
ASN1C

ASN.1 Compiler User's Guide for Go

Version 7.8

Objective Systems, Inc.

December 2023

ASN1C: ASN.1 Compiler User's Guide for Go
Copyright © 2020-2023 Objective Systems, Inc.

License. The software described in this document is furnished under a license agreement and may be used only in
accordance with the terms of this agreement. This document may be distributed in any form, electronic or otherwise,
provided that it is distributed in its entirety with the copyright and this notice intact.

Author's Contact Information. Comments, suggestions, and inquiries regarding ASN1C or this document may
be sent by electronic mail to <info@obj-sys.com>.

iii

Table of Contents
1. Overview of ASN1C for Go ... 1
2. ASN1C Command Line Interface (CLI) .. 2

Running ASN1C .. 2
ASN1C Go Command Line Options .. 2
Compiler Configuration File ... 5
Compiler Error Reporting .. 8

3. ASN1C GUI Users Guide .. 9
Quick Start .. 9

Activating a License Key ... 9
Creating a New Project .. 11

.. 13

.. 13

.. 13
Interface .. 13

Editor ... 14
Project Window .. 15
ASN.1 Tree Window ... 18
Error Log Window .. 18
Project Settings .. 19

4. Generated Go Source Code ... 30
General Hierarchy of Generated Go Source Files .. 30
General Form of a Generated Go Source File .. 30

5. Generated Go Main File (main.go) ... 31
6. ASN.1 To Go Type Mappings ... 32

Type Mappings .. 32
BOOLEAN .. 32
INTEGER ... 32
BIT STRING ... 32
OCTET STRING .. 33
ENUMERATED ... 34
NULL ... 35
OBJECT IDENTIFIER .. 35
RELATIVE-OID .. 35
REAL ... 36
SEQUENCE/SET .. 36
SEQUENCE OF/SET OF ... 39
SET OF .. 40
CHOICE ... 40
Open Type .. 41
Character String Types .. 41
Time String Types .. 42
EXTERNAL .. 42
EMBEDDED PDV ... 42
Parameterized Types ... 43

Value Mappings ... 44
BOOLEAN Value ... 45
INTEGER Value .. 45
REAL Value .. 45
ENUMERATED Value .. 45
BIT STRING Value .. 46
OCTET STRING Value ... 46

ASN1C

iv

Character String Value .. 46
Object Identifier Value Specification .. 46
Constructed Type Values ... 47

Table Constraint Related Structures ... 47
Unions Table Constraint Model ... 47

7. Generated BER/DER Functions ... 52
Generated BER/DER Encode Functions .. 52

Generated Go Function Format and Calling Parameters ... 52
Example of Calling the Go Marshal Function .. 52
How Marshal Works And Alternatives ... 53

Generated BER/DER Decode Functions .. 54
DER Restriction Violations .. 54
Generated Go Function Format and Calling Parameters ... 54
Example of Calling the Go Unmarshal Function ... 55
How Unmarshal Works And Alternatives .. 55

8. Generated PER Functions ... 57
Generated PER Encode Functions .. 57

Generated Go Function Format and Calling Parameters ... 57
Example of Calling the Go Marshal Function .. 57
How Marshal Works And Alternatives ... 58

Generated PER Decode Functions ... 59
Generated Go Function Format and Calling Parameters ... 59
Example of Calling the Go Unmarshal Function ... 59
How Unmarshal Works And Alternatives .. 60

PER Bit Tracing ... 61
9. Generated JSON Functions ... 62

Custom JSON Attributes .. 62
Custom JSON Marshal/Unmarshal Functions ... 62
Invoking JSON Marshal/Unmarshal Functions ... 62

10. Generated Print Functions ... 63
Generated Print Functions .. 63

Print to Standard Output .. 63
Print to String .. 63

11. IMPORT/EXPORT of Types ... 64

1

Chapter 1. Overview of ASN1C for Go
The ASN1C code generation tool translates an Abstract Syntax Notation 1 (ASN.1) or XML Schema Definitions (XSD)
source file into computer language source files that allow typed data to be encoded/decoded. This release of ASN1C
includes options to generate code in the following languages: C, C++, C#, Java, Python, or Go. This manual discusses
the Go code generation capabilities. The following manuals discuss the other language code generation capabilities:

• ASN1C C/C++ Compiler User's Manual : C/C++ code generation

• ASN1C C# Compiler User's Manual : C# code generation

• ASN1C Java Compiler User's Manual : Java code generation

• ASN1C Python Compiler User's Manual : Python code generation

Each ASN.1 module that is encountered in an ASN.1 schema source file results in the generation of a Go source file.
The name of the file is the ASN.1 module name, with hyphens removed and changed to camel-case, and an extension
of '.go'.

There is also a set of functions that form the run-time component of the Go package. These functions provide primitive
component building blocks that are assembled by the compiler to encode/decode complex structures. They also provide
support for managing message buffers that hold the encoded message components.

This release of the ASN1C Compiler for Go works with the version of ASN.1 specified in ITU-T international standards
X.680 through X.683. It generates code for encoding/decoding data in accordance with the following encoding rules:

• Packed Encoding Rules (PER) as published in the ITU-T X.691 and ISO/IEC 8825-2 standards. Includes both the
aligned and unaligned variants (note: the unaligned variant is commonly known as UPER).

• JSON Encoding Rules (JER) as published in the ITU-T X.697 and ISO/IEC 8825-8 standards.

