as follows.

1. Apply the name character conversion procedure to the name (see the section on mapping CSN.1 nameto an ASN.1
identifier).

2. If the name begins with alowercase letter, uppercase the first letter.

3. Otherwise, if the name does not begin with an uppercase letter (it begins with a hyphen or digit), then prepend the
character 'A' to the name.

This completes the procedure. The nameisavalid ASN.1 typereference.

ASN.1 Identifier Assignment

This section covers how the identifier for an ASN.1 NamedType is assigned when creating the components of an
ASN.1 SEQUENCE or CHOICE.

First, we need to determine whether there is a CSN.1 name to use as our basis. When a CSN.1 string is mapped to a
component, the mapping procedure will have already assigned a CSN.1 name, if there is one to be used as the basis.
When aCSN.1 string is mapped to an ASN. 1 type, we can attempt to locate a CSN.1 name asfollows. Divide the string
into adeterminant and remainder part. If the remainder islabeled, usethelabel name asthe CSN.1 name. Otherwise, if
the string itself islabeled, use that name. If neither of those cases applies, then if the string is an exponential string (it
has an exponent), the string is mapped to an ASN.1 SEQUENCE OF, and the base of the string has alabeled remainder
part (if you split it into a determinant and remainder), then use that 1abel name; in this case, the ASN.1 identifier will
have a"-list" suffix, as noted below.

If wenow haveaCSN.1 name, we use the mapping of CSN.1 nameto ASN.1identifier to producethe ASN.1lidentifier.
If the previous step called for it, we append a"-list" suffix to the result. We now have our ASN.1 identifier. Otherwise,

252

Mapping CSN.1to ASN.1

we assign an ASN.1 identifer directly. If the invoking procedure is creating a SEQUENCE, names are of the form
"component-n". If the invoking procedure is creating a CHOICE, names are of the form "choice-n". In either case, n
equals the number of components already added to the SEQUENCE or CHOICE, plus 1.

Note

The mapping procedures (thisoneincluded) do not ensure that type or component names are unique. If unique
names are not produced so that the ASN.1 isin error, then the CSN.1 specification is considered to bein error
aswell, for the purposes of the mapping. To resolve this problem, the CSN.1 must be adjusted.

CSN1String Mapping Procedure

This procedure is only used when invoked by another procedure.

Angle brackets are a syntactic feature in CSN.1. We do not have a separate procedure for mapping a string in angle
brackets. If the angle brackets are used to make areference, the string is areference and is mapped as such. If theangle
brackets are used to apply alabel (possibly in addition to being used to make areference), we map the string as though
it were not |abeled, and then we take account of the label.

1. If the CSN1String is an Alternation, invoke the Alternation mapping procedure for the string.

2. Otherwise, if the CSN1String has an exponent, invoke the Exponential mapping procedure on it.

3. Otherwise, if the CSN1String is a literal bit string (a sequence of 1 or more literal bits), then invoke the Literal
mapping procedure for the string.

4. Otherwise, if the CSN1String is a Concatenation (without an exponent and other than a simple concatenation of
literal bitsforming aliteral bit string), invoke the Concatenation mapping procedure for the string.

5. Otherwise, if the CSN1String is an Intersection, invoke the I ntersection Mapping procedure for the string.

6. Otherwise, if the CSN1String is areference, invoke the Reference Mapping procedure on it.

7. Otherwise, if the CSN1String is a Send expression, invoke the Send mapping procedure for the string.

8. If the string has a label name and the result of the above procedures is an ASN.1 type, T, rather than an ASN.1

component, then the result of these procedures is an ASN.1 component, C. C is non-optional. C'stypeis T. C's
CSN.1 nameisthelabel name. The purpose of thisruleisto preserve the label name from the CSN.1in the ASN.1.

Alternation Mapping Procedure

Mapping an Al t er nat i on requiresfirst evaluating the alternation so that we can determine what pattern it matches.
After the pattern is determined, then we map the Al t er nat i on to ASN.1

The mapping procedure treats error alternatives identically to normal alternatives.
1. Analyze each dternative of the aternation as follows.
a. Determine whether the alternative would produce either an ASN.1 type or ASN.1 component. This clauseis not
meant to invoke a mapping procedure for the alternative. Currently, we use the rule that any non-literal string (a

string which matches more than one bit string) would produce an ASN.1 type or ASN.1 component. This rule
has worked for usthusfar. It is for further study whether it isreally an adequate rule.

253

Mapping CSN.1to ASN.1

b. Determinewhether the alternative consists of the empty string, adeterminant without aremainder, a determinant
with aremainder, or aremainder only, and identify the parts of the alternative that make up each of these parts.
Additionally, if there is adeterminant, determine its name, if it has one. Refer to the subsection on determinants
below.

2. Determine the pattern that is matched by the alternation as follows.
a. Optional component with presence bit. The alternation matches this pattern if the following conditions are met.

e There are exactly two alternatives.

 One alternative would not produce an ASN.1 type and has a determinant which is either unamed or is not
uniquely named. The determinant has length 1.

» The other alternative would produce an ASN.1 type and has a determinant. The determinant has length 1.
» The determinant values for the two alternatives are unique.

b. Optional component with presence bit and container determined. The alternation matches this pattern if the
following conditions are met.

e There are exactly three alternatives.
» Onedlternativeisanull alternative.

» One alternative would not produce an ASN.1 type and has a determinant which is either unamed or is not
uniquely named. The determinant has length 1.

» The other alternative would produce an ASN.1 type and has a determinant. The determinant has length 1.
e The determinant values (for the two alternatives having them) are unique.

c. Optional component container determined. The alternation matches this pattern if the following conditions are
met.

e There are exactly two alternatives.
» Onedternativeisanull alternative.
» The other aternative produces an ASN.1 type

d. L-H Alternative. The alternation matches this pattern if there are exactly two alternatives, each consisting of
only adeterminant, with one determinant value being "L" and the other "H".

e. Particular-General. The alternation matches this pattern if the following conditions are met:
» None of the above patterns applied to the alternation.

e There are exactly two alternatives. One of these must meet the requirements below for the "particular
aternative" while the must meet the requirements below for the "general aternative'.

e The particular aternative has a determinant. Call it the particul ar-determinant.

e Thegenera alternative doesnot have adeterminant and would producean ASN.1type. Thegeneral alternative
beginswith, or isitself, abit string of afixed length (e.g. <bit(4)>). Call thisfixed-length bit string the"general -
determinant". Note that the general-determinant is not a determinant as that term is being used in this section

254

Mapping CSN.1to ASN.1

(it isnot afixed value), but we can think of it as preceding the alternation and determining which alternative
is encoded.

» Thelength of the particular-determinant equal s the length of the general -determinat. The general-determinant
excludes the value of the particul ar-determinant.

. Stereotypical choice. The alternation matches this pattern if the following conditions are met:

» None of the above patterns applied to the alternation.
* Thereare at least two non-null alternatives.
» Each of the non-null alternatives has a determinant.

e Each of the non-null aternatives either would produce an ASN.1 type or else has a uniquely-named
determinant.

3. If thealternation matches either of the"Optional component with presence bit" patterns, then the mapping produces
an ASN.1 component, C, asfollows.

a

For thisalternation pattern, one of the alternativeswould producean ASN.1 type. L et typeString bethe remainder
for that alternative, which is the string that would produce the ASN.1 type.

. Invoke the CSN1String Mapping procedure for typeString. This will produce an ASN.1 type, T. C's type shall

be T. C shall be an OPTIONAL component.

The name of the component is derived from the CSN.1, but the CSN.1 does not aways provide a name. The
calling procedure (e.g. the Concatenation mapping procedure) is ultimately responsible for assigning the name
to the component. This procedure merely assigns a CSN.1 name to the component, if there isone. If typeString
was labeled, the CSN.1 nameisthat label name. Otherwise, if the alternation as awhole was |abeled, the CSN.1
name s that label name. Otherwise, the component does not have a CSN.1 name.

. The encoding for C may be empty if and only if the "Optional component with presence bit and container

determined" pattern was matched. In that case, a decoder shall assume that C's encoding is not empty if there
are more hits to be decoded where C should appear. If the encoding for C isempty, C is absent.

. If Cisabsent, the encoding of C consists of the determinant for the non-type-producing aternative. When C is

present, the encoding consists of the determinant for the type-producing alternative followed by the encoding
for T (C'stype), which will have been defined by the procedure that produced T.

. If Cisabsent and the encoder is permitted to, and elects to, use an empty encoding, it isan error for an encoder

to encode any bits within the same container (i.e. you can't encode bits that the decoder might interpret as being
an encoding for C.)

4. If the alternation matches the "Optional component container determined" pattern, then the mapping produces an
ASN.1 component, C, asfollows.

a. Forthisalternation pattern, one of thealternativeswould producean ASN.1 type. L et typeString be the remainder

for that alternative, which is the string that would produce the ASN.1 type.

. Invoke the CSN1String Mapping procedure for typeString. This will produce an ASN.1 type, T. C's type shall

be T. C shall be an OPTIONAL component.

The name of the component is derived from the CSN.1, but the CSN.1 does not aways provide a name. The
calling procedure (e.g. the Concatenation mapping procedure) is ultimately responsible for assigning the name
to the component. This procedure merely assigns a CSN.1 name to the component, if there is one. If typeString

255

Mapping CSN.1to ASN.1

was |labeled, the CSN.1 nameisthat label name. Otherwise, if the alternation as awhole was labeled, the CSN.1
nameis that label name. Otherwise, the component does not have a CSN.1 name.

. Theencoding for C may be empty. A decoder shall assume that C's encoding is not empty if there are more hits

to be decoded where C should appear. If the encoding for C isempty, C is absent.

If Cisabsent, the encoding of C isempty. When C is present, the encoding consists of the encoding for T (C's
type), which will have been defined by the procedure that produced T. After encoding C as absent, it isan error
for an encoder to encode any bits within the same container (i.e. you can't encode hits that the decoder might
interpret as being an encoding for C.)

. If the alternation matchesthe "L-H Alternative" pattern, then the mapping produces an ASN.1 type. Thetypeisan
DefinedType with typerefence equal to "LHType". The encoding for thisisthe encoding of LHType.

. If the alternation matches the " Stereotypical choice" pattern, then the mapping is as follows.

a

If the alternation includes one or more null alternatives, the mapping produces an ASN.1 component C. C shall
be OPTIONAL. C.type shall be a CHOICE type, constructed as in the case where the alternation has no null
alternatives (described in the following clauses). If the alternation itself is labeled, that name shall bethe CSN.1
name for C; otherwise, C does not have a CSN.1 name.

. If the alternation does not include a null alternative (or it does but we are constructng the CHOICE type as

mentioned above), the mapping produces an ASN.1 CHOICE type as follows.
For each alternative (null aternatives excluded), do the following.

i. Add aNamedType, N, to the CHOICE. The identifier for N is determined according to the rulesin "ASN.1
Identifier Assignment”. Thetype for N is specified in the following clauses.

ii. If the alternative would produce atype, invoke the CSN1String mapping procedure on the remainder part of
that alternative. Let N.type be the type produced.

iii. Otherwise, let N.type be the NULL type.

. The encoding of the CHOICE type shall depend upon the chosen alternative within the CHOICE. It shall consist

of the chosen alternative's determinant followed by the encoding of the chosen alternative's type. It is an error
if the determinants of the alternatives are non-deterministic: in decoding the determinant, there must not be any
ambiguity as to which alternative has been chosen or whether the end of the determinant has been reached.

. If the alternation matches the "Particular-Genera" pattern, the result of the mapping depends on what procedure
invoked this mapping. If this procedure was invoked by the Concatentation mapping, this procedure produces
two ASN.1 components which will become componentsin a SEQUENCE created by the Concatenation mapping.
Otherwise (if this procedure was not invoked by the Concatenation mapping), this procedure produces a
SEQUENCE consisting of the same two components that would have been produced in the first case.

a

b.

We currently do not support the case where the particular-determinant uses L or H bits.

If the general-determinant is not labeled and the general-determinant's exclusion string is|abeled, copy the label
from the exclusion string to the general-determinant itself.

Invoke the CSN1String mapping procedure for the general-determinant. Thiswill produce the determinant type,
DT.

. Create an ASN.1 CHOICE type.

256

Mapping CSN.1to ASN.1

. Remove the particular-determinant from the particular alternative. The result isthe new particular alternative. If

nothing remains, let the particular-type be the ASN.1 NULL type. Otherwise (something remains), invoke the
CSN1String mapping procedure on what remains in order to produce the particul ar-type.

. Add aNamedType to the CHOICE type for the particular aternative. The type shall be the particular-type. The

identifier shall be determined according to the rulesin "ASN.1 Identifier Assignment".

. Remove the genera -determinant from the general alternative. The result is the new general alternative. Invoke

the CSN1String mapping procedure on what remains to produce the general-type.

. Add a NamedType to the CHOICE type for the general alternative. The type shall be the general-type. The

identifier shall be determined according to the rulesin "ASN.1 Identifier Assignment".

i. Definean ASN.1 component, DC. It's CSN.1 name is the general -determinant's label name. DC.typeisDT.

j. Define asecond ASN.1 component, CC. It does not have a CSN.1 name. CC.type is the CHOICE type created

above.

. If this procedure was invoked by the Concatenation mapping, then this procdure produces two ASN.1

components, namely DC and CC.

. Otherwise (this procedure was not invoked by the Concatentation mapping), then this procedure produces an

ASN.1 SEQUENCE type, having two component typeswhich are DC and CC. These components shall be named
accordingtotherulesin"ASN.1 Identifier Assignment". The encoding of the SEQUENCE shall be the encoding
of DC followed by the encoding of CC.

.If and only if DC hasthe value given by the parti cul ar-determinant, the chosen alternativefor CC shall correspond

to the particular aternative.

. The encoding of CC's CHOICE type shall be the encoding of the chosen alternative. A decoder will use the

previous rule, and the encoded value of the DC component, to determine which alternative is present in an
encoding.

Determinants

The alternatives in an aternation are divided into two parts, a determinant and a remainder. Determinants are literal
bit strings used to signal which of the aternativesis encoded in an encoding. This section describes how to determine
the determinant and remainder for an alternative.

1

4.

If the alternative is empty (i.e. it consists of just the null terminal), there is no determinant and the remainder is
empty. This alternative is called the null aternative.

If the alternative is a Concatenation or asingle literal, the determinant isthe longest string of literalsthat beginsthe
alternative (note: the use of null in concatenation is superfluous and ignored). If this string is empty, the alternative
does not have a determinant. The rest of the alternative is the remainder.

If the alternative is a Reference that resolves to a single literal, or a concatenation of literals, those literals form
the determinant. The remainder is empty.

Otherwise, the alternative does not have a determinant and the remainder part is the entire alternative.

A determinant could be written using exponentiation. e.g. (10)* 2 instead of 1010. To keep things simple, we do not
support this.

257

Mapping CSN.1to ASN.1

Concatenation Mapping Procedure

This section describes how to map a Concatenation. It only applies as invoked by another mapping procedure.

A Concatenation is atruncated Concatenation if it is enclosed in curly braces and followed by the truncation operator

(eg{ <a> }//).

1. Nested concatenations are eliminated according to the following rule. If concat-outer isan unlabeled, non-truncated
concatenation and concat-inner is one of the operands of concat-outer and is also an unlabeled, non-truncated
concatenation, then concat-inner is replaced in concat-outer by its operands. The requirement that concat-inner be
unlabeled is so that all possible semantic information is carried over into the ASN.1. The requirement that concat-
outer be unlabeled is probably not really necessary and could be taken up for futher study.

2. For each operand that is an Intersection, do the following. Repeat these steps until any Intersections that remain
require no additional action.

a. Invoke the Intersection Analysis procedure on the Intersection.
b. If the Intersection has alength determinant, do the following.

i. Verify that the Intersection is the final operand in the Concatenation. This limitiation is motivated by the
internal working of our code generator relative to length-constrained content.

ii. If the Intersection's constrained-operand is a Concatenation, replace the I ntersection with the operands of that
Concatenation. Otherwise, replace the Intersection with the constrained-operand.

c¢. Otherwise (the Intersection does not have alength determinant), no additional action isrequired.

3. Do the following for each of the operands of the Concatenation, in order. The purpose of this step isto determine
the ASN.1 type or ASN.1 component that each operand maps to, or whether the operand instead represents either
padding or aliteral bit string. If an operand does not do any of these, itisan error. (Note: if the Alternation mapping
isinvoked and the particular-general case applies, the operand will actually be mapped to two ASN.1 components,
rather than just one.)

a. If the operand has an exponent, determine whether the repetition is delimited using amore-bit and done-bit. This
isthe caseif the following apply:

» The operand's exponent isinfinite.
» The exponent's base string has a determinant, call it more-bit, consisting of a single hit.

» Theoperandisimmediately followed by aliteral string consisting of asinglebit, call it done-bit. The negation
of done-bit is more-hit.

In this case, do the following:

i. Discard the operand following this operand.

ii. Invoke the Exponential mapping procedure on this operand.

iii.If the Exponential mapping does not produce a type and the exponent's base has an empty remainder, we
recognizeacaseof an INTEGER with " count-bits" encoding. The operand mapstothe ASN.1type: | NTEGER

(0. .255). The encoding is as follows. For a value v, there are v bits equal to the more-bit, followed by
asingle done-hit.

258

Mapping CSN.1to ASN.1

e.

iv. Otherwise, the Exponential mapping shall have produced an ASN.1 type T, whichisaSEQUENCE OF R, for
some type R. The operand mapsto T. The encoding of T shall be formed as follows (this alters the encoding
specified by the Exponential mapping). For each R in T, encode a more-hit followed by the encoding for R.
Finally, end the encoding by encoding a done-hit. If the Exponential mapping procedure did not produce an
ASN.1type, itisan error.

. If the operand has an exponent and the repetition is not delimited using amore-bit and done-bit, do thefollowing.

i. Invoke the Exponential mapping procedure on the operand.
ii. If the exponent isinfinite, then one of the following cases must apply, or elseit isan error.
A. The Exponential mapping produced an ASN.1 type and no operands follow this operand. Thisis a case
of container-delimited repetition. (The requirement that there be no subsequent operand is due to the fact
that nothing can be encoded following a container-delimited repetition.)

B. The Exponential mapping recognized the operand as padding.

iii.As long as the previous clause does not indicate an error, this operand is mapped to the result of invoking
the Exponential mapping.

Otherwise, invoke the CSN1String mapping procedure on the operand.

. If the CSN1String mapping procedure recognized a single pad bit, then the operand is mapped to the ASN.1

type INTEGER(0..1). When the ASN.1 component is created for this operand, it shall have a DEFAULT value
corresponding to the value of the pad hit.

It is an error if any operand except for the last is mapped to padding. This is because padding is a repetition
whose length is determined by the container boundary (thus, nothing is permitted to follow it).

. Let asnlobjects be the set of ASN.1 types and ASN.1 components that the operands were mapped to.

. If asnlobjects has more than one member OR if any of the members is an OPTIONAL ASN.1 component, OR if
thereisonly a single member and that member is an ASN.1 component and the last operand is mapped to padding
then do the following.

a. Construct a SEQUENCE type asfollows. Thiswill be the type produced by this Concatenation procedure.

b.

Add a NamedType to the SEQUENCE for each of the operands that mapped to an ASN.1 type or ASN.1
component, in order. If any of the operands mapped were mapped to two components, add them both just as if
they were produced by two operands.

Theidentifier for the NamedType shall be determined according to therulesin "ASN.1 Identifier Assignment"”.
If the operand was mapped to an ASN.1 type, that shall be the type for the NamedType. Otherwise, the operand
was mapped to a component with an ASN.1 type, which shall be used.

. If the ASN.1 item is a component and the procedure that created the ASN.1 component specified it should be

optional, thenit shall be optional. That procedure shall have specified how the presence or absenceisrepresented
in the encoding. If that procedure specified that a DEFAULT value shall be specified, then it shall be specified.

If the Concatenation is truncated, all of the components added to the SEQUENCE shall be OPTIONAL, with
the optionality determined by the container. A decoder shall recognize the component as present aslong asthere
are more bits in the encoding at the point where the component would appear. If the component was already
OPTIONAL, itspresence may have been determined by apresenceflag. Inthat case, it isadditionally determined
by container aswell. (In such acase, the boundary of the container is used to determine whether the combination

259

Mapping CSN.1to ASN.1

of the presence bit and the value are present, and if present, then the presence hit determines whether the value
is present or not.)

f. Additionally, if the Concatenation is truncated, each operand shall either be padding or else be mapped to an
ASN.1typeor ASN.1 component. Thisrequirement is so that the optionality of everything in the Concatenation,
implied by the truncation, can be modeled in the ASN.1.

0. The encoding of the SEQUENCE shall consist of the encoding of its component types, in order.

h. If alength determinant was identified in the Concatenation (see the section on Intersection Procedures), then
let encoded-value be the encoded value for the corresponding component. Let length-value be the result of
evaluating the constraining-operand's exponent at encoded-value. Then length-value shall be the length of the
encoding for the components following the length determinant in the SEQUENCE, including any padding bits.
The units for the length shall be bits or octets, depending on the constraining-operand's use of a reference to
bit or octet.

i. If the Concatenation ended with padding, the interpretation depends on whether there was a length determinant
or not. If there was a length determinant with units in octets, the encoder shall pad using the pad bit so that the
length of the length-constrained content isamultiple of 8 bits. If the units were bits, the encoder need not do any
padding. In both cases, a decoder must be prepared to skip any padding bits. If there is no length determinant,
we assume the encoding of the SEQUENCE should be padded to a mulitple of 8 bits.

6. Otherwise, if asnlobjects has a single member, the Concatenation is mapped to that same item, whether it is an
ASN.1 type or ASN.1 component.

Exponential Mapping

This procedureis invoked for a string having an exponent. It is only invoked when called for by another procedure.
1. If the exponent is constant and evaluatesto 1, map the string asif the exponent were not present.

2. Otherwise, if the base is areference to bit and the exponent is constant and less than or equal to 32, this procedure
produces type INTEGER(O0..k) where k = 2"exponent - 1. The encoding for this type encodes the integer in binary
in "exponent" hits.

3. Otherwise, if the baseis areference to hit and the exponent is variable or greater than 32, this procedure produces
type BIT STRING. The size constraint clause (below) applies.

4. Otherwise, if the base is a reference to octet, this procedure produces type OCTET STRING. The size constraint
clause (below) applies.

5. Otherwise, invoke the CSN1String mapping procedure for the base string.
a. If an ASN.1 typeisproduced, let T be that type.
b. Otherwise, if an ASN.1 component is produced, wrap it in a SEQUENCE and let T be the result.

c. Otherwise, if the procedure specified that the base string is a pad bit and the exponent is infinite, the string is
considered padding. The calling procedure shall specify what to do with the padding or else it is an error.

d. Otherwise, if the procedure specified that the base string is a pad bit, the exponent is a constant integer less
than or equal to 32, and the pad hit is a one-bit or zero-bit (not an L or H), then this procedure produces type
INTEGER(0..k), where k = 2"exponent - 1. The calling procedure shall create a component for this type with
DEFAULT j, wherej = 0if the pad bit isa zero-bit and k otherwise. The calling procedure shall specify that this
component must be present in the encoding. (Thisis useful for dealing with so-called spare bits.) The encoding
for this type encodes the integer in binary in "exponent” bits. Normally, the default value should be encoded,

260

Mapping CSN.1to ASN.1

as that was the intention expressed in the CSN.1 (pad bits originate from the SEND expression), but a decoder
may encounter any value.

e. Otherwisg, if the baseisaliteral bit and the exponent isinfinite, the calling procedure shall either recognize this
(as part of) an INTEGER type with count-bits encoding or elseit is an error.

f. Otherwise, if none of the above clauses applied, it is an error.

g. If the above clauses specified a type for T, this procedure produces the type SEQUENCE OF T. The size
constraint clause (below) applies.

6. If the above procedures produced a type and noted that the "size constraint clause" applied, then the exponent shall
be evaluated to determine whether a size constraint should be added to the type. Thisis done as follows.

a. If the exponent is a constant integer k, then the size constraint SIZE(k), shall be added. The encoding shall
consist of k hits, k octets, or k encodings of type T, depending on whether thetypewasaBIT STRING, OCTET
STRING, or SEQUENCE OF T.

b. Otherwise, if the exponent is infinite or non-reversible, no size constraint is added. The encoding shall consist
simply of the bits, octets, or encodings of type T based on the value, depending on whether the type was a
BIT STRING, OCTET STRING, or SEQUENCE OF T. Unless the calling procedure specifies otherwise, the
encoding isdelimited by its container. It isan error for an encoder to encode anything following this type within
the same container. A decoder will recognize the end of the encoding when it finds the end of the container.

c. Otherwise, we evaluate the exponent. The exponent uses the val function to refer to asingle, labeled string (or
else it would be non-reversible or a constant integer). Call the reference string RefString. RefString shall have
already been mapped and shall have been mapped to a constrained INTEGER type. Let min and max be the
range for that type. Evaluate the exponent using RefString equal to min and max, and order the results to give
the minimum and maximum values for the exponent, minexp and maxexp. Add a size constraint to the type as
SIZE(minexp..maxexp). The encoding shall consist simply of the bits, octets, or encodings of type T based on
the value, depending on whether the type was a BIT STRING, OCTET STRING, or SEQUENCE OF T. The
Ref String shall serve as alength determinant, so that when the exponent expression is evaluated at the value of
Ref String, the result is the number of bits/octets/occurrences of T in the encoding.

Intersection Procedures

The intersection operator is often used as a way of specifying length-constrained content. One operand will be a
variable-length string, and the other will be simply a bit string constrained to a certain number of bits, possibly by
reference to a preceding field. For example,

Lengt hConstrExanple ::= <len: bit(4)> { <sonme variable length stuff> & bit(val

In cases where the Intersection is an operand of a Concatenation, we may view the length-constrained string ("some
variable length stuff" in the above example) as part of the Concatenation. In other cases, the Intersection will be
considered on its own. This gives rise to two separate operations for an Intersection: analysis and mapping.

Intersection Analysis Procedure

The purpose of this procedure is to ensure that the I ntersection matches a supported pattern and to identify aspects of
the Intersection that will be used during the mapping procedure.

1. The Intersection must have exactly two operands.

261

Mapping CSN.1to ASN.1

7.

. One of the operands must be areferenceto "hit" or "octet", with afinite exponent. This operand isthe constraining-

operand; it controls the length of the constrained-operand in terms of the number of bits/octets.

. The other operand is the constrained-operand.

. The exponent on the constraining-operand, being finite, will either be afixed integer expression (e.g. "4" or "5+4")

or it will useafunction, passing alabel namefor the argument. If afunction isused, the exponent must be reversible
and the referenced label must be defined within the enclosing definition such that it will appear in the encoding
prior to the constrained-operand. We call the referenced, |abeled string the "length determinant” for the constrained-
operand. (The definition of areversible exponent, see next clause, has the effect of ensuring there will be asingle
referenced label.)

. An exponent is reversible if, given the length of the constrained-operand, an encoder can uniquely determine the

value of the label that is referenced by the exponent. This precludes using a user-defined function in the exponent,
or referring to more than one label. Relaxing the requirement for exponent reversibility is for further study. This
requirement allows us to have the encoder set the value the length determinant based on the actual encoded length
of the constrained-operand. It could be relaxed by requiring the user to supply a value for the length determinant
and requiring the encoder to verify that the exponent evaluates to aval ue consistent with the actual encoded length.

. Due to considerations related to the internal workings of our code generation tool, we place an additional

requirement on the use of length determinants. The length determinant is required to immediately precede the
Intersection in the encoding. Therefore, the mappings do not cover the contrary case, which isleft for further study.

It is considered an error if the Intersection does not satisfy the requirements specified in this procedure.

Intersection Mapping Procedure

This procedure only applies when invoked by another procedure.

For an Intersection that is the operand of a Concatenation, this procedure is only invoked if the Intersection does not
have alength determinant. This, along with the requirement (see the Analysis procedure) that any length determinant
immediately precede the Intersection means that this procedure is never invoked for an Intersection that has alength
determinant.

This procedure will always produce a SEQUENCE type. This was motivated by the internal working of our code
generation tool relative to length-constrained content. It may not always be the most natural mapping.

1

2.

3.

5.

Invoke the Intersection Analysis procedure on the I ntersection.
Invoke the CSN1String mapping procedure on the constrained-operand of the Intersection.
If the previous step produces an ASN.1 SEQUENCE type, this procedure produces the same SEQUENCE type.

a. If the SEQUENCE's encoding was specified as being padded to abyte-boundary, thisis changed to being padded
to the fixed length specified by the constraining-operand, using the same bits for padding.

. Otherwise, if the procedure produced some other ASN.1 type, or an ASN.1 component, that type or component is

wrapped into a SEQUENCE type, which will be the type produced by this procedure. The name of the component
added to the SEQUENCE will be derived from the ASN.1 type or ASN.1 component in the same way asis done
when mapping a Concatenation.

Otherwise, this Intersection is not supported.

Literal Mapping

This procedure only applies when invoked by another procedure.

262

Mapping CSN.1to ASN.1

This procedure is used to map aliteral bit string (a sequence of one or more literal bits). It will only be invoked when
aliteral string is not otherwise incorporated into the encoding. For example, it is not invoked to map the strings that
act as alternative determinants in an Alternation.