ASN1C for Go is capable of parsing all ASN.1 syntax as defined in the standards. It is capable of parsing advanced
syntax including Information Object Specifications as defined in ITU-T X.681 as well as Parameterized Types as
defined in ITU-T X.683.

2

Chapter 2. ASN1C Command Line Interface
(CLI)

Running ASN1C
The ASN1C compiler distribution contains command-line compiler executables as well as a graphical user interface
(GUI) wizard that can aid in the specification of compiler options. Please refer to the ASN1C C/C++ Compiler User's
Manual for instructions on how to run the compiler. The remaining sections describe options and configuration items
specific to Go.

ASN1C Go Command Line Options
The following table shows a summary of the command line options that have meaning when generating Go code:

Option Argument Description

-ber None This option is used to generate en-
code/decode functions that implement
the Basic Encoding Rules (BER) as
specified in the ITU-T X.690 ASN.1
standard.

-config <filename> This option is used to specify the name
of a file containing configuration in-
formation for the source file being
parsed. A full discussion of the con-
tents of a configuration file is provided
in the section called “Compiler Con-
figuration File”.

-depends None Without this option, the compiler on-
ly generates Go code for the files that
were explicitly given as input, and not
for any files it may automatically load
on account of IMPORTS. This option
tells the compiler to also generate code
for files it automatically loads, but on-
ly that code which is necessary to sat-
isfy dependencies that originate in the
main file set.

-der None This option is used to generate en-
code/decode functions that implement
the Distinguished Encoding Rules
(DER) as specified in the ITU-T
X.690 ASN.1 standard.

-genPrint
-print

None Generate code to print object con-
tents. The open source go-spew pack-
age (https://github.com/davecgh/go-
spew) is used for this purpose.

-genTest
-test

None Generate code to populate a PDU ob-
ject with random test data. This code

ASN1C Command Line Interface (CLI)

3

Option Argument Description

will be embedded in the body of a gen-
erated main.go program.

-go-rt-inc <module(s)> Force inclusion of the given com-
ma-separated list of run-time mod-
ules in the final compilation. Normal-
ly, run-time modules are included on-
ly if needed by the generated code.
This option is used if a specific run-
time module is required in user devel-
oped code. For example, the TS32297
module in a main.go program that re-
quires this package to encode and de-
code headers.

-I <directory> This option specifies a directory
where the compiler should search
for ASN.1 source files for IMPORT
items. Multiple –I qualifiers can be
used to specify multiple directories to
search.

-json or -jer None This option is used to generate en-
code/decode functions that implement
the Javascript Object Notation (JSON)
Encoding Rules (JER) as specified in
the X.697 ASN.1 standard.

-lax None Suppress generation of code to check
constraints.

-list None Generate listing. This will dump the
source ASN.1 to the standard output
device as it is parsed. This can be use-
ful for finding parse errors.

-noaccomment None This option suppresses the generation
of the comment that shows\ the asn1c
command that was used to generate
the code.

-nodecode None Suppress generation of decode func-
tions.

-noencode None Suppresses generation of encode func-
tions.

-noOpenExt None Suppress the generation of open ex-
tension elements in constructs that
contain extensibility markers. The
purpose of the element is to collect any
unknown items in a message. If an ap-
plication does not care about these un-
known items, it can use this option to
reduce the size of the generated code
and increase performance.

ASN1C Command Line Interface (CLI)

4

Option Argument Description

-noPLMN None If not specified, if the ASN.1 con-
tains a production named PLMNiden-
tity (any case), that production will
be treated as an OCTET STRING, re-
gardless of how it may be defined
in the ASN.1. But if -noPLMN is
specified, this special recognition of
PLMNidentity will be disabled, and it
will be treated according to its defini-
tion in the ASN.1 (frequently TBCD-
STRING, although in most cases that
is incorrect).

-noUniqueNames None Turn off the capability to automat-
ically generate unique names to re-
solve name collisions in the generat-
ed code. Name collisions can occur,
for example, if two modules are be-
ing compiled that contain a produc-
tion with the same name. A unique
name is generated by prepending the
module name to one of the produc-
tions to form a name of the form
<module>_<name>.

Note that name collisions can also be
manually resolved by using the type-
Prefix, enumPrefix, and valuePrefix
configuration items (see the Compil-
er Configuration File section for more
details).

-no-go-main None Suppress the generation of a main.go
file. By default, this file is generated
with options to encode (-writer) and
decode (-reader) a message of a PDU
type.

-o <directory> Specify the name of a directory to
which all of the generated files will be
written.

-oid-as-string None Use string to represent OBJECT
IDENTIFIER and RELATIVE-OID
values. The strings must be in dot-
ted-number format (e.g. "0.5.1234").

-pdu <typeName> Designate given type name to be a
Protocol Definition Unit (PDU) type.
By default, PDU types are determined
to be types that are not referenced by
any other types within a module. This
option allows that behavior to be over-
ridden.

ASN1C Command Line Interface (CLI)

5

Option Argument Description

-per None This option is used to generate en-
code/decode functions that implement
the Packed Encoding Rules (PER -
aligned variant) as specified in the
ASN.1 standards.

-shortnames None Change the names generated by com-
piler for embedded types in construct-
ed types.

-tables None Generate additional code for the han-
dling of table constraints as defined in
the X.682 standard.

-uper None This option is used to generate en-
code/decode functions that implement
the Packed Encoding Rules (PER -
unaligned variant) as specified in the
ASN.1 standards.

-warnings None Output information on compiler gen-
erated warnings.

Compiler Configuration File
In addition to command line options, a configuration file can be used to specify compiler options. These options can
be applied not only globally but also to specific modules and productions.

The basic structure of a configuration file is described in the C/C++ User's Guide. Configuration items that are applic-
able to Go code generation are described in the following sections.

Global Level

These attributes can be applied at the global level by including them within the <asn1config> section:

Name Values Description

<includedir></includedir> <Include directory> This configuration item is used to specify a directory that
will be searched for IMPORT files. It is equivalent to the
-I command-line option.

Module Level

These attributes can be applied at the module level by including them within a <module> section:

Name Values Description

<name> </name> module name This attribute identifies the module to
which this section applies. Either this
or the <oid> element/attribute is re-
quired.

<oid> module OID (object identifier) This attribute provides for an alternate
form of module identification for the
case when module name is not unique.
For example, a given ASN.1 module
may have multiple versions. A unique

ASN1C Command Line Interface (CLI)

6

Name Values Description

version of the module can be identi-
fied using the OID value.

<include types="names"
values="names"/>

ASN.1 type or values names are spec-
ified as an attribute list

This item allows a list of ASN.1 types
and/or values to be included in the
generated code. By default, the com-
piler generates code for all types and
values within a specification. This al-
lows the user to reduce the size of
the generated code by selecting only a
subset of the types/values in a specifi-
cation for compilation.

Note that if a type or value is includ-
ed that has dependent types or values
(for example, the element types in a
SEQUENCE, SET, or CHOICE), all
of the dependent types will be auto-
matically included as well. However,
if an element is marked <notUsed/> or
<notUsedSkip/>, the referenced type
is not automatically included; if an el-
ement is marked <notUsedDecode/>
or <notUsedDecodeSkip>, the refer-
enced type is included for encoding
only; if an element is marked <no-
tUsedEncode/>, the referenced type is
included for decoding only.

<exclude types="names"
values="names"/>

ASN.1 type or values names are spec-
ified as an attribute list

This item allows a list of ASN.1 types
and/or values to be excluded from the
generated code. By default, the com-
piler generates code for all types and
values within a specification. This is
generally not as useful as the include
directive because most types in a spec-
ification are referenced by other types.
If an attempt is made to exclude a type
or value referenced by another item,
the directive will be ignored.

<sourceFile>
</sourceFile>

source file name Indicates the given module is con-
tained within the given ASN.1 source
file. This is used on IMPORTs to in-
struct the compiler where to look for
imported definitions.

<valuePrefix> </valuePrefix> prefix text This is used to specify a prefix that
will be applied to all generated value
constants within a module. This can be
used to prevent name clashes if mul-
tiple modules are involved that use a
common name for two or more differ-
ent value declarations.

ASN1C Command Line Interface (CLI)

7

Production Level

These attributes can be applied at the production level by including them within a <production> section:

Name Values Description

<name>
</name>

production name This attribute identifies the production
(type) to which this section applies.
The name may also be specified as an
attribute. In either case, it is required.

<isPLMNidentity/> n/a This flag identifies the production
as a PLMNidentity. Any production
so identified will be treated as an
OCTET STRING, regardless of how
the production might be defined in the
ASN.1.

<typePrefix> </typePrefix> prefix text This is used to specify a prefix that
will be applied to generated Go type
names for this production. This can be
used to prevent name clashes if multi-
ple modules are involved in a compila-
tion and they contain common names.

Element Level

These attributes can be applied at the element level by including them within an <element> section:

Name Values Description

<name>
</name>

element name This element identifies the ele-
ment within a SEQUENCE, SET, or
CHOICE construct to which this sec-
tion applies. It may also be specified
as an attribute. In either case, it is re-
quired.

<notUsed/> n/a This flag variable specifies that this el-
ement will not be used at all in the
generated code. It can only be ap-
plied to optional elements within a
SEQUENCE or SET, or to elements
within a CHOICE. Its purpose is for
production of more compact code by
allowing users to configure out items
that are of no interest to them.

<notUsedSkip/> n/a This is the same as <notUsed/> ex-
cept that it tells the compiler to gen-
erate skip functions when necessary.
Skip functions are used for skipping
over values of a type during decoding,
rather than reporting an error if that
type should happen to be encountered
in the encoding.

<notUsedDecode/> n/a Similar to the notUsed flag, except
that rather than indicating the element

ASN1C Command Line Interface (CLI)

8

Name Values Description

is not used at all, it indicates the ele-
ment is not used for decoding (i.e. it
is still used for encoding). This can
be useful for reducing the amount of
generated code, when used in con-
juction with a production level <in-
clude/> (which see). It signals that the
element's type does not require a de-
code function for the sake of this ele-
ment.

<notUsedDecodeSkip/> n/a This is the same as <notUsedDe-
code/> except that it tells the compiler
to generate skip functions when neces-
sary. Skip functions are used for skip-
ping over values of a type during de-
coding, rather than reporting an error
if that type should happen to be en-
countered in the encoding.

<notUsedEncode/> n/a The encoding complement to <no-
tUsedDecode/>

Compiler Error Reporting
Errors that can occur when generating source code from ASN.1 take two forms: syntax errors and semantic errors.