1. This mapping restricts the literal to being 32 bits or less. The literal is mapped to the ASN.1 type INTEGER(K)
wherek isthe integer interpretation of the literal.

2. When a component is created for this type, it shall be given aDEFAULT of k. However, the component must be
present in the encoding. The DEFAULT is added due to the inner workings of our code generator.

3. The encoding of thistypeisthelitera hit string.

Reference Mapping

This procedure only applies when invoked by another procedure.
1. If thereferenceisto "bit", the string is mapped to the ASN.1 type INTEGER(O..1).
2. Otherwise, if the refereneceisto "octet”, the string is mapped to the ASN.1 type INTEGER(O..255).

3. Otherwise, if the reference refers to a string that is mapped to something other than an ASN.1 type or ASN.1
component, then the reference is mapped the same as the string that is referenced (e.g., to padding).

4. Otherwise, the reference is mapped to an ASN.1 DefinedType, where the typereference is the result of using the
CSN.1 name to ASN.1 type reference mapping on the referenced name.

Notethat in the case where the mapping produces an DefinedType, that type might not be defined inthe CSN.1 module.
Our tool support is such that the type may be defined in ASN.1 using the same module name, or it may be imported
from another ASN.1 module, where the definition may originatein either ASN.1 or CSN.1

Note that our tool issues awarning when areference is made to a string that we mapped to a type which we assumed,
based on the presence of padding, was to be byte aligned. The reason for thisis that this would typically imply that
the referenced type was not top-level and the padding was probably not a case of simple byte alignment after all.

Send Mapping

This procedure only applies when invoked by another procedure.

This mapping procedure imposes the following constraints on a send string.

1. Theright hand operand must be asingle literal bit (0/1/L/H), or areference to such a string..

2. Theleft hand operand must recognize a single bit of any value, or be a reference to such a string.

The send string is mapped to a pad bit. The encoding is a single bit. An encoder shall encode the literal bit specified
by the right hand operand. A decoder shall accept any bit value.

263

Chapter 18. Compiling CSN.1

This chapter discusses the use of our tool for compiling CSN.1. We cover some basics, using CSN.1 and ASN.1 in
tandem, and some tips related to common problems.

Basics

The basics are simple. Put your CSN.1 notation into a file using the "csnl" extension. Invoke the asnlc compiler,
using the -3gl3 option and passing your .csnl file as input. (Note: we currently support only a single CSN.1 module
per input file.)

Our compiler takes each CSN.1 file, applies the CSN.1-to-ASN.1 mapping rules (see the previous chapter), and
internally generates the ASN.1 objects as belonging to the ASN.1 module that you identified in the CSN.1 file. The
compiler then generates code just as we would for the corresponding ASN.1, with adjustments in the encoders and
decoders to meet the encoding and decoding rules specified as part of the mapping procedure.

Sincethe CSN.1is compiled to ASN.1 internally, you can use a config file in the usual way. All you haveto do isbe
careful to use the ASN.1 names in the config file rather than the CSN.1 names. For example, instead of "My Favorite
Type", you would use the converted name, "My-Favorite-Type".

You may find it helpful to see the ASN.1 that resulted from the CSN.1-to-ASN.1 mapping; you can this by adding the
-asnl <fil enanme> option to the compiler command line to tell the compiler to output the ASN.1 to afile.

Using CSN.1 and ASN.1 Together

Our tool lets you use the CSN.1 and ASN.1 notations in tandem, in a straightforward way. A few simple example
files should suffice to illustrate.

Example 18.1. main.csnl
ASNLIMODULE : Mai n;

<My Pdu> ::

<Name> <Locati on> <FooBar> <Mar ker >;

<Marker> ::= <nl : bit(5)> <n2: bit(3)>;

Example 18.2. main.asnl
Mai n DEFI NI TI ONS AUTOVATI C TAGS BEG N

| MPORTS
Nane, Location FROM Commpn;

FooBar ::= SEQUENCE ({
foo | NTEGER(O. . 3),
bar BOOLEAN,
mar ker Mar ker

}

END

264

Compiling CSN.1

Example 18.3. common.csnl
ASNIMODULE : Common;

<Nane> ::= <octet(5)>;

Example 18.4. common.asnl
Conmmon DEFI NI TI ONS AUTOVATI C TAGS BEG N
Location ::= ENUMERATED { city(1l), suburbs(2), rural(3) }

END

Looking first at common.asnl and common.csnl, we find that both are using the ASN.1 module "Common". So, the
ASN.1 module called "Common" will have both of these types: "Name" and "L ocation".

Next, we look at main.asnl. Thisimports "Name" and "Location" from the Common module into the Main module.
It does not matter that one of those was defined using CSN.1 and the other using ASN.1. Y ou can see thisfile defines
"FooBar" in module Main. It also references "Marker", which is defined in the same ASN.1 module, but using CSN.1
notation (see main.csnl).

Finally, we look at main.csnl. Thisfile defines "My-Pdu” (the ASN.1 name resulting from "My Pdu") and "Marker"
in ASN.1 module"Main". It refersto "Name", "Location”, "FooBar", and "Marker". We consider each of thesein turn.
"Marker" isdefined locally in the samefile. "FooBar" is defined in the same ASN.1 module, but using ASN.1 notation.
Finally, "Name" and "Location", which belong to another ASN.1 module, are referenced. Thisislegal because those
types were imported for the Main module by main.asnl.

In conclusion, the definitions for an ASN.1 module may be split into multiple files using different notations, but in
theend, itisasif everything were specified in ASN.1. A CSN.1 file may contain references to types in other ASN.1
modules by using the ASN.1 notation to specify imports.

A caveat: our tool does not accept ASN.1-based definitions of ASN.1 modules that have no ASN.1 definitions. That

means that if you create an ASN.1 file to do nothing more than define imports, you will need to define at least one
type, such as Dummy ::= NULL;

Tips on Working with CSN.1

This section contains various tips on working with CSN.1

Error Alternatives

Asdiscussed in the mapping procedures, we treat error alternatives the same asregular aternatives. It is up to the user
to recognize that the error aternative was matched. However, the 3GPP specifications often specify error alternatives
in ways that don't seem useful. Let's consider some examples.

{ 1! <lIgnore : bit = < no string >}

In this example, a send construction is being used in the error aternative. This seems pointless, because presumably
an encoder would not encode an error alternative and therefore would not encode whatever the send construction

265

Compiling CSN.1

specifies for the encoding. Remove the send construction in such cases. In the rest of the examples, well omit the
send construction.

Next, observe the meaning of this alternation: a one hit is accepted and a zero bit is an error. In this case, you could
just as well replace the alternation with the good alternative. A decoder will fail on bad input. If, however, you want
to be able to tell that decoding failed for this reason, you can replace the aternation with "bit" and write your code
to report an appropriate error if the bit is zero.

I < PDCH pairs configuration error : { 1 1} { bit (*) >}

In this example, the error alternative is a never-ending bit string. This is pretty useless for a decoder, as it doesn't
allow the decoder to recover and continue decoding the rest of the data. Y ou have two optionsin this case. First, you
could entirely remove the error alternative. Thiswill cause the decoder to fail if that input would have been matched.
Second, you could modify the error aternative to be simply the determinant (the "{11}"). In that case, if the error
aternative is found, the decoder may or may not fail, depending on the input, but your code can report an error if the
error alternative was matched.

The send Operator

The send operator (either "send" or "=") is used in cases where a decoder should be able to accept various inputs but
an encoder should send something particular. It is commonly used in relation to padding, such as

-- Padding using L bits:
<spare padding> ::= { <bit> send L }**;

-- Asingle pad bit, commonly used as <spare bit>**:
<spare bit> ::= <bit> send 0;

We've seen afew uses of the send operator in the 3GPP specifications that were likely not written as intended. There
arebasically twoissues: 1) inattention to operator precedence, and 2) mistakesin planning for extension compatibility.
These issues are illustrated in 3GPP 44.018 10.5.2.25¢ RR Packet Uplink Assignment. We'll discuss each of these
here, with simplified examples.

The send operator has the lowest precedence of the operators; this seems to be frequently overlooked. A common
pattern of useisthis:

{ null | O bit** = <no string>| 1 <stuff>}
which isequivalent to
{ { null | 0 bit** } = {<no string>| 1 <stuff>1} }

This is clearly wrong (the encoder strings are not all accepted by the decoder string). Most likely, what they really
wanted was:

{ null | O{ bit** = <no string>} | 1 <stuff>}
In the remainder of this discussion, the examples will be corrected for operator precendence.

Next, consider this example:

{ null | 0 { bit** = <no string> }
| 1 <stuff>
{ null | 0 { bit** = <no string> }

| 1 <nore stuff> <spare bit>** }

266

Compiling CSN.1

This pattern of usageis meant to allow interoperability between releases. It occurs at the end of an information element
that must be amultiple of 8 hits. The context means that we must be able to add padding bits at the end, but the above
doesn't allow an encoder to encode padding in all cases (for example, no padding can be encoded if you choose to
omit "stuff"). Let's say we correct this as follows:

{ null | O { bit** = <no string> }
| 1 <stuff>
{ null | O { bit** = <no string> }

| 1 <nore stuff>}

}

<spare bit>**

Now we can aways add the necessary pad bits, but what about thebi t ** = <no stri ng> constructions? On
decoding, any bits these constructions could consume could also be consumed by <spar e bi t >**. On encoding,
these constructions don't encode anything and may aswell not be there. In short, these constructions are really useless.
We therefore further simplify the example to:

{ null | O
| 1 <stuff>
{ null | O
| 1 <nore stuff>}

}

<spare bit>**

Problems with Names

The 3GPP specifications will sometimes omit angle brackets around multi-word names where we require them. For
example, they will have<one t hing : One Thi ng> rather than<one thing : <One Thi ng>>. It seems
like most of the time, they will have the extra angle brackets there.

Another naming issue isthat CSN.1 names are supposed to be case insensitive. Wereally treat them as case-sensitive,
however, because we map the namesto ASN.1 names, which are case-sensitive. Sometimes, you'll find capitalization
differences lead to errors about missing types.

Subclassing

The subclass operator has two forms. The 3GPP specifications sometimes use the wrong operator for the operands
they give. The"==" operator is used with aliteral bit string while the ":=" operator is used with an integer.

User Defined Functions

CSN.1 allows the use of a user-defined function inside an exponent. The generated code will need to invoke this user-
defined function. The C function name will be taken to be <typePrefix><functionName>, where <typePrefix> is the
type prefix specified for the module in which the function is referenced and <functionName> isthe name asit appears
in the CSN.1. For example, "TS44018Msg_p".

Naturally, you will ned to define and implement the user function. Y ou should name it as just described. It should
return an integer type and accept an integer argument of atype that is compatible with the argument that is passed to
the function in the CSN.1. For example: int TS44018Msg_p(OSUINT8 n).

267

Compiling CSN.1

CSN.1to ASN.1 Example

In thissection, asample CSN.1 fileis presented, along with the corresponding ASN.1. Thereislittleto no commentary
here, as the chapter that defines the mappings really is the commentary. The majority of the patterns that may be
recognized areillustrated in this sample.

Example 18.5. CSN.1 Example

ASNIMODULE : User Gui de;

-- This is a definition where the right hand side is mapped to a conponent and
-- the whole is therefore mapped i nto a SEQUENCE

<Si ngl eConponent> ::= 0 | 1 <fields: <fieldl: bit(4)> <field2: bit(3)>>;
-- This exanple illustrates sone of the effects of nam ng
<Nami ng> ::=

<ALL CAPS 1: bit(1)> --becomes all-caps-1

<PART Caps: bit(1)> - - becones part - Caps

<Canel Case: bit(1)> - - beconmes canel Case

--lllustrate various patterns of alternation
<Alternations> ::=
<| bit or hbit?: L | H
<particul ar general
010 <Nami ng>
{<pg determ nant: bit(3)> exclude 010} <something else: bit(4)>
>
<stereo choice 1 :
0 <first: bit(1)>] 1 <second: bit(2)> >
<stereo choice 2 :
00 | 01 <first: bit(1l)> | 11 <second: bit(2)> | <third: 10> >
<optional with presence bit: 0| 1 <maybe : bit(4)>>

<optional with presence bit and container determned: null | O] 1 <possibly :
<optional container determ ned: null | <questionable: bit(2)>>
<paddi ng> ::= {<bit> send 0} **;

<Length Constrained Content> ::=
<length : bit(7)>

{
{ <swilly nilly: bit(4)>
{ O] 1 bit(3) }
<paddi ng>
} & octet(val (I ength))
}
<Concat> ::=

{
<el: bit(1)>

268

bi t (3) >>

Compiling CSN.1

{
--This nesting will get renpved
<e2: bit(2)>
<e3: bit(3)>

}

<e4: bit(4)>

<a pad bit: <bit> send 0>

<sone literal bits: 0101001>

<single bit: bit>

<single octet: octet>

<ref to a nane: Nam ng>

{ 1 <two bit value using nore/done bit: bit(2)> }** 0

<nanmed list: { 1 <two bit value using nore/done bit: bit(2)> }** 0 >
<list of 10: <value: bit(4)>(10)>

<list ending with container: bit(3)>**

b

--Truncat ed concat enati on
<Truncated Concat> ::=

{
<el: bit(1)>
{
--This nesting will NOT get renoved
<e2: bit(2)>
<e3: bit(3)>
}
<e4: hit(4)>
Y

<Things Wth Exponents> ::=
<a 23-bit int: bit(23)>
<a fixed length bit string: bit(45)>
<a var length bit string: bit(val (a 23-bit int))>
<a fixed length octet str: octet(4)>
<a var len octet str: octet(val (a 23-bit int))>
<repeating optional conponent: {0 | 1 <opt conp: bit(4)>}(5)>
<five pad bits: <bit> send 0>(5)
<count bit encoding: 0** 1>
<fixed num of type: Nam ng(5)>
<var num of type: Nami ng(val (a 23-bit int))>

Theresulting ASN.1 follows. Our tool generates tags in the ASN.1; these have been removed to improve readability.