Syntax errors are errors in the ASN.1 source specification itself. These occur when the rules specified in the ASN.1
grammar are not followed. ASN1C will flag these types of errors with the error message 'Syntax Error' and abort
compilation on the source file. The offending line number will be provided. The user can re-run the compilation with
the '-l' flag specified to see the lines listed as they are parsed. This can be quite helpful in tracking down a syntax error.

The most common types of syntax errors are as follows:

• Invalid case on identifiers: module names must begin with an uppercase letter, production (type) names must begin
with an uppercase letter, and element names within constructors (SEQUENCE, SET, CHOICE) must begin with
lowercase letters.

• Elements within constructors not properly delimited with commas: either a comma is omitted at the end of an
element declaration, or an extra comma is added at the end of an element declaration before the closing brace.

• Invalid special characters: only letters, numbers, and the hyphen (-) character are allowed. Programmers tend to
like to use the underscore character (_) in identifiers. This is not allowed in ASN.1. Conversely, Go does not allow
hyphens in identifiers and prefers names be in camel-case form. ASN1C will attempt to transform the ASN.1 names
into the Go preferred format.

Semantic errors occur on the compiler back-end as the code is being generated. In this case, parsing was successful,
but the compiler does not know how to generate the code. These errors are flagged by embedding error messages
directly in the generated code.

9

Chapter 3. ASN1C GUI Users Guide

Quick Start
This section demonstrates running ACGUI, activating a license key, creating a new ASN.1 schema, and compiling it
to C for BER data. The process is similar for other languages.

Activating a License Key

First, start ACGUI. The Enter License Key window may be displayed to activate a license key.

If the Enter License Key window is displayed and it is not showing a current license key, right-click in the text box
and paste the accurate license key. Then click Activate to unlock ASN1C.

ASN1C GUI Users Guide

10

In some cases, the Enter License Key window is displayed and showing a current license key. In these cases, it is likely
that the key being shown is expired. First deactivate the current key by clicking Deactivate. Then, right-click in the
text box and paste the current license key, and click Activate to unlock ASN1C.

If an osyslic.txt license file is being used instead of a key, and the osyslic.txt is in a location where the GUI does not
look, click Import to find the file and use it to unlock ASN1C.

If Skip is clicked within the Enter License Key window, the features of the GUI can be explored, but code cannot
be generated.

If a new license key must be activated and the current one is still valid (for example, if ASN1C is purchased before
the evaluation key expires), the existing license must be deactivated first. This deactivation can be done from the GUI
by navigating to Tools > Options and then selecting the License tab. The ASN.1 Editor Settings window is displayed.

Click Deactivate to deactivate the existing license. Then click OK. Next, navigate to Tools > Options > License tab
again to activate the new key.

ASN1C GUI Users Guide

11

The "Check-in license on exit" check box is used to indicate that the license should be immediately returned to the
license pool upon exit making it available for other users on different machines. If not checked, the machine on which
it is being used will continue to hold it until it times out (typically in 24 hours). If you will only be using ASN1C on
a single machine most of the time, it is better to keep it unchecked as it will lead to faster startups since the Internet
check will not need to be done each time.

The HTTP PROXY box can be used if you are using ASN1C on a machine that requires Internet requests go through
a proxy server.

Creating a New Project

Once the ASN1C program has been activated, a new project can be created to store all of the settings. To do this, select
Project > New Project from the menu. The ASN1C Settings window is displayed.

The Language tab is displayed by default. In the Application Language Type section, select C. In the Encoding Rules
section, select BER. Finally, on the Output tab, in the Output Directory text box, enter or browse to the location
where the generated files should be saved. When finished defining the project settings, click OK. These settings can
be changed at any time by selecting Project > Project Settings from the menu.

Next, a new schema file is created for the project. Click New in the toolbar or navigate to File > New Schema File. A
dialog box is displayed to define a name for the new file. Once entered, the file is added to the project window under
the "Schema/ASN.1 files" heading and its empty contents are shown in the editor.

ASN1C GUI Users Guide

12

The schema is then written between the "DEFINITIONS ::= BEGIN" and "END" statements in the file. For this
example, the following can be entered:

MySequence ::= SEQUENCE {
 ingredient PrintableString,
 count INTEGER,
 units PrintableString
}

Once the schema is created, click Validate to perform a check for errors.

Note

If the new schema file has not yet been saved, ACGUI asks if it should be. Once saved, ACGUI validates
the file.

If the schema has errors, they are displayed in the log at the bottom of the ACGUI window.

Once the project has been configured, click Compile to generate code according to the project settings. If compliation
is successful, a list of generated files, sorted according to the selected language, is displayed under the Generated Items
heading in the Project pane. If compilation is not successful, any errors are displayed in the Error Log.

ASN1C GUI Users Guide

13

At this time, project settings can be changed and schema files can be edited as needed.
<xi:include></xi:include>
<xi:include></xi:include>
<xi:include></xi:include>

Interface
The ACGUI interface is comprised of five parts: Editor, Project window, ASN.1 Tree window, Error Log window,
and Project Settings.

ASN1C GUI Users Guide

14

Editor

The central part of the ACGUI window is the schema Editor. From here, schema files can be viewed and edited.

To begin editing an ASN.1 schema, create or open a schema file. A new schema file can be opened by clicking New in
the toolbar or by navigating to File > New Schema File. An existing schema file can be accessed via the Open button
in the toolbar or navigating to File > Open File. The file is added to the current project and shown in the Editor.

ASN1C GUI Users Guide

15

The Editor window is also used to display a schema browser for navigating within a validated schema. To display the
browser after validating a schema, click on an item in the ASN.1 Tree window. The browser displays a hyperlinked
version of the schema, centered on the definition of the selected item. Click the names of other defined types in the
browser to show their definitions.

By default, schema documents are displayed as tabs in the Editor. The Text and Browser tabs at the bottom of the
window are for schema editing and hyperlinked schema browsing, respectively. Schema files currently open for edit
are displayed as tabs at the top of the Text tab.

Project Window

The Project window allows the user to interact with project assets, and contains the following components: Schema/
ASN.1 files, Include Directories, Configuration files and Generated Items.

ASN1C GUI Users Guide

16

The Project window contains the following sections:

Schema/ASN.1 files This section lists the files that contain the current project's ASN.1 schema definitions.

Include Directories This section lists the directories containing auxiliary ASN.1 schema files. The current
project's schema may import definitions from modules defined in an included directory.

Configuration file This section lists the ASN1C compiler configuration file currently in use.

Generated Items This section lists the files generated by the compiler, separated by target language.

Click on a schema or configuration file in the Project window to open that file in the Editor. Right-click on any schema
file, include directory, or configuration file to easily add another or remove that particular asset from the project.

Right-clicking on the Schema/ASN.1 files heading also displays options for 'Find in Files' and 'Replace in Files.'

Selecting 'Find in Files' displays the Find in Files window, which provides users with the ability to enter any text to be
located in either all schemas in the project, or only the schemas currently open in the editor. Once the Find parameters
have been defined, click Find All to be presented with a list of files that contain the search text.

Click an entry within the results list to display the text in the editor.

ASN1C GUI Users Guide

17

Selecting 'Replace in Files' displays the Replace in Files window, which provides users with the ability to enter any
text to be located and replaced in either all schemas in the project, or only the schemas currently open in the editor.
Once the Find and Replace parameters have been defined, click Replace All to be presented with a list of files that
include the word to be changed.

Click an entry within the results list to display the text in the editor, and if desired, deselect any check box next to
an entry in the results list to prevent the replacement from happening on that result. Click Replace to perform the
word replacement.

ASN1C GUI Users Guide

18

ASN.1 Tree Window

Once a schema has been validated or compiled in ACGUI, the ASN.1 Tree window provides an interactive view of
the ASN.1 types defined in it.

At the top level of the tree, the modules of the schema are shown. Each of these modules can be expanded to reveal
branches for the types, values, information objects, etc. defined within. Click on any node of the tree to show the
relevant ASN.1 definition in a built-in browser in the Editor window.

Error Log Window

The Error Log window displays messages related to schema validation and compilation. Whenever a schema is suc-
cessfully validated or compiled, the Error Log reports a success. If an error occurs, an error message is displayed.

ASN1C GUI Users Guide

19

In many cases, an error is associated with a particular portion of the schema being compiled. Click on an error to
open the schema editor at the location in which the error occurred. If more than one error is reported, clicking Next
Error and Previous Error in the toolbar moves the Editor window to the part of the schema where the next or previous
error occurred.

When the reported errors are no longer needed, click Clear in the Error Log window to remove them from display.

Project Settings

The Project Settings window is where details regarding the project, such as encoding rules, target language, and code
features to generate are modified. The window contains the following tabs: Language, Output, Function Generation,
Constraints and Debugging, Code Modifications, language-specific code modifications, and Build Options.

Language tab

The Language tab contains options for selecting a target language, encoding rules, ASN.1 Standards, translation, and
input options.

ASN1C GUI Users Guide

20

The Language tab contains the following sections:

Application Language Type This section provides users with the ability to define the target language for the
project. A target language must be selected in order to compile a schema.

Depending on the target language selected, additional options are displayed
within the Output tab.

For C or C++ target languages, the C/C++ Output Options section controls how
generated code is distributed across source files.

ASN1C GUI Users Guide

21

For C#, the C# Code Organization section controls how generated code is dis-
tributed across source files and how files are organized into directories.

For Java, the Java Code Organization section controls how generated code
should be organized into directories based on the ASN.1 module for which they
were generated. Alternatively, generated files are placed directly into the output
directory.

Encoding Rules This section provides users with the ability to define one or more encoding rule
sets to be selected for the generated code.

ASN.1 Standard This section provides users with the ability to apply current or previously-de-
fined ASN.1 standards to the generated code.

Additional Translations This section provides users with the ability to define the options for generating
transformed versions of the input schema, such as HTML or pretty-printed.

Input Options This section provides users with the ability to define how strict the compiler is
when parsing ASN.1 schema.

Output tab

The Output tab contains options for selecting encoding rules, as well as output and project directories.

ASN1C GUI Users Guide

22

The Output tab contains the following sections:

Output Directory and Project Di-
rectory

This section provides users with the ability to define in which directory the code
output and/or project should be stored.

Language-specific Output Options This section provides users with the ability to define additional output options
specific to the language type chosen on the Language tab, as well as the ability
to define additional directories.

Function Generation tab

The Function Generation tab provides settings for the functionality to include in generated code.

ASN1C GUI Users Guide

23

The Function Generation tab contains the following sections:

Generated Function Types This section provides users with the ability to define granular control of which
functions to generate. The printing functions allow for various printing schemes
to be generated, such as print-to-string and print-to-standard-output, and how
the printed data should be formatted.

Specify PDU Types This section provides users with the ability to define which productions to select
as PDUs.