Example 18.6. Theresulting ASN.1

User Gui de DEFI NI TI ONS AUTOVATI C TAGS ::= BEG N
-- Productions

LHType ::= ENUMERATED { Ibit(0), hbit(1) }

269

Compiling CSN.1

Nam ng ::= SEQUENCE {
all-caps-1 |INTEGER (0..1),
part-Caps | NTEGER (0..1),
canel Case |NTEGER (0..1)

}

Al ternations ::= SEQUENCE {

[-bit-or-h-bit LHType,
pg-det erm nant | NTEGER (0..7),
particul ar-general CHO CE {

nam ng Nam ng,

somet hi ng-el se | NTEGER (0. . 15)
b
stereo-choice-1 CHO CE {

first |NTEGER (0..1),

second | NTEGER (O0..3)
b
stereo-choice-2 CHO CE {

choice-1 NULL,

first |NTEGER (0..1),

second |INTEGER (O0..3),

third NULL
b
maybe | NTEGER (0..15) OPTI ONAL,
possi bly I NTEGER (0..7) OPTI ONAL,
guesti onabl e [INTEGER (0..3) OPTI ONAL

}

Concat ::= SEQUENCE ({
el |INTEGER (0..1),
e2 |INTEGER (O..3),
e3 |INTEGER (0..7),
e4 | NTEGER (O0..15),
a-pad-bit |INTEGER (0..1) DEFAULT O,
some-literal -bits | NTEGER (41) DEFAULT 41,
single-bit |INTEGER (0..1),
singl e-octet | NTEGER (0. .255),
ref-to-a-name Nam ng,
two- bi t - val ue-usi ng-nore-done-bit-list SEQUENCE OF | NTEGER (O..
named-|ist SEQUENCE OF | NTEGER (O..3),
[ist-of-10 SEQUENCE (SIZE (10)) OF | NTEGER (0. .15),
list-ending-with-container SEQUENCE OF | NTEGER (0..7)

}

Lengt h- Const rai ned- Content ::= SEQUENCE {
length |NTEGER (O..127),
willy-nilly |NTEGER (0..15),
conponent-3 | NTEGER (0..7) OPTI ONAL

}

Si ngl eConmponent :: = SEQUENCE {
fields SEQUENCE {
fieldl |NTEGER (0..15),

270

Compiling CSN.1

field2 INTEGER (O..7)
} OPTI ONAL

}

Thi ngs- Wt h- Exponents ::= SEQUENCE ({
a-23-bit-int | NTEGER (0..8388607),
a-fixed-length-bit-string BIT STRING (SIZE (45)),
a-var-length-bit-string BIT STRING (SIZE (0..8388607)),
a-fixed-length-octet-str OCTET STRING (SIZE (4)),
a-var-len-octet-str OCTET STRI NG (SIZE (0..8388607)),
repeat i ng- opti onal -conponent SEQUENCE (SIZE (5)) OF SEQUENCE {

opt-conp | NTEGER (0..15) OPTI ONAL

b
five-pad-bits | NTEGER (0..31) DEFAULT O,
count-bit-encoding |NTEGER (0..255),
fixed-numof -type SEQUENCE (SIZE (5)) OF Nam ng,
var-num of -type SEQUENCE (Sl ZE (0..8388607)) OF Nam ng

}

Truncat ed- Concat ::= SEQUENCE ({
el |INTEGER (0..1) OPTI ONAL,
conponent - 2 SEQUENCE {

e2 |INTEGER (O..3),
e3 [INTEGER (0..7)
} OPTI ONAL,
e4 | NTEGER (0..15) OPTI ONAL

END

271

Chapter 19. Additional Generated
Functions

Generated Initialization Functions

Asof ASN1C version 6.0, initialization functions are automatically generated (in previousversions, it was necessary to
usethe-genlnit option to forcethisaction). If for somereason, auser doeswant initiali zation functionsto be generated,
the -nolnit switch can be used to turn initialization function generation off.

The use of initialization functions are optional - a variable can be initialized by simply setting its contents to zero
(for example, by using the C run-time memset function). The advantage of initialization function is that they provide
smarter initialization which can lead to improved application performance. For example, it is not necessary to set
alarge byte array to zero prior to its receiving a populated value. The use of memset in this situation can result in
degraded performance.

Generated initialization functions are written to the main <module> .c file. Thisfile contains common constants, global
variables, and functions that are generic to al type of encode/decode functions. If the -cfile command-line option is
used, the functions are written to the specified .c or .cpp file along with all other generated functions. If -maxcfilesis
specified, each generated initialization function is written to a separate .c file.

The format of the name of each generated initialization function is as follows:
asnllnit_J[<prefix>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each generated initialization function is as follows:
asnllnit_<nane> (<nane>* pval ue)
In this definition, <name> denotes the prefixed production name defined above.

The pvalue argument is used to pass a pointer to avariable of the item to be initialized.

Generated Memory Free Functions

The -genFree option causes functions to be generated that free dynamic memory allocated using the ASN1C run-time
memory management functions and macros (rtxMem). By default, all memory held within a context is freed using the
rtxMemkFree run-timefunction. It isalso possible to free an individual memory item using the rtMemFreePtr function.
But it is not possible to free all memory held within a specific generated type container. For example, a SEQUENCE
type could contain elementsthat require dynamic memory. Theseelementsinturn can reference other typesthat require
dynamic memory. The generated memory free functions make it possible to release all memory held within avariable
of the type with asingle call.

Generated memory free functions are written to the main <module> .c file. Thisfile contains common constants, global
variables, and functions that are generic to al type of encode/decode functions. If the -cfile command-line option is
used, the functions are written to the specified .c or .cpp file along with all other generated functions. If -maxcfilesis
specified, each generated function is written to a separate .c file.

272

Additional Generated Functions

The format of the name of each generated memory free function is asfollows:
asnlFree_[<prefix>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each generated memory free function is as follows:
asnlFree_<nane> (OSCTXT* pctxt, <nane>* pval ue)
In this definition, <name> denotes the prefixed production name defined above.

The pctxt argument is used to hold the context pointer that the memory to be freed was allocated with. Thisis a
basic "handle" variable that is used to make the function reentrant so it can be used in an asynchronous or threaded
application. The user is required to supply a pointer to a variable of this type declared somewhere in his or her or
her program.

The pvalue argument is used to pass a pointer to a variable of the item that contains the dynamic memory to be freed.

Generated Print Functions

The following options are available for generating code to print the contents of variables of generated types:

-print - Thisis the standard print option that causes print functions to be generated that output data to the standard
output device (stdout).

-genPrtToStr - This option causes print functions to be generated that write their output to a memory buffer.

-genPrtToStrm - This option causes print functions to be generated that write their output to an output stream viaa
user-defined print callback function.

Print to Standard Output

The -print option causes functionsto be generated that print the contents of variables of generated typesto the standard
output device. It is possible to specify the name of a.c or .cpp file as an argument to this option to specify the name
of the file to which these functions will be written. This is an optional argument. If not specified, the functions are
written to separate files for each module in the source file. The format of the name of each fileis <module>Print.c. If
an output filename is specified after the —print qualifier, all functions are written to that file.

The format of the name of each generated print function is as follows:
asnlPrint _[<prefix>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each generated print function is as follows:
asnlPrint_<name> (const char* name, <name>* pval ue)

In this definition, <name> denotes the prefixed production name defined above.

273

Additional Generated Functions

The name argument is used to hold the top-level name of the variable being printed. It is typically set to the same
name as the pvalue argument in quotes (for example, to print an employee record, a call to asn1Print_ Employee
(“ employee’ , & employee) might be used).

The pvalue argument is used to pass a pointer to a variable of the item to be printed.

If C++ code generation is specified, a Print method is added to the ASN1C control class for the type. This method
takes only a name argument; the pvalue argument is obtained from the msgData reference contained within the class.

Print to String

The -genPrtToStr option causes functions to be generated that print the contents of variables of generated typesto a
given text buffer. This buffer can then be used to output the information to other mediums such as afile or window

display.

Itispossibleto specify the name of a.c or .cpp file asan argument to this option to specify the name of thefileto which
these functions will be written. Thisis an optional argument. If not specified, the functions are written to separate files
for each module in the sourcefile. The format of the name of each file is <module>PrtToStr.c. If an output filename
is specified after the —genPrtToStr qualifier, all functions are written to that file.

The calling sequence for each generated print-to-string function is as follows:

asnlPrt ToStr _<name> (const char* nane, <name>* pval ue,
char* buffer, int bufSize)

The name and pvalue arguments are the same as they were in the -print case.

The buffer and bufSize arguments are used to describe the memory buffer thetext isto bewritten into. These arguments
specify afixed-size buffer. If the generated text islarger than the given buffer size, as much text as possibleis written
to the buffer and a—1 status value is returned. If the buffer is large enough to hold the text output, all text is written
to the buffer and a zero status is returned. If there is text aready in the buffer, the function will append to this text,
rather than overwrite it, starting at the first null character. So in this case there must be enough space in the buffer
starting from the first null character to hold all of the generated text; otherwise, a status of -1 is returned. For this
reason initializing a newly allocated buffer with zeroes before passing it to the function is a good idea.

For C++, two toString methods are generated in the control class that call the generated print-to-string function. With
the first signature, in addition to the name argument, the method also takes a buffer and bufSize argument to describe
the buffer to which the text is to be written. The second signature does not take a name argument; instead, the name
of theitem that the control class instance describesis defaulted.

Print to Stream

The -genPrtToStrm option causes functions to be generated that print the contents of variables of generated typesto an
output stream viaauser-defined callback function. The advantage of thesefunctionsisthat auser can register acallback
function, and then the print stream is automatically directed to the callback function. This makes it easier to support
print-to-file or print-to-window type of functionalities. It also make it possible to create an optimized print-to-string
capability by maintaining a structure that keeps track of the current end-of-string position in the output buffer. The
generated print-to-string functions always must use the strlen run-time function to find the end position, an operation
that becomes compute intensive in large string buffersthat are constantly appended to.

It ispossibleto specify the name of a.c or .cpp file as an argument to this option to specify the name of thefileto which
these functionswill be written. Thisisan optional argument. If not specified, the functions are written to separate files
for each modulein the sourcefile. The format of the name of each fileis <module>PrtToSrm.c. If an output filename
is specified after the —genPrtToStrm qualifier, all functions are written to that file.

274

Additional Generated Functions

Before calling generated print-to-stream functions, a callback function should be registered. Otherwise, a default
callback function will be used that directs the print stream to the standard output device.

The callback function is declared as;

void (*rtxPrintCall back)
voi d* pPrntStrm nfo, const char* fntspec, va list arglist);

Thefirst parameter isuser-defined datawhich will be passed to each invocation of the callback function. Thisparameter
can be used to pass print stream specific data, for example, afile pointer if the callback function is to output datato a
file. The second and third parameters to the callback function constitute the data to be printed, in the form of format
specification followed by list of arguments. A simple callback function for printing to file can be defined as follows:

void witeToFile (void* pPrntStrm nfo, const char* fntspec, va list arglist)

{
FILE * fp = (FILE*) pPrntStrm nfo;

viprintf (fp, fmspec, arglist);
}

Oncethe callback functionisdefined, it hasto beregistered with theruntimelibrary. Therearetwo typesof registrations
possible: 1. global, which appliesto all print streams and, 2. context level, which applies to print streams associated
with a particular context.

For registering aglobal callback use:
rtxSet @ obal PrintStream (rtxPrintCallback nyCall back, void* pStrm nfo);
For registering a context level callback use:
rtxSet PrintStream (OSCTXT *pctxt, rtxPrintcCallback nyCall back, void* pStrmn nfo);

Once the callback function is registered, the calling of each generated print-to-stream function will result in output
being directed to the callback function.

The print to stream functions are declared as follows:
asnlPrt ToStrm <nane> (OSCTXT *pctxt, const char* nane, <nanme>* pval ue);
The name and pvalue arguments are the same as they were in the -print case.

The petxt argument is used to specify an ASN1C context. If avalid context argument is passed and there is a context
level callback registered, then that callback will be used. If there is no context level callback registered, or the pctxt
argument isNULL, then the global callback will be used. If thereisno global callback registered, the default callback
will be used which writes the print output to stdout.

If C++ code generation is specified, setPrintStream and toSream methods are added to the ASN1C control class for
the type. The setPrintStream method takes only myCallback and pStrminfo arguments; the pctxt argument is obtained
from the context pointer reference contained within the class. The toSream method takes only a name argument; the
pctxt argument is derived from the context pointer reference within the class and the pvalue argument is obtained from
the msgData reference contained within the class.

Print Format

The -prtfmt option can be used in conjunction with any of the -genPrint options documented above to alter the format
of the printed data. There are two possible print formats. details and bracetext.

275

Additional Generated Functions

The details format prints a line-by-line display of every item in the generated structure. For example, the following
is an excerpt from adetails display:

Enpl oyee. nane. gi venNane = ' John'
Enpl oyee. nane.initial ="'P

Enpl oyee. nane. fanmi | yName = ' Smith'
Enpl oyee. nunber = 51

Enpl oyee.title = 'Director’

The aternative format - bracetext - provides a C-like structure printout. Thisis a more concise format that will omit
optional fields that are not present in the decoded data. An example of thisis asfollows:

Enpl oyee {

nane {
gi venNane = ' John'
initial ="'P
fam | yName = 'Smith'

}

nunber = 51

title = "Director'

Asof ASN1C version 6.0 and higher, bracetext isthedefault format used if -prtfmt isnot specified on the commandline.
Previous versions of ASN1C had details as the default setting.

Generated Compare Functions

The -genCompare option causes comparison functions to be generated. These functions can be used to compare the
contents of two generated type variables.

If an output fileis not specified with the —.genCompare qualifier, the functions are written to separate .c files for each
moduleinthe sourcefile. Theformat of the name of each fileis<module>Compare.c. If an output filenameis specified
after the —.genCompare qualifier, al functions are written to that file.

The format of the name of each generated compare function is as follows:
asnlConpare_[<prefi x>] <pr odNanme>

where <pr odNamne> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each generated compare function is as follows:
OSBOOL asnlConpare_<nane> (const char* nane,
<nanme>* pval ue, <nanme>* pCnpVal ue,
char* errBuff, int errBufSize);

In this definition, <name> denotes the prefixed production name defined above.

The name argument is used to hold the top-level name of the variable being compared. It istypically set to the same
name as the pvalue argument in quotes (for example, to compare employee records, acall to ‘asnlCompare_Employee
(“employee’, & employes, etc.)’ might be used).

276

Additional Generated Functions

The pvalue argument is used to pass apointer to avariable of theitem to thefirst item to be compared. The pCmpValue
argument is used to pass the second value. The two items are then compared field-by-field for equality.

The errBuff and errBuffSize arguments are used to describe a text buffer into which information on what fields the
comparison failed on is written. These arguments specify a fixed-size buffer — if the generated text is larger than the
given buffer size, the text is terminated. These arguments may be omitted by passing null (0) valuesif you only care
to know if the structures are different and not concerned with the details.

The return value of the function is a Boolean value that istrue if the variables are equal and false if they are not.

Generated Copy Functions

The -genCopy option causes copy functions to be generated. These functions can be used to copy the content of one
generated type variable to another.

If no output file is specified with the —genCopy qudifier, the functions are written to separate .c/.cpp files for each
module in the source file. The format of the name of each file is <module>Copy.c/.cpp where <module> would be
replaced with the name of the ASN.1 module. If an output filename is specified after the —genCopy qudifier, all
functions are written to that file.