Sample Program Generation This section provides users with the ability to define the generation of simple
encoding and decoding programs, which demonstrate using the generated code.
Additionally, the sample writer program can optionally encode randomly-gen-
erated test data.

Language-specific Functions Depending on the target language selected, additional options may be displayed
within this section of the Function Generation tab.

For C and C++, additional functions for memory management and macros for
dealing with named bits in BIT STRINGs can be generated. Initialization func-
tions are generated by default, but may be turned off.

ASN1C GUI Users Guide

24

For Java, get and set methods can be generated for members of generated class-
es. It is also possible to generate methods that can fetch certain types of meta-
data (for example, if an element is optional). A similar option exists for C#.

Constraints and Debugging tab

The Constraints and Debugging tab holds settings related to constraint handling, event handling, and logging in gen-
erated code.

The Constraints and Debugging tab contains the following sections:

Constraints This section provides users with the ability to add or remove various types of
restriction checks from the generated code.

ASN1C GUI Users Guide

25

Debugging and Event Handling This section provides users with the ability to add debug tracing and event
hooks. In addition to enabling event callbacks, generation of type structures
can also be disabled, in which case generated decode functionality simply calls
user-created event handlers and does not perform its own decoding operation.

Code Modifications tab

The Code Modifications tab contains a number of options for generating simplified code.

The Code Modifications tab contains the following sections:

Space Optimizations This section provides users with the ability to remove unwanted or unneeded function-
ality and shorten the names of generated types.

Other Options This section provides users with the ability to define several miscellaneous settings,
including the option to generate code for types that have been imported into the current
schema.

Language-specific tab

Additional code modification options that are language-specific are shown in a separate tab next to the Code Modifi-
cations tab. The label and contents of this tab changes based on the language selected within the Output tab.

For C/C++, the tab is displayed as follows, and includes several settings for adjusting how ASN.1 types are mapped
to native C/C++ types:

ASN1C GUI Users Guide

26

For C#, the tab is displayed as follows, and includes settings to allow for manipulating the namespace into which
code is generated:

Note

The Java tab contains similar options.

Build Options tab

When a target language other than None is selected, an additional Build Options tab is displayed to provide language
environment-specific settings for generating makefiles and build scripts.

For C or C++, the tab is as follows:

ASN1C GUI Users Guide

27

A makefile can be generated in either Windows or GNU format. For Windows, a Visual Studio project can also
be generated. Under the Build Libraries section, which generates the build script to build a library rather than an
executable, the desired variety of library can be selected.

The C/C++ Compile Optimization section allows for defining whether Space or Time optimization qualifiers should
be added to the C compilation command-line in the makefile.

For C#, the tab is as follows:

ASN1C GUI Users Guide

28

For C#, a makefile or Visual Studio project can be created, optionally including a *.mk file listing the files generated.
An option to specify a strongly named key file is also available.

For Java, the tab is as follows:

Like C#, Java can also provide a *.mk generated file list, as well as an Ant build script and a batch or shell script.

For Python, the tab is as follows:

For Python, ASN1C can create a batch file (Windows) or shell script (non-Windows) that generates the Python code
as set up by the GUI settings.

For Go, the tab is as follows:

ASN1C GUI Users Guide

29

The Go code generator can create a makefile to generate and build Go code. The generator can also create a JSON
file with random test data. Additionally, an option for the generator not to create a main.go file (for instance, if there
already is one that has been modified) is available.

30

Chapter 4. Generated Go Source Code
A Go source file with extension '.go' will be generated for most ASN.1 modules defined in the ASN.1 source file. If a
module does not contain any ASN.1 types that would trigger generating a Go type or value, then no Go file is generated.

General Hierarchy of Generated Go Source
Files
When Go code is generated, the output directory (which defaults to the current working directory) is the root of the
Go module. ASN1C will use the last part of the directory name as the Go module path, e.g. if the output directory
is .../some/project1, the Go module path will be "project1". If a go.mod file does not exist in this location, one will be
created with this module path. If a main.go file is being generated, it will also be generated here.

ASN1C will generate a Go package, in this module path, named asn1gen. This package name can be changed using
the -pkgname option. A corresponding subdirectory will be created using this name. Files generated in this directory
will contain the corresponding package clause of package asn1gen. Within this directory, subdirectory asn1rt
will be created. The directory asn1gen/asn1rt contains the asn1rt package, which is the package for the base
run-time.

Separate files are generated for each ASN.1 module in the asn1gen package, but everything is in that one package
(aside from the run-time layer).

Executing “go build” will build the full package.

General Form of a Generated Go Source File
A generated Go file begins with package asn1gen. All generated Go code is included in the asn1gen package.

After that is an import statement, which will import the base run-time package, asn1rt, and any required built-in Go
packages. This is followed by type and constant definitions. See the “ASN.1 To Go Type Mappings” section for details
on the mapping of ASN.1 types to Go types.

For PER, type-specific encode and decode functions are generated. For JSON, custom marshal and unmarshal functions
are generated for some types. The built-in Go marshaling logic is used wherever possible to do the JSON conversion.

31

Chapter 5. Generated Go Main File
(main.go)
Go code is normally generated from within the golang subdirectory in an ASN1C installation. In the output directory
(which defaults to the working directory) main.go and go.mod files are generated. The main.go file is a template file
for using the files in the asn1gen package (see Chapter 4, Generated Go Source Code for general information on the
overall structure of the generated code). The main.go file contains a sample writer section to encode a data record of
the chosen Protocol Data Unit (PDU) type and to a file. The reader section reads decodes from the file and prints the
results. Each is invoked by running the main program with an argument of 'writer' or 'reader', respectively.