The format of the name of each generated copy function is as follows:
asnlCopy_|[<prefi x>] <pr odNane>

where <pr odNamne> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
isthe <t ypePr ef i x> element. This element specifies a prefix that will be applied to all generated typedef names
and function names for the production.

The calling sequence for each generated copy function is as follows:

voi d asnlCopy_<nane> (OSCTXT* pct xt,
<nane>* pSrcVal ue,
<nane>* pDst Val ue);

In this definition, <name> denotes the prefixed production name defined above.

The pointer to the context structure (pctxt) provides a storage area for the function to store al variables that have
been copied

The pScValue argument is used to pass a pointer to a variable to be copied. The pDstValue argument is used to pass
the pointer to the destination value. The source value is then copied to the destination value field-by-field. Memory
will be alocated for dynamic fields using callsto the rtxMemAlloc function.

If C++ isused (-cpp option is specified) and PDU generation is not disabled (<noPDU> config option is not used)
then the control class ASN1C_<name> additionally will contain:

» A copy constructor that can be used to create an exact copy of the classinstance.
The calling sequenceis asfollows:
ASN1C_<nane> (ASNLC <nanme>& orginal);
For example:

ASN1C Per sonnel Record (ASNLC Personnel Record& original);

277

Additional Generated Functions

A getCopy method that creates a copy of the ASNIT _<name> variable:
ASN1T_<nane>& get Copy (ASNLT_<nane>* pDstData = 0);
For example:
ASNLT_ Per sonnel Record& get Copy (ASNLT_Personnel Record* pDstData = 0);

The pDstData argument is used to pass the pointer to a destination variable where the value will be copied. It may
be null, in this case the new ASN1T <name> variable will be allocated viaacall to the rtxMemAlloc function.

» A newCopy method that will create a new, dynamically alocated copy of the referenced ASNAT _ data member
variable.

» An assignment operator. Thisis used to copy one instance of a control class to another one:

i nline ASNLC <name>& operator= (ASNLC <nanme>& srcDat a)

{
srcDat a. get Copy (&mrsgDat a) ;
return *this;
}
For example:

i nl i ne ASN1C Per sonnel Recor d& oper at or =
(ASNL1C Per sonnel Recor d& srcDat a)
{

srcDat a. get Copy (&nrsgDat a) ;
return *this;

}

Finally, the class declaration might look as follows:

cl ass EXTERN ASN1C_Per sonnel Record :
public ASN1CType

{

pr ot ect ed:
ASNL1T_Per sonnel Recor d& nmsgDat a;
public:
ASN1C_Per sonnel Record (
ASN1MessageBuf f er & nsgBuf, ASNLT_Per sonnel Recor d& dat a) ;

ASN1C_Per sonnel Record (ASNLC_Per sonnel Record& original);

ASNLT_Personnel Recor d& get Copy (ASNLT_Per sonnel Recor d*
pDstData = 0);

ASNLT_ Per sonnel Record* newCopy ();

i nl i ne ASN1C _Per sonnel Recor d&
operat or= (ASNLC Per sonnel Recor d& srcDat a)
{

srcDat a. get Copy (&nrsgDat a) ;
return *this;

278

Additional Generated Functions

}
bl

The generated ASN1T<name> structure will also contain an additional copy constructor if C++ is used and PDU
generation is not disabled. A destructor is aso generated if the type contains dynamic memory fields. This destructor
will free the dynamic memory upon destruction of the type instance.

For example:

typedef struct EXTERN ASNLT_Personnel Record : public ASNLTPDU {

ASNLT Personnel Record () {
m uni Present = O;
m seqOf seqPresent = O;
}
ASNLT_Per sonnel Record (ASNLC Personnel Record& srcbDat a) ;
~ASNLT Per sonnel Record();
} ASNLT_Personnel Recor d;

This constructor is used to create an instance of the ASN1T _<name> type from an ASN1C <name> control class
object.

Memory Management of Copied Items

Prior to ASN1C version 5.6, dynamic memory of decoded or copied items would only be available as long as the
control class instance and/or the message buffer object used to decode or copy the item remained in scope or was not
deleted. This restriction no longer exists as long as the type being copied is a Protocol Data Unit (PDU). The copied
item will now hold a reference to the context variable used to create the item and will increment the item’s reference
count. Thisreferenceis contained in the ASN1TPDU base class variable from which PDU data types are now derived.
The dynamic memory within the item will persist until theitem is deleted.

Generated Test Functions

The -genTest option causes test functions to be generated. These functions can be used to populate variables of
generated types with random test data. The main purpose is to provide a code template to users for writing code to
populate variables. Thisis quite useful to users because generated data types can become very complex asthe ASN.1
schemas become more complex. It is sometimes difficult to figure out how to navigate all of the lists and pointers.
Using —genTest can provide code that simply has to be modified to accomplish the population of a data variable with
any type of data.

The generated test functions are written to a.c or .cpp file with aname of the following format:
<asnlModul eNanme>Test . c

where <asnlModuleName> is the name of the ASN.1 module that contains the type definitions. The format of the
name of each generated test function is as follows:

asnlTest [<prefi x>] <pr odNane>

where <pr odNane> isthe name of the ASN.1 production for which the function is being generated and <pr ef i x>
is an optional prefix that can be set via a configuration file setting. The configuration setting used to set the prefix
is the <typePrefix> element. This element specifies a prefix that will be applied to all generated typedef names and
function names for the production.

The calling sequence for each generated test function is as follows:

279

Additional Generated Functions

<typeNane>* pval ue = <testFunc> (OSCTXT* pctxt)
In this definition, <testFunc> denotes the formatted function name defined above.

Thepct xt argument is used to hold a context pointer to keep track of dynamic memory allocation parameters. This
isabasic "handle" variable that is used to make the function reentrant so that it can be used in an asynchronous or
threaded application. The user is required to supply a pointer to a variable of this type declared somewhere in his or
her program. The variable must have been previoudly initialized using the rtInitContext run-time function.

The pval ue argument is a pointer to hold the populated data variable. This variable is of the type generated for
the ASN.1 production. The test function will automatically allocate dynamic memory using the run-time memory
management for the main variable aswell as variable length fields within the structure. Thismemory istracked within
the context structure and is released when the context structureis freed.

In the case of C++, amethod is added to the generated control class for test code generation. The name of this method
isgenTestl nstance. The prototypeis as follows:

<typeNane>* pval ue = <obj ect>. genTest| nstance();

where <typeName> is the ASN1T_<name> type name of the generated type and <object> is an instance of the
ASNI1C <name> generated control class.

Generated Sample Programs

In addition to test functions, it is possible to generate writer and reader sample programs. These programs contain
sample code to popul ate and encode an instance of ASN.1 data and then read and decode this data respectively. These
programs are generated using the -genwriter and -genreader command-line switches.

280

Chapter 20. Event Handler Interface

The—eventscommand line switch causes hooksfor user-defined event handlersto beinserted into the generated decode
functions. What these event handlers do is up to the user. They fire when key message-processing events or errors
occur during the course of parsing an ASN.1 message. They are similar in functionality to the Simple API for XML
(SAX) that was introduced to provide a simple interface for parsing XML messages.

The -notypes option can be used in conjunction with the -events option to generate pure parsing functions. In this case,
no C typesor encode or decode functions are generated for the productionswithin the given ASN.1 sourcefile. Instead,
only aset of parser functions are generated that invoke the event handler callback functions. This gives the user total
control over what is done with the message data. Data that is not needed can be discarded and only the parts of the
message needed for a given application need to be saved.

How it Works

Users of XML parsers are probably aready quite familiar with the concepts of SAX. Significant
events are defined that occur during the parsing of a message. As a parser works through a message,
these events are ‘fired as they occur by invoking user defined callback functions. These callback
functions are also known as event handler functions. A diagram illustrating this parsing process is as

POQO

ASIN.1 MESSAGE

Parser {
— decode

follows:

The events are defined to be significant actions that occur during the parsing process. We will define the following
events that will be passed to the user when an ASN.1 messageis parsed:

1. startElement — This event occurs when the parser moves into a new element. For example, if we have a
SEQUENCE({ a, b, c} construct (type names omitted), this event will fire when we begin parsing a, b, and c. The
name of the element is passed to the event handling callback function.

2. endElement — This event occurs when the parser leaves a given element space. Using the example above, these
would occur after the parsing of a, b, and ¢ are complete. The name of the element is once again passed to the
event handling callback function.

3. contentsmethods— A series of virtual methods are defined to passall of the different types of primitive values that
might be encountered when parsing a message (see the event handler class definition below for acompletelist).

4, error — This event will be fired when a parsing error occurs. It will provide fault-tolerance to the parsing process
asit will give the user the opportunity to fix or ignore errors on the fly to allow the parsing process to continue.

281

ASN.1
function)

Event Handler Interface

In C++, these events are defined as unimplemented virtual methods in two base classes: Asn1NamedEventHandler (the
first 3events) and Asnl1ErrorHandler (theerror event). These classes aredefined inthe asn1CppEvtHndir.h header file.

In C, thefirst 3 event types are contained within a struct, Asn1NamedCEventHandler, defined in asn1CEvtHndIr .h, as
consisting of function pointers. The error event, however, is not part of this struct and must be defined separately.

The start and end element methods are invoked when an element is parsed within a constructed type. The start method
isinvoked as soon as the tag/length is parsed in a BER message or the preamble/length is parsed in a PER message.
The end method is invoked after the contents of the field are processed. The signature of these methods, in C++, is
asfollows:

virtual void startEl enent (const char* name, int index) = O;
virtual void endEl enent (const char* nane, int index) = O;

andin C:

typedef void (*rtxStartEl ement) (const char* nanme, int idx) ;
typedef void (*rtxEndEl enent) (const char* nane, int idx) ;

The name argument isused passthe element name. Theindex argument isused for SEQUENCE OF/SET OF constructs
only. It is used to pass the index of theitem in the array. This argument is set to —1 for all other constructs.

There is one contents method for passing each of the ASN.1 data types. Some methods are used to handle several
different types. For example, the charValue method is used for values of all of the different character string types
(IA5String, NumericString, PrintableString, etc.) aswell asfor big integer values. Note that this method is overl oaded.
The second implementation is for 16-bit character strings. These strings are represented as an array of unsigned short
integersin ASN1C. All of the other contents methods correspond to a single equivalent ASN.1 primitive type.

The C++ error handler base class has a single virtual method that must be implemented. Thisis the error method and
this has the following signature:

virtual int error (OSCTXT* pCtxt, ASNLCCB* pCCB, int stat) = O;
The C error handler function, unlike the other eventsin C, is not contained within a struct. Its signature is as follows:
typedef int (*rtErrorHandler) (OSCTXT *pctxt, ASNICCB *pCCB, int stat);

In these definitions, pCtxt and pctxt are pointers to the standard ASN.1 context block that should already be familiar.
The pCCB structure is known as a “ Context Control Block”. This can be thought of as a sub-context used to control
the parsing of nested constructed types within a message. It isincluded as a parameter to the error method mainly to
allow access to the “segx” field. This is the sequence element index used when parsing a SEQUENCE construct. If
parsing a particular element isto be retried, thisitem must be decremented within the error handler.

How to Use It

In both C and C++, two things must be done to define event handlers:

1. InC++, one or more new classes must be derived from the Asn1NamedEventHandler and/or the Asn1ErrorHandler
base classes. All pure virtual methods must be implemented.

In C, afunction with an appropriate signature must be created for each function pointer in the struct; the behavior
of null function pointersis undefined. The error handler function, if oneis desired, must also be defined.

2. Objectsof theseclasses(or in C, aninstance of the Asn1NamedCEventHandler struct) must be created and registered
prior to calling the generated decode method or function.

282

Event Handler Interface

The best way to illustrate this procedure is through examples. We will first show a C++ and then a C version of a
simple event handler application to provide a customized formatted printout of the fieldsin a PER message. Then we
will show asimple error handler that will ignore unrecognized fields in a BER message.

Example 1: A Formatted Print Handler (C++)

The ASNI1C evaluation and distribution kits include a sample program for doing a formatted print of parsed data.
This code can be found in the cpp/sample_per/eventHandler directory. Parts of the code will be reproduced here for
reference, but refer to this directory to see the full implementation.

The format for the printout will be simple. Each element name will be printed followed by an equal sign (=) and an
open brace ({) and newline. The value will then be printed followed by another newline. Finally, a closing brace (})
followed by another newline will terminate the printing of the element. An indentation count will be maintained to
allow for a properly indented printout.

A header file must first be created to hold our print handler class definition (or the definition could be added to an
existing header file). Thisfile will contain a class derived from the Asn1NamedEventHandler base class as follows:

class PrintHandler : public AsnlNanedEvent Handl er {

pr ot ect ed:
const char* mvar Nane;
i nt m ndent Spaces;

public:
Pri nt Handl er (const char* var Nane);
~Print Handl er ();
voi d indent ();
virtual void startEl enent (const char* nane, int index = -1);
virtual void endEl ement (const char* name, int index = -1);
virtual void bool Val ue (OSBOOL val ue);

other virtual contents nethod decl arations

}

In this definition, we chose to add the mVarName and mlndentSpaces member variables to keep track of these items.
The user is free to add any type of member variables he or she wants. The only firm requirement in defining this
derived class is the implementation of the virtual methods.

We implement these virtual methods as follows:
In startElement, we print the name, equal sign, and opening brace:

void PrintHandl er::startEl enent (const char* nane, int index)
{

i ndent () ;

printf (“% = {\n”, nanme);

m ndent Level ++;

}

In this simplified implementation, we simply indent (this is another private method within the class) and print out the
name, egqual sign, and opening brace. We then increment the indent level. Note that thisis a highly simplified form.
We don’t even bother to check if the index argument is greater than or equal to zero. This would determine if a‘[X]’
should be appended to the element name. In the sample program that is included with the compiler distribution, the
implementation is compl ete.

In endElement, we simply terminate our brace block as follows:

283

Event Handler Interface

voi d PrintHandl er::endEl ement (const char* nane, int index)
{

m ndent Level - -;

i ndent ();

printf (“}\n”);
}

Next, we need to create an object of our derived class and register it prior to invoking the decode method. In the
reader.cpp program, the following lines do this:

/1l Create and register an event handl er object

new Pri nt Handl er
(pHandl er);

Print Handl er* pHandl er =
decodeBuf f er. addEvent Handl er

("empl oyee");

The addEventHandler method defined in the Asn1lMessageBuffer base class is the mechanism used to do this. Note
that event handler objects can be stacked. Several can be registered before invoking the decode function. When thisis
done, the entire list of event handler objects is iterated through and the appropriate event handling callback function
invoked whenever a defined event is encountered.

The implementation is now complete. The program can now be compiled and run. When this is done, the resulting
output is as follows:

enpl oyee = {
nane = {
gi venNane = {
"John"
}
initial = {
" pr
}
fam | yName = {
“Sm th"
}

This can certainly be improved. For one thing it can be changed to print primitive values out in a “name = value’
format (i.e., without the braces). But this should provide the general idea of how it is done.

Example 2: A Formatted Print Handler (C)
Aswith the C++ version, a C version of the sampleis available in the c/sample_per/eventHandler directory.

A header file containing all function declaratios must be created. In this example, an
initializePrintHandler (Asn1NamedCEventHandler *printHandler, const char* varname) function is also declared,
which will be used to populate the Asn1NamedCEventHandler struct:

AsnlNanmedCEvent Handl er pri nt Handl er;

void initializePrintHandl er
(AsnlNanmedCEvent Handl er *pri nt Handl er,

void finishPrint();

const char* varnane);

void indent ();
void printStartEl enent (const char* name, int index);
voi d print EndEl enent (const char* nanme, int index);

284

Event Handler Interface

voi d printBool Val ue (OSBOOL val ue);
void printlntValue (OSINT32 val ue);

A corresponding *.c file (printHandler.c, in this case) contains the definitions of these functions:

static int gs_Indent Spaces;

void initializePrintHandl er
(AsnlNanedCEvent Handl er *print Handl er, const char* var nane)

{
print Handl er->start El ement = &printStartEl enment;
print Handl er - >endEl ement = &pri nt EndEl enent ;
print Handl er - >bool Val ue = &pri nt Bool Val ue;
print Handl er - >i nt Val ue = &printlntVal ue;

}

void printStartEl enent (const char* name, int index)

{
i ndent ();
printf (nane);
if (index >= 0) printf ("[%]", index);
printf (" = {\n");
gs_I ndent Spaces += 3;
}
voi d print EndEl enent (const char* nanme, int index)
{
gs_I ndent Spaces -= 3;
i ndent ();
printf ("}\n");
}

Asin Example 1, avariable gs_IndentSpaces is used to keep track of indentation.

Next, the reader program will need to create an AsnlNamedCEventHandler variable, populate it (via
initializePrintHandler), and add it to the decode context:

int main (int argc, char** argv)

{
Per sonnel Record enpl oyee;
OSCTXT ct xt;
int i, len, stat;

285

Event Handler Interface

AsnlNanmedCEvent Handl er pri nt Handl er;
ASNLTAG t ag;

/[* initialize print handler */
initializePrintHandl er(&printHandl er, "enpl oyee");

/* Add event handler to list */
rt AddEvent Handl er (&ctxt, &printHandl er);

/* Call conpiler generated decode function */
stat = asnlD Personnel Record (&ctxt, &enployee, ASNLEXPL, O0);

ThertAddEventHandler function used to push the event handler into the decode context isdefined in asn1CEvtHndlIr .h.
This can be done multiple times, as with C++, and every event will trigger the appropriate callback function of each
event handler.

Example 3: An Error Handler

Despite the addition of things like extensibility and version brackets, ASN.1 implementations get out-of-sync. For
situations such as this, the user needs some way to intervene in the parsing process to set things straight. This is
faulttolerance — the ability to recover from certain types of errors.

The error handler interface is provided for this purpose. The concept is simple. Instead of throwing an exception and
immediately terminating the parsing process, auser defined callback functionisfirst invoked to allow the user to check
the error. If the user can fix the error, al he or she needs to do is apply the appropriate patch and return a status of 0.
The parser will be none the wiser. It will continue on thinking everything isfine.

This interface is probably best suited for recovering from errorsin BER or DER instead of PER. The reason is the
TLV format of BER makes it relatively easy to skip an element and continue on. It is much more difficult to find
these boundariesin PER.

Our example can be found in the cpp/sample_ber/errorHandler subdirectory. In this example, we have purposely
added a bogus element to one of the constructs within an encoded employee record. The error handler will be invoked
when this element is encountered. Our recovery action will simply beto print out awarning message, skip the element,
and continue.

Asbefore, thefirst step isto create a class derived from the Asn1ErrorHandler base class. This classis asfollows:

cl ass MyErrorHandl er : public AsnlErrorHandl er {
publi c:

/1 The error handler callback method. This is the method
/1 that the user must override to provide custom zed
/1 error handling..

virtual int error (OSCTXT* pCtxt, ASNLICCB* pCCB, int stat);
b

Simple enough. All we are doing is providing an implementation of the error method.

286

Event Handler Interface

Implementing the error method requires some knowledge of the run-time internals. In most cases, it will be necessary
to somehow alter the decoding buffer pointer so that the same field isn't looked at again. If this isn’t done, an
infinite loop can occur as the parser encounters the same error condition over and over again. The run-time functions
xd_NextElement or xd_OpenType might be useful in the endeavor as they provide a way to skip the current element
and move on to the next item.

Our sample handler corrects the error in which an unknown element is encountered within a SET construct. Thiswill
causetheerror statusASN_E NOTINSET to begenerated. Whenthe error handler seesthisstatus, it printsinformation
on the error that was encountered to the console, skipsto the next element, and then returns an O status that allows the
decoder to continue. If some other error occurred (i.e., status was not equal to ASN_E_NOTINSET), then the origina
status is passed out which forces the termination of the decoding process.

The full text of the handler is as follows:

int MyErrorHandler::error (OSCTXT* pCtxt, ASNLCCB* pCCB, int stat)
{

/1 This handler is set up to ook explicitly for ASN_E_NOTI NSET
/1 errors because we know the SET mi ght contain some bogus el ements..

if (stat == ASN_E_NOTI NSET) {
/1 Print information on the error that was encountered

printf ("decode error detected:\n");
rtErrPrint (pCtxt);
printf ("\n");

/1 Skip el ement
xd_Next El emrent (pCtxt);
/1 Return an OK status to indicate parsing can continue

return O;

}

el se return stat; // pass existing status back out

}

Now we need to register the handler. Unlike event handlers, only asingle error handler can be registered. The method
to do this in the message buffer class is setErrorHandler. The following two lines of code in the reader program
register the handler:

MyEr r or Handl er errorHandl er;

decodeBuffer. set ErrorHandl er (&errorHandl er);

The error handlers can be as complicated as you need them to be. Y ou can use them in conjunction with event handlers
in order to figure out where you are within a message in order to look for a specific error at a specific place. Or you
can be very generic and try to continue no matter what.

It should be noted that implementing an error handler in C does not involve a struct at al. It is only necessary to
implement a function with the appropriate signature (specified above) and to pass a pointer to it to the decode buffer.
So, with aerror handler function:

287

Event Handler Interface

static int nyErrorHandl er (OSCTXT *pctxt, ASNLCCB *pCCB, int stat) ({
/1 Error-handling code goes here...
}

the function is set in the decode context by calling:

rt Set Error Handl er (&ct xt, &myErrorHandl er);
where ctxt isan OSCTXT.
Also, just asin C++, there can be only one error handler set at atime.
Example 4: A Pure Parser to Convert PER-encoded Datato XML

A pure-parser is created by using the -notypes option along with the -events option. In this case, no backing data types
to hold decoded data are generated. Instead, parsing functions are generated that store the datainternally within local
variables inside the parsing functions. This data is dispatched to the callback functions and immeditely disposed of
upon return from the function. It isup to the user to decide inside the callback handler what they want to keep and they
must make copies at that time. The result is a very fast and low-memory consuming parser that is idea for parsing
messages in which only select parts of the messages are of interest.

Another use case for pure-parser functions is validation. These functions can be used to determine if a PER message
is valid without going through the high overhead operation of decoding. They can be used on the front-end of an
application to reject invalid messages before processing of the messages is done. In some cases, this can result in
significantly increased performance.

An example of a pure-parser can be found in the cpp/sample_per/per2xmlEH directory. This program uses a pure-
parser to convert PER-encoded data into XML. The stepsin creating an event handler are the same as in Example 1
above. Animplementation of the Asn1NamedEventHandler interface must be created. ThisisdoneinthexmlHandler.h
and xmlHandler.cpp files. A detailed discussion of this code will not be provided here. What it does in a nutshell
is adds the angle brackets (< >) around the element names in the startElement and endElement callbacks. The data
callbacks simply output atextual representation of the data asthey do in the print handler case.

The only difference in reader.cpp from the other examples is that:

1. Thereisno declaration of an employeevariableto hold decoded databecause no typefor thisvariablewasgenerated,
and

2. TheParsemethodisinvoked instead of the Decode method. Thisisthe generated method definition for apureparser.
If one examines the generated class definitions, they will see that no Encode or Decode methods were generated.

Compiling and running this program will show the encoded PER message written to stdout as an XML message. The
resulting message is also saved in the message.xml file.

288

Chapter 21. IMPORT/EXPORT of Types

ASNIC alows productions to be shared between different modules through the ASN.1 IMPORT/EXPORT
mechanism. The compiler parses but ignores the EXPORTS declaration within a module. As far as it is concerned,
any type defined within amoduleis available for import by another module.

When ASN1C sees an IMPORT statement, it first checks its list of loaded modules to see if the module has aready
been loaded into memory. If not, it will attempt to find and parse another source file containing the module. Thelogic
for locating the sourcefile is as follows:

1. Theconfiguration file (if specified) ischecked for a<sourceFile> element containing the name of the sourcefilefor
the module. Note that the <oid> configuration item can be used to distinguish modules that have the same names
but different object identifiers.

2. If thiselement is not present, the compiler looks for afile with the name <M oduleName>.asn where module name
is the name of the module specified in the IMPORT statement.

In both cases, the —| command line option can be used to tell the compiler where to ook for the files.

The other way of specifying multiple modulesisto include them all within asingle ASN.1 sourcefile. It ispossibleto
have an ASN.1 source file containing multiple module definitions in which modules IMPORT definitions from other
modules. An example of this would be the following:

Modul eA DEFI NI TIONS ::= BEG N
| MPORTS B From Mbdul eB;

A::=B

END

Modul eB DEFINITIONS ::= BEG N
B ::= I NTEGER

END

This entire fragment of code would be present in asingle ASN.1 sourcefile.

289

Chapter 22. ROSE and SNMP Macro
Support

The ASN1C compiler has aspecial processing mode that contains extensions to handle itemsin the older 1990 version
of ASN.1 (i.e. the now deprecated X.208 and X.209 standards). This mode is activated by using the -asnstd x208
command-line option.

Although the X.208 and X.209 standards are no longer supported by the ITU-T, they are still in usetoday. Thisversion
of ASN1C contains logic to parse some common MACRO definitions that are still in widespread use despite the fact
that MACRO syntax was retired with this version of the standard. The types of MACRO definitionsthat are supported
are ROSE OPERATION and ERROR and SNMP OBJECT-TY PE.

ROSE OPERATION and ERROR

ROSE stands for ""Remote Operations Service Element" and defines a request/response transaction protocol in which
requests to a conforming entity must be answered with the result or errors defined in operation definitions. Variations
of thisare used in a number of protocolsin use today including CSTA and TCAP.

The definition of the ROSE OPERATION MACRO that is built into the ASN1C is as follows:

OPERATI ON MACRO :: =
BEG N
TYPE NOTATI ON
VALUE NOTATI ON

Paraneter Result Errors LinkedQperations
val ue (VALUE | NTEGER)

Par aret er = ArgKeyword NanedType | enpty

Ar gKeywor d = "ARGUVMVENT" | " PARAMETER'

Resul t = "RESULT" ResultType | enpty

Errors = "ERRORS" "{"ErrorNanmes"}" | enpty

Li nkedQOper ati ons = "LINKED" "{"LinkedQOperationNanmes"}" | enpty

Resul t Type = NanedType | enpty

Err or Nanes = ErrorList | enpty

ErrorList = Error | ErrorList "," Error

Error = val ue(ERROR) -- shall reference an error val ue
| type -- shall reference an error type

-- if no value is specified

Li nkedQper ati onNames ::= COperationList | enpty

Oper ati onLi st = Qperation | OperationList "," Operation
Operation = val ue(OPERATION) -- shall reference an op val ue
| type -- shall reference an op type
-- if no value is specified
NamedType = identifier type | type
END

This MACRO does not need to be defined in the ASN.1 specification to be parsed. In fact, any attempt to redefine this
MACRO will beignored. Its definition is hard-coded into the compiler.

The compiler uses this definition to parse types and values out of OPERATION definitions. An example of an
OPERATION definition is as follows:

| ogi n OPERATI ON
ARGUMENT SEQUENCE { usernane | A5String, password [A5String }

290

ROSE and SNMP Macro Support

RESULT SEQUENCE { ticket OCTET STRI NG wel coneMessage | A5String }
ERRORS { authenticationFailure, insufficientResources }
=1

In this case, there are two embedded types (an ARGUMENT type and a RESULT type) and an integer value (1) that
identifies the OPERATION. There are also error definitions.

The ASN1C compiler generates two types of items for the OPERATION:

1. It extractsthe type definitions from within the OPERATION definitions and generates equivalent C/C++ structures
and encoders/decoders, and

2. It generates value constants for the value associated with the OPERATION (i.e., the value to the right of the "::='
in the definition).

The compiler does not generate any structures or code related to the OPERATION itself (for example, code to encode
the body and header in a single step). The reason is because of the multi-layered nature of the protocal. It is assumed
that the user of such a protocol would be most interested in doing the processing in multiple stages, hence no single
function or structure is generated.

Therefore, to encode the login example the user would do the following:

1. At the application layer, the Login ARGUMENT structure would be populated with the username and password
to be encoded.

2. The encode function for Login_ ARGUMENT would be called and the resulting message pointer and length would
be passed down to the next layer (the ROSE layer).

3. At the ROSE layer, the Invoke structure would be populated with the OPERATION value, invoke identifier, and
other header parameters. The parameter.numocts value would be populated with the length of the message passed
in from step 2. The parameter.data field would be populated with the message pointer passed in from step 2.

4. The encode function for Invoke would be called resulting in a fully encoded ROSE Invoke message ready for
transfer across the communications link.

The following is a picture showing this process:

Application Layer Populate specific message structure (Login. ARGUMENT) and encode.
* Encoded message pointer and length
g Populate ROSE header message structure (Invoke) and encode.
R(.]BE La\"E‘I‘ 0] ck\._ : L- L‘L k .._L”- C L.' __UL s LL:._-ULL - B
. Open type structure contains message pointer and length from previous step.

* Final encoded message

On the decode side, the process would be reversed with the message flowing up the stack:

1. At the ROSE layer, the header would be decoded producing information on the OPERATION type (based on the
MACRO definition) and message type (Invoke, Result, etc..). Theinvokeidentifier would also be available for use
in session management. In our example, we would know at this point that we got alogin invoke request.