By default, the main.go writer section contains a TODO comment to remind the user that a data variable of the PDU
type needs to be populated prior to encoding. If the -test command-line option is specified, code will be added to
populate the PDU variable with random test data.

The procedure to generate and build Go source code is rather straightforward:

1. Invoke the asn1c compiler on your ASN.1 source file(s) to generate Go source code. For example: asn1c test.asn
-go -per

2. Invoke 'go build' to run the Go compiler to build the generated package.

That is it. If successful, an executable file should have been created which can be run with the writer or reader option.

Note that it is possible to use the -make command-line option to generate a makefile for future compilations. The user
should also be careful to use the -no-go-main option on future compilations so as to not regenerate the main.go file
in the event it was edited by the user.

32

Chapter 6. ASN.1 To Go Type Mappings

Type Mappings

BOOLEAN
A Go type is generated for the ASN.1 BOOLEAN type which equates the ASN.1 type assignment to the built-in Go
bool type. For example:

ASN.1:

 MyBool ::= BOOLEAN

Generated Go code:

 type MyBool bool

If a BOOLEAN type is referenced directly in an element within a constructed type, the Go bool type is referenced
directly.

INTEGER
A Go type is generated for the ASN.1 INTEGER type which equates the ASN.1 type assignment to a built-in Go 64-
bit integer type. For an unconstrained integer type, the Go type used is a signed 64-bit integer (int64). For example:

ASN.1:

 MyInt ::= INTEGER

Generated Go code:

 type MyInt int64

If a constraint constrains the value to a nonnegative range, an unsigned 64-bit integer type is used (uint64):

ASN.1:

 MyUInt ::= INTEGER (0..9)

Generated Go code:

 type MyInt uint64

Note that no attempt is made to used smaller integer types for smaller ranges.

If an INTEGER type is referenced directly in an element within a constructed type, the Go integer type is referenced
directly.

If the INTEGER type contains a list of named numbers, Go constants are generated for each number, the same as is
done for the ASN.1 ENUMERATED type.

BIT STRING
The ASN.1 BIT STRING type is mapped to the Go BitString type defined within the ASN.1 run-time (asn1rt.BitString).
This is in turn mapped to the encoding/asn1.BitString from the Go standard library. For example:

ASN.1 To Go Type Mappings

33

ASN.1:

 MyBitStr ::= BIT STRING

Generated Go code:

 type MyBitStr asn1rt.BitString

Bits are specified in the Bytes field in most-significant bit order. For example, the bit string '1'B (consisting of a single
bit which is set) would be represented using BitLength = 1 and Bytes being a slice of 1 byte, set to 0x80.

Named Bits

In the ASN.1 standard, it is possible to define a named bit string that specifies names for different bit positions. ASN1C
provides support for this type by generating Go constants and run-time functions that can be used to set, clear, or test
these named bits. These constants equate the bit name to the bit number defined in the specification. They can be used
with the SetBit, ClearBit, and TestBit run-time functions to set, clear, and test the named bits.

Contents Constraint

It is possible to specify a contents constraint on a BIT STRING type using the CONTAINING keyword. This indicates
that the encoded contents of the specified type should be packed within the BIT STRING container. An example of
this type of constraint is as follows:

 ContainingBS ::= BIT STRING (CONTAINING INTEGER)

ASN1C will generate a type definition that references the type that is within the containing constraint. In this case,
that would be INTEGER; therefore, the Go type for INTEGER would be used, which is int64. This direct use of the
containing type can be suppressed through the use of the -noContaining command-line argument. In that case, a normal
BIT STRING type will be used and it will be the user's responsibility to do the necessary packing and unpacking
operations to encode and decode the variable correctly.

OCTET STRING
The ASN.1 OCTET STRING type is mapped to the Go OctetString type defined within the ASN.1 run-time
(asn1rt.OctetString). This is in turn mapped to a byte slice. For example:

ASN.1:

 MyOctStr ::= OCTET STRING

Generated Go code:

 type MyOctStr asn1rt.OctetString

Contents Constraint

It is possible to specify a contents constraint on an OCTET STRING type using the CONTAINING keyword. This
indicates that the encoded contents of the specified type should be packed within the OCTET STRING container. An
example of this type of constraint is as follows:

 ContainingOS ::= OCTET STRING (CONTAINING INTEGER)

ASN1C will generate a type definition that references the type that is within the containing constraint. In this case,
that would be INTEGER; therefore, the Go type for INTEGER would be used, which is int64. This direct use of

ASN.1 To Go Type Mappings

34

the containing type can be suppressed through the use of the -noContaining command-line argument. In that case,
a normal OCTET STRING type will be used and it will be the user's responsibility to do the necessary packing and
unpacking operations to encode and decode the variable correctly.

ENUMERATED
The Go mapping for an ASN.1 ENUMERATED type is the same as for INTEGER. By default, uint64 is used. If the
ENUMERATED type contains negative-value identifiers, then int64 is used. Go constants are generated for each of the
enumerated identifiers. The constant names consist of the type name concatanated with the enumerated identifier name
in order to provide unique names. Note that for Go, camel-case is used in the generated identifiers and underscores
are not used.

If the enumerated type is extensible, a special UNKNOWN identifier constant is added to the enumerated contant list.