291

ROSE and SNMP Macro Support

2. Based on the information from step 1, the ROSE layer would know that the Open Type field contains a pointer
and length to an encoded Login ARGUMENT component. It would then route this information to the appropriate
processor within the Application Layer for handling this type of message.

3. TheApplication Layer would call the specific decoder associated with the Login. ARGUMENT. It would then have
available to it the username/password the user is logging in with. It could then do whatever applicationspecific
processing is required with thisinformation (database lookup, etc.).

4. Finadly, the Application Layer would begin the encoding process again in order to send back a Result or Error
message to the Login Request.

A picture showing thisis as follows:

Application Layer Call specific function to decode Login. ARGUMENT and process data.

4 Encoded message pointer and length

Decode ROSE header message structure (Invoke).
Open type structure contains message pointer and length of encoded

Login. ARGUMENT.

+ Encoded ROSE message

Thelogin OPERATION also contains references to ERROR definitions. These are defined using a separate MACRO
that is built into the compiler. The definition of this MACRO is as follows:

ROSE Layer

ERROR MACRO :: =
BEGA N

TYPE NOTATI ON Par amet er

VALUE NOTATI ON val ue (VALUE | NTECER)

Par anet er .. = "PARAMETER' NanedType | enpty

NanedType identifier type | type

END

In this definition, an error is assigned an identifying number as well as on optional parameter type to hold parameters
associated with the error. An example of areference to this MACRO for theaut hent i cati onFai | ur e errorin
the login operation defined earlier would be as follows:

applicationError ERROR
PARAVETER SEQUENCE {
errorText | A5String

The ASN1C compiler will generate a type definition for the error parameter and a value constant for the error value.
The format of the name of the type generated will be "<name> PARAMETER" where <name> is the ERROR name

292

ROSE and SNMP Macro Support

(applicationError in this case) with the first |etter set to uppercase. The name of the value will simply be the ERROR
name.

SNMP OBJECT-TYPE

The SNMP OBJECT-TYPE MACRO is one of severa MACROs used in Management Information Base (MIB)
definitions. It is the only MACRO of interest to ASN1C because it is the one that specifies the object identifiers and
data that are contained in the MIB.

The version of the MACRO currently supported by this version of ASN1C can be found in the SMI Version 2 RFC
(RFC 2578). The compiler generates code for two of the items specified in this MACRO definition:

1. The ASN.1 typethat is specified using the SYNTAX command, and
2. The assigned OBJECT IDENTIFIER vaue
For an example of the generated code, we can look at the following definition from the UDP MIB:

udpl nDat agr ams OBJECT- TYPE
SYNTAX Count er 32
MAX- ACCESS read-only
STATUS current
DESCRI PTI ON
"The total nunber of UDP datagrams delivered to UDP users."
o= { udp 1}

In this case, a type definition is generated for the SYNTAX element and an Object Identifier value is generated for
the entire item. The name used for the type definition is "<name> SYNTAX" where <name> would be replaced
with the OBJECT-TY PE name (i.e., udplnDatagrams). The name used for the Object Identifier value constant is the
OBJECTTY PE name. So for the above definitions, the following two C items would be generated:

t ypedef Counter32 udpl nDat agr ans_SYNTAX;

ASN1OBJI D udpl nDat agrans = {
81

{1, 3 6, 1, 2, 1, 7, 1}
}o

293

Appendix A. ASN1C Error Codes

This appendix describes all of the status codes that may be returned during code generation and program execution in
three sections. The first contains errors that might arise when generating code from an input ASN.1 or XML schema.
Runtime error messages are divided into two sections: the first for errors that are independent of the underlying
encoding, like socket read errors or end of buffer messages, and the second for errors related specifically to ASN.1
encodings, like invalid object identifiers or bad tag values.

The runtime error messages may be found in the runtime documentation as well. Users may look at rt xsrc/
rt xErr Codes. handrtsrc/asnlErr Codes. h for up-to-date lists of what may be returned.

Code Generation Error Messages

Thefollowing table describes error messages that ASN1C may report during the course of code generation, not during
runtime. These include syntax errors, import warnings, type resolution failures, and others.

There are several classes of status messagesin thislist: errors (ASN- E messages), warnings (ASN- Wmessages), and
informational notices (ASN- | messages).

Error Code

Error Description

ASN-E-NOTYPE

No type was defined for the referenced element in a SEQUENCE or
SET.

ASN-E-UNDEFTY PE

Thetypereferenced was not defined within the context of thismodule.

ASN-E-NOTAG

The object must be tagged in this context. This usually occurs when
context-specific tags are required to disambiguate elements in a
SEQUENCE or SET.

ASN-W-DUPLICATE

The referenced type or value was previously defined.

ASN-W-DUPLTAG

The referenced tag was previously defined in a CHOICE or SET; this
happens when an contextual tag is provided more than once.

ASN-E-UNRECTYP

The type described is not recognized by the compiler.

ASN-E-MULTDEF

A choice tag has multiple definitions.

ASN-E-UNDEFVAL

The referenced value is not defined or cannot be found.

ASN-E-INVTYPNAM

Invalid type name. Thisisaparsing failure; all type names must begin
with an uppercase | etter.

ASN-E-UNDEFTAG

The referenced type must be tagged in this context.

ASN-E-UNKNOWN

Undocumented error occurred in routine. A status value is provided
with this error message to help locate the cause of the failure.

ASN-I-NOCASE

A case statement for the named object was not generated.

ASN-E-IMPFILOPN

The compiler was unable to open the named import file.

ASN-E-IMPFILPAR

The compiler was unable to parse the named imported module.

ASN-E-IMPNOTFOU

The named type was not found in the import module as specified in
the IMPORT statement.

ASN-E-INVCNSTRNT

Invalid constraint specification.

ASN-W-INVOBINAM

Invalid object name. The object name must begin with a lowercase
letter.

ASN-E-SETTOOBIG

Set contains more than 32 elements.

294

ASNI1C Error Codes

Error Code

Error Description

ASN-E-DUPLCASE

Thistag was used in a previous switch case statement.

ASN-E-AMBIGUOUS

Thisindicatesageneral ambiguity inthe specification such asmultiple
embedded extensible elements.

ASN-E-VALTYPMIS

This indicates the value specified does not match the type it is
associated with.

ASN-E-RANGERR

This indicates the value is not within defined range for its associated
type.

ASN-E-VALPARSE

This indicates a general failure to parse a value definition. 1t would
be raised, for example, if afloating point number was used as part of
a SIZE constraint.

ASN-E-INVRANGE

This indicates an invalid range specification, for example when the
lower bound is greater than the upper bound.

ASN-E-IMPORTMOD

This indicates that the specified import module object was not found.

ASN-E-NOTSUPP

This indicates that the requested functionality is not supported by the
compiler. Most often the error is raised when generating test code for
complex value definitions.

ASN-E-IDNOTFOU

This indicates the compiler was unable to look up the specified
identifier.

ASN-E-NOFIELD

Thisindicates that the specified field could not be found in the named
class.

ASN-E-DUPLNAME

Thisindicates the specified name is aready defined.

ASN-W-UNNAMED

Thiswarning is raised when specifications use unnamed fields. These
fields not allowed in X.680, but ASN1C supports them for purposes
of backwards compatibility with X.208.

ASN-E-UNDEFOBJ

This indicates that the named object is not defined within context of
the requested module.

ASN-E-ABSCLSFLD

Thisindicatesthat the specified field isabsent in an information object
definition.

ASN-E-UNDEFCLAS

Thisindicates that the specified classis not defined within context of
the module that usesit.

ASN-E-INVFIELD

Thisindicates the specified classfield isnot valid; it must be defined.

ASN-E-UNDEFOSET

Thisindicates that ASN1C was unable to find the specified object set
in the context of the module in which it's used.

ASN-E-INVVALELM

Aninvalid value was supplied for an element in atype.

ASN-E-MISVALELM

This indicates that a non-optional element is missing a value when it
should have one.

ASN-E-INVLIDENT

This indicates that an invalid identifier was specified in an
enumeration.

ASN-E-FILNOTFOU

Thisindicates that the requested file was not found.

ASN-E-INVSIZE

This indicates that an invalid size specification for a type was
provided; check size constraints for base types.

ASN-E-UNRESOBJ

This indicates that the specified information object could not be
resolved within the context of the named module.

295

ASNI1C Error Codes

Error Code

Error Description

ASN-E-TOOMANY

Thisindicates that too many sub-elements for the specified type were
provided.

ASN-E-LOOPDETECTED

This indicates a loop was detected in the course of code generation;
typicaly thisis raised during test code generation.

ASN-E-INVXMLATTR

This indicates that the specified attribute type must be a simple type.

ASN-E-INTERNAL

This indicates that internal structures used for generating code are
inconsistent.

ASN-E-NOPDU

This indicates that a PDU type was not found for generating a reader
or writer program.

ASN-E-TIMSETNAM

Thisindicates aninvalid TIME SETTING name.

ASN-E-TIMSETVAL

Thisindicates an invalid value for agiven TIME SETTING.

ASN-E-FILNOTCRE

Thisindicates the given file could not be created.

ASN-E-XERRESTR

This indicates an XER encoding instruction violates the restrictions
on the use of that instruction.

ASN-E-XERCOOCCUR

Thisindicates two XER encoding instructions are illegally beingused
together.

ASN-E-NOCONFIG

Thisindicates that a 3G IEl is missing configuration information.

ASN-W-CHARENC

This indicates that a type is being assumed to be "character-
encodeable" for the purpose of XER encoding.

ASN-W-NOTCHARENC

This indicates that a type is being assumed to be NOT "character-
encodeable” for the purpose of XER encoding.

ASN-W-INCOMOPT

Thisisawarning about incompatible options.

ASN-W-DEPRECATED

Thisisawarning that a deprecated option was used.

ASN-E-INVOPT

Thisindicates an invalid option was used.

ASN-W-INVOPT

Thisisawarning that an invalid option was used.

ASN-W-MISSINGDIR

Thisisawarning that a directory is missing or could not be created.

ASN-W-FILEERR

Thisisawarning that afile could not be opened.

ASN-W-MISSINGARG

Thisisawarning that an option is missing an argument.

ASN-E-CIRCULAR

Thisindicates that a circular reference was detected.

ASN-E-JERRESTR

Thisindicates that a JER encoding instruction was used in away that
violates the restrictions on its use.

General Runtime Error Messages

Thefollowing table contains runtime status codes that may occur during program execution. Thesefailuresdo not arise
from ASN.1-specific features (such as an invalid PER encoding, for example), but buffer overflows, invalid socket

options, or closed streams.

Error Code Error Name Description

0 RT_OK Normal completion status.

2 RT_OK_FRAG Message fragment return status. This is returned when a
part of amessageis successfully decoded. The application

296

ASNI1C Error Codes

Error Code

Error Name

Description

should continue to invoke the decode function until azero
status is returned.

RTERR_BUFOVFLW

Encode buffer overflow. Thisstatus codeisreturned when
encoding into a static buffer and there is no space left for
the item currently being encoded.

RTERR_ENDOFBUF

Unexpected end-of-buffer. This status code is returned
when decoding and the decoder expects more data to be
availablebut instead runsinto the end of the decode buffer.

RTERR_IDNOTFOU

Expected identifier not found. Thisstatusisreturned when
the decoder is expecting a certain element to be present
at the current position and instead something different
is encountered. An example is decoding a sequence
container typeinwhich the declared elementsare expected
to bein the given order. If an element is encountered that
is not the one expected, this error is raised.

RTERR_INVENUM

Invalid enumerated identifier. Thisstatusisreturned when
an enumerated value is being encoded or decoded and
the given value is not in the set of values defined in the
enumeration facet.

RTERR_SETDUPL

Duplicate element in set. Thisstatus codeisreturned when
decoding an ASN.1 SET or XSD xsd:al construct. It is
raised if a given element defined in the content model
group occurs multipletimesin theinstance being decoded.

RTERR_SETMISRQ

Missing required element in set. This status code is
returned when decoding an ASN.1 SET or XSD xsd:all
construct and all required elements in the content model
group are not found to be present in the instance being
decoded.

RTERR_NOTINSET

Element not in set. This status code is returned when
encoding or decoding an ASN.1 SET or XSD xsd:al
construct. When encoding, it occurs when a value in the
generated _order member variable is outside the range of
indexes of items in the content model group. It occurs on
the decode side when an element is received that is not
defined in the content model group.

RTERR_SEQOVFLW

Sequence overflow. This status code is returned when
decoding arepeating element (ASN.1 SEQUENCE OF or
X SD e ement with minmaxOccurs> 1) and moreinstances
of the element are received the content model group.

RTERR_INVOPT

Invalid option in choice. This status code is returned
when encoding or decoding an ASN.1 CHOICE or XSD
xsd:choice construct. When encoding, it occurs when a
value in the generated 't" member variable is outside the
range of indexes of items in the content model group. It
occurs on the decode side when an element isreceived that
is not defined in the content model group.

-10

RTERR_NOMEM

No dynamic memory available. This status code is
returned when a dynamic memory allocation request is

297

ASNI1C Error Codes

Error Code

Error Name

Description

made and an insufficient amount of memory is available
to satisfy the request.

-11

RTERR_INVHEXS

Invalid hexadecimal string. This status code is returned
when decoding a hexadecimal string value and a character
is encountered in the string that is not in the valid
hexadecimal character set ([0-9A-Fa-f] or whitespace).

-12

RTERR_INVREAL

Invalid real number value. This status code is returned
when decoding a numeric floating-point value and an
invalid character is received (i.e. not numeric, decimal
point, plus or minus sign, or exponent character).

-13

RTERR_STROVFLW

String overflow. This status code is returned when a
fixed-sized field is being decoded as specified by a size
constraint and the item contains more characters or bytes
then this amount. It can occur when a run-time function
is called with a fixed-sixed static buffer and whatever
operation is being done causes the bounds of this buffer
to be exceeded.

-14

RTERR_BADVALUE

Bad value. This status code is returned anywhere where
an APl is expecting a value to be within a certain range
and it not within thisrange. An exampleisthe encoding or
decoding date values when the month or day value is not
within the legal range (1-12 for month and 1 to whatever
the max days is for a given month).

-15

RTERR_TOODEEP

Nesting level too deep. Thisstatus codeisreturned when a
preconfigured maximum nesting level for elementswithin
acontent model group is exceeded.

-16

RTERR_CONSVIO

Constraint violation. This status code is returned when
constraints defined the schemaare violated. Theseinclude
XSD facets such as minmaxOccurs, minmaxLength,
patterns, etc.. Also ASN.1vauerange, size, and permitted
alphabet constraints.

-17

RTERR_ENDOFFILE

Unexpected end-of-file error. This status code is returned
when an unexpected end-of-file condition is detected
on decode. It is similar to the ENDOFBUF error code
described above except that in this case, decoding is being
done from afile stream instead of from a memory buffer.

-18

RTERR_INVUTF8

Invalid UTF-8 character encoding. This status code is
returned by the decoder when an invalid sequence of bytes
is detected in a UTF-8 character string.

-19

RTERR_OUTOFBND

Array index out-of-bounds. This status code is returned
when an attempt is made to add something to an array and
the given index is outside the defined bounds of the array.

RTERR_INVPARAM

Invalid parameter passed to a function of method. This
status code is returned by a function or method when it
doesaninitia check onthevaluesof parameterspassed in.
If aparameter isfound to not have avalue in the expected
range, this error code is returned.

298

ASNI1C Error Codes

Error Code

Error Name

Description

-21

RTERR_INVFORMAT

Invalid value format. This status code is returned when a
value is recelved or passed into a function that is not in
the expected format. For example, the time string parsing
function expects a string in the form "nn:nn:nn" where
n's are numbers. If not in this format, this error code is
returned.

-22

RTERR_NOTINIT

Context not initialized. This status code is returned when
the run-time context structure (OSCTXT) is attempted to
be used without having been initialized. This can occur
if rtxInitContext is not invoked to initialize a context
variable before usein any other API call. It can also occur
is there is a license violation (for example, evaluation
license expired).

-23

RTERR_TOOBIG

Vauewill not fitin target variable. This statusis returned
by the decoder when a target variable is not large enough
to hold a a decoded value. A typical case is an integer
value that is too large to fit in the standard C integer
type (typically a 32-bit value) on a given platform. If this
occurs, it is usualy necessary to use a configuration file
setting to force the compiler to use a different data type
for the item. For example, for integer, the <isBiglnteger>
setting can be used to force use of abig integer type.

RTERR_INVCHAR

Invalid character. This status code is returned when a
character is encountered that is not valid for a given data
type. For example, if aninteger valueisbeing decoded and
anon-numeric character is encountered, this error will be
raised.

-25

RTERR_XMLSTATE

XML state error. This status code is returned when the
XML parser

-26

RTERR_XMLPARSE

XML parser error. This status code in returned when the
underlying XML parser application (by default, this is
Expat) returns an error code. The parser error code or text
is returned as a parameter in is not in the correct state to
do acertain operation.

-27

RTERR_SEQORDER

Sequence order error. This status code is returned when
decoding an ASN.1 SEQUENCE or XSD xsd:sequence
construct. It is raised if the elements were received in
an order different than that specified the errInfo structure
within the context structure.

RTERR_FILNOTFOU

File not found. This status code is returned if an attempt
is made to open afile input stream for decoding and the
given file does not exist.

-29

RTERR_READERR

Read error. Thisstatus codeif returned if aread O error is
encountered when reading from an input stream associated
with aphysical device such asafile or socket.

-30

RTERR_WRITEERR

Write error. This status codeiif returned if awrite 1O error
isencountered when attempting to output datato an output

299

ASNI1C Error Codes

Error Code Error Name Description
stream associated with a physical device such as afile or
socket.

-31 RTERR_INVBASE64 Invalid Base64 encoding. This status code is returned
when an error is detected in decoding base64 data.

-32 RTERR_INVSOCKET Invalid socket. This status code is returned when an

attempt is made to read or write from a scoket and the
given socket handle isinvalid. This may be the result of
not having established a proper connection before trying
to use the socket handle variable.

-33 RTERR_INVATTR Invalid attribute. This status code is returned by the
decoder when an attribute is encountered in an XML
instance that was not defined in the XML schema.

-34 RTERR_REGEXP Invalid regular expression. This status code is returned
when a syntax error is detected in a regular expression
value. Details of the syntax error can be obtained by
invoking rtxErrPrint to print the details of the error
contained within the context variable.

-35 RTERR_PATMATCH Pattern match error. This status code is returned by the
decoder when avaluein an XML instance does not match
the pattern facet defined inthe XML schema. It canalso be
returned by numeric encode functionsthat cannot format a
numeric valueto match the pattern specified for that value.

-36 RTERR_ATTRMISRQ Missing required attribute. This status code is returned by
the decoder when an XML instance is missing a required
attribute value as defined in the XML schema.

-37 RTERR_HOSTNOTFOU Host name could not be resolved. This status code is
returned from run-time socket functions when they are
unable to connect to a given host computer.

-38 RTERR_HTTPERR HTTP protocol error. This status code is returned by
functions doing HTTP protocol operations such as SOAP
functions. It is returned when a protocol error is detected.
Details on the specific error can be obtained by calling

rtxErrPrint.

-39 RTERR_SOAPERR SOAP error. This status code when an error is detected
when tryingto execute a SOAP operation.

-40 RTERR_EXPIRED Evaluation license expired. This error is returned from

evaluation versions of the run-time library when the hard-
coded evaluation period is expired.

-41 RTERR_UNEXPELEM Unexpected element encountered. This status code is
returned when an element is encountered in a position
where something else (for example, an attribute) was
expected.

-42 RTERR_INVOCCUR Invalid number of occurrences. This status code is
returned by the decoder when an XML instance contains
a number of occurrences of a repeating element that is
outside the bounds (minOccursmaxQOccurs) defined for
the element in the XML schema.

300

ASNI1C Error Codes

Error Code

Error Name

Description

-43

RTERR_INVMSGBUF

Invalid message buffer has been passed to decode
or validate method. This status code is returned
by decode or validate method when the used
message buffer instance has type different from
OSMessageBufferlF::XMLDecode.

RTERR_DECELEMFAIL

Element decode failed. This status code and parameters
are added to the failure status by the decoder to allow the
specific element on which a decode error was detected to
be identified.

RTERR_DECATTRFAIL

Attribute decode failed. This status code and parameters
are added to the failure status by the decoder to allow the
specific attribute on which a decode error was detected to
be identified.

RTERR_STRMINUSE

Stream in-use. This status code is returned by stream
functionswhen an attempt ismadeto initialize astream or
create a reader or writer when an existing stream is open
in the context. The existing stream must first be closed
before initializaing a stream for a new operation.

RTERR_NULLPTR

Null pointer. This status code is returned when a null
pointer is encountered in a place where it is expected that
the pointer valueis to be set.

RTERR_FAILED

General failure. Low level call returned error.

RTERR_ATTRFIXEDVAL

Attribute fixed value mismatch. The attribute contained a
value that was different than the fixed value defined in the
schemafor the attribute.

RTERR_MULTIPLE

Multiple errors occurred during an encode or decode
operation. Seetheerror list within the context structurefor
afull list of all errors.

-51

RTERR_NOTY PEINFO

This error is returned when decoding a derived type
definition and no information exists as to what type of
dataisin the element content. When decoding XML, this
normally means that an xsi:type attribute was not found
identifying the type of content.

-52

RTERR_ADDRINUSE

Address already in use. This status code is returned when
an attempt is made to bind a socket to an address that is
aready in use.

-53

RTERR_CONNRESET

Remote connection was reset. This status code is returned
when the connection is reset by the remote host (via
explicit command or a crash).

RTERR_UNREACHABLE

Network failure. This status code is returned when the
network or host is down or otherwise unreachable.

-55

RTERR_NOCONN

Not connected. This status code is returned when an
operation isissued on an unconnected socket.

-56

RTERR_CONNREFUSED

Connection refused. This status code is returned when an
attempt to communicate on an open socket is refused by
the host.

301

ASNI1C Error Codes

Error Code

Error Name

Description

-57

RTERR_INVSOCKOPT

Invalid option. This status code is returned when an
invalid option is passed to socket.

-58

RTERR_SOAPFAULT

This error is returned when the decoded SOAP envelope
isafault message.

-59

RTERR_MARKNOTSUP

This error is returned when an attempt is made to mark a
stream position on a stream type that does not support it.

-60

RTERR_NOTSUPP

Featureisnot supported. This status codeisreturned when
afeaturethat is currently not supported is encountered.

-61

RTERR_UNBAL

Unbalanced structure. This error code is returned when
parsing formatted text such as XML or JSON and a block
is not properly terminated. For JSON, this occurs when
a '{" or '[' character does not a corresponding }* or '
respectively. For XML, it occurs when an open element
does not have a corresponding end element.

-62

RTERR_EXPNAME

Expected name. Thiserror codeisreturned when parsing a
name/val ue pair and the name part is expected, but instead
avalueis encountered.

-63

RTERR_UNICODE

Invalid Unicode sequence. The sequence of characters
received did not comprise avalid Unicode character.

RTERR_INVBOOL

Invalid boolean keyword. Thiserror codeisreturned when
an invalid boolean keyword in the format of the language
being parsed is encountered. For example, 'true' or ‘false’
in all lowercase letters may be al that is acceptable.

-65

RTERR_INVNULL

Invalid null keyword. Thiserror code is returned when an
invalid null keyword in the format of the language being
parsed is encountered. For example, 'null’ in all lowercase
letters may be all that is acceptable.

-66

RTERR_INVLEN

Invalid length. This error code is returned when a length
value is parsed that is not consistent with other lengthsin
a message. This typically happens when an inner length
within a constructed type is larger than the outer length
value.

-67

RTERR_UNKNOWNIE

Unknowninformation element. Thiserror codeisreturned
when an unknown information element or extension
is received and the protocol specification indicates the
element must be understood.

RTERR_NOTALIGNED

Element not aligned. Thisis returned when an element is
expected to start on a byte-aligned boundary and is found
to start on an unaligned boundary.

-69

RTERR_EXTRDATA

Extraneous data. This error is returned when after
decoding is complete, additional undecoded data is till
present in the message buffer.

-70

RTERR_INVMAC

Invalid Message Authentication Code. This error is
returned when agiven message's MAC is not the expected
value.

-71

RTERR_NOSECPARAMS

No security parameters provided. This error is returned
when a NAS message with either integrity protection or

302

ASNI1C Error Codes

Error Code

Error Name

Description

ciphering (or both) is received and the required security
parameters needed to decrypt it or validateit have not been
provided.

RTERR_COPYFAIL

Copy failed. This occurs when generated copy functions
are unable to complete a copy operation due to a runtime
library failure.

RTERR_PARSEFAIL

Parse failed. This error is returned when an application
receives atext or binary messageit is unableto parse.

-74

RTERR_VALCMPERR

Value comparison error. This error is returned when a
comparison operation is done on two values and they are
not equal.

-75

RTERR_BUFCMPERR

Buffer comparison error. This error is returned when a
comparison operation is done on two buffers and they are
not equal.

RTERR_INVBITS

Invalid bit string. This error is returned when a bit string
isdecoded that contains bits that have not been set to zero.

RTERR_RLM

RLM error. Thiserror isreturned when alicense problem
is detected, such as amissing license file or alicense file
that does not support the current version of the product.

-78

RTERR_NOCODEC

No codec. This error is returned when the user has
configured ASN1C to not generate a decoder for a type,
and then that type appears in an encoding.

ASN.1-specific Status Messages

The following table describes status messages that may arise during the course of encoding or decoding an ASN.1
message. The errors below indicate that while the system was able to read the data successfully, it was unable to

decode it properly.

Error Code

Error Name

Description

2

ASN_OK_FRAG

Fragment decode success status. This is returned when
decoding is successful but only afragment of theitem was
decoded. User should repest the decode operation in order
to fully decode message.

-100

ASN_E_BASE

Error base. ASN.1 specific errors start at this base number
to distinguish them from common and other error types.

-100

ASN_E_INVOBJID

Invalid object identifier. This error code is returned when
an object identifier is encountered that is not valid.
Possiblereasonsfor being invalid includeinvalid first and
second arc identifiers (first must be 0, 1, or 2; second must
be less than 40), not enough subidentifier values (must be
2 or more), or too many arc values (maximum number is
128).

-101

ASN_E_INVLEN

Invalid length. This error code is returned when a length
valueis parsed that is not consistent with other lengthsin
aBER or DER message. Thistypically happens when an
inner length within a constructed type is larger than the
outer length value.

303

ASNI1C Error Codes

Error Code

Error Name

Description

-102

ASN_E_BADTAG

Bad tag value. Thiserror codeisreturned when atag value
is parsed with an identifier code that is too large to fit in
a 32-bit integer variable.

-103

ASN_E_INVBINS

Invalid binary string. This error code is returned when
decoding XER data and a bit string value is received that
contains something other than '1' or '0' characters.

-104

ASN_E_INVINDEX

Invalid table constraint index. This error code is returned
when avalueisprovided toindex into atable and thevalue
does not match any of the defined indexes.

-105

ASN_E_INVTCVAL

Invalid table constraint value. This error code is returned
when a the value for an element in a table-constrained
message instance does not match the value for the element
defined in the table.

-106

ASN_E_CONCMODF

Concurrent list modification error. This error is returned
from within alist iterator when it is detected that the list
was modified outside the control of the iterator.

-107

ASN_E_ILLSTATE

Illegal state for operation. This error isreturned in places
where an operation is attempted but the object isnot in a
state that would allow the operation to be completed. One
exampleisin alist iterator class when an attempt is made
to remove a node but the node does not exist.

-108

ASN_E_NOTPDU

This error is returned when a control class Encode or
Decode method is called on anon-PDU. Only PDUs have
implementations of these methods.

-109

ASN_E_UNDEFTYP

Element type could not be resolved at run-time. This
error is returned when the run-time parser module is used
(Asn1RTProd) to decode atype at run-time and the type
of the element could not be resolved.

-110

ASN_E_INVPERENC

Invalid PER encoding. This occurs when a given element
within an ASN.1 specification is configured to have an
expected PER encoding and the decoded value does not
match this encoding.

-111

ASN_E_NOTINSEQ

Element not in sequence. This occurs when an element is
parsed withina SEQUENCE but isfound to not match any
of the elements defined for that SEQUENCE.

-112

ASN_E BAD_ALIGN

Encoding has bad alignment. This occurs when an
encoding is expected to align with a byte boundary and
does not. It may happen with reference to the start of
the message or with reference to the start of a length-
constrained container. Typically this means some hit
string element hastoo few bits, where the encoding of that
element is supposed to end the encoding (which means
padding cannot be used to acheive the desired alignment).

-113

ASN_E_UNKNOWNPDU |Unknown PDU type. This error occurs in interpreted

BER decoders when the PDU type for the message
can't be automatically determined. The user in this case
must manually specify the PDU type by some external
means. For example, if the application has a command-

304

ASNI1C Error Codes

Error Code Error Name Description
line interface, it may have a'-pdu’ option for specifying
the PDU type.

-114 ASN_E_NOTCANON Non-canonical data. Encoded data does not conform to
canonical rulesfor the current encoding rules.

-115 ASN_E VALTYPMIS V alue/type mismatch. The given value is not valid for the

declared type.

305