If an enumerated type is referenced directly in an element within a constructed type, a compiler-generated type is
generated for it consisting of the constructed type name concatanated with the element name to form a camel-cased
identifer. This identifier is then used as the prefix for generated enumerated identifiers.

Example - Enumerated Type Assignment

ASN.1:

 MyEnum ::= ENUMERATED { red(0), green(1), blue(2), ... }

Generated Go code:

 type MyEnum uint64
const (
 MyEnumRed = 0
 MyEnumGreen = 1
 MyEnumBlue = 2
 MyEnumUNKNOWN = 3
)

Example - Enumerated Type Referenced in Element

ASN.1:

 MySeq ::= SEQUENCE {
 enum ENUMERATED { a, b, c }
 }

Generated Go code:

 type MySeqEnum uint64
 const (
 MySeqEnumA = 0
 MySeqEnumB = 1
 MySeqEnumC = 2
)

 type MySeq struct {
 Enum MySeqEnum
 }

ASN.1 To Go Type Mappings

35

NULL
A Go type is generated for the ASN.1 NULL type which equates the ASN.1 type assignment to the built-in Go bool
type. The purpose of having a type for it is so that it can act as a placeholder to denote the presence or absense of this
type within a constructed type. For example, if it used in an optional element or within a choice construct.

If a NULL type is referenced directly in an element within a constructed type, the Go bool type is referenced directly.

Example

ASN.1:

 MyNull ::= NULL

Generated Go code:

 type MyNull bool

OBJECT IDENTIFIER
The Go representation for OBJECT IDENTIFIER depends on whether the -oid-as-astring option is used. With-
out this option, the representation is a slice of integers; with it, the representation is a string.

Standard case (slice of integers)

By default, the ASN.1 OBJECT IDENTIFIER type is mapped to the Go ObjectIdentifier type defined within the ASN.1
run-time (asn1rt.ObjectIdentifier). This in turn is mapped to a uint64 slice ([]uint64), with each uint64 representing
a single subidentifier. For example:

ASN.1:

 MyOID ::= OBJECT IDENTIFIER

Generated Go code:

 type MyOID asn1rt.ObjectIdentifier

String case

When -oid-as-string is used, OBJECT IDENTIFIER is mapped to asn1rt.ObjectIdentifierStr, defined in the
ASN.1 run-time as string. The advantage of this representation is that it supports arbirtrarily large subidentifier values.
The string must be in dotted-number format (e.g. "0.5.1234").

For example:

ASN.1:

 MyOID ::= OBJECT IDENTIFIER

Generated Go code:

 type MyOID asn1rt.ObjectIdentifierStr

RELATIVE-OID
The ASN.1 RELATIVE-OID type mapping is the same as described above for OBJECT IDENTIFIER.

ASN.1 To Go Type Mappings

36

REAL
The ASN.1 REAL type is mapped to the Go Real type defined within the ASN.1 run-time (asn1rt.Real). This in turn
is mapped to is mapped to the Go built-in float64 type.

If the REAL type is constrained to base 10 values, it is mapped to the Go RealBase10 type defined within the ASN.1
run-time (asn1rt.RealBase10). This in turn is mapped to is mapped to the Go built-in string type.

Example

ASN.1:

 MyReal ::= REAL
 MyReal10 ::= REAL(0 | WITH COMPONENTS { ..., base (10) })

Generated Go code:

 type MyReal asn1rt.Real
 type MyReal10 asn1rt.RealBase10

SEQUENCE/SET
An ASN.1 SEQUENCE or SET type is a constructed type consisting of a series of element definitions; each element
has an assigned ASN.1 type. An ASN.1 SEQUENCE or SET is mapped to a Go struct type with each ASN.1 element
having an equivalent Go element definition. The general form is as follows:

ASN.1 production:

 <name> ::= SEQUENCE {
 <element1-name> <element1-type>,
 <element2-name> <element2-type>,
 ...
 }

Generated Go code:

 type <name> struct {
 <element1-name> <type1>
 <element2-name> <type2>
 ...
 }

The <type1> and <type2 placeholders represent the Go types for the ASN.1 types <element1-type> and
<element1-type>, respectively.

Here is an example:

ASN.1:

 A ::= SEQUENCE {
 x SEQUENCE {
 a1 INTEGER,
 a2 BOOLEAN
 },
 y OCTET STRING (SIZE (10))
 }

ASN.1 To Go Type Mappings

37

Generated Go code:

 type AX struct {
 A1 int64
 A2 bool
 }

 type A struct {
 X AX
 Y asn1rt.OctetString
 }

First, note that the Go field names in the struct begin with uppercase letters. This means the names are exported for
use outside of the package in which they are defined.

Second, notice that we generated type AX, even though no such type was defined in the ASN.1. This is the result
of using a nested, constructed type in the ASN.1. The elements in a SEQUENCE or SET can be of any ASN.1 type,
including other constructed types. Sometimes, one constructed type definition is nested inside another, rather than
defining a separate type and referencing it by name. For example, it is possible to nest a SEQUENCE definition within
another SEQUENCE definition (see element x in the above example).

The ASN1C compiler first recursively pulls all nested constructed elements out of the SEQUENCE and
forms new internal types. The internal ASN.1 names of these types are of the form <name>_<element-
name1>_<elementname2>_ ...<element-nameN>. In the above example, the compiler internally created
a type for element x: A_x. The compiler then generates code as if the ASN.1 had been written without nesting, using
the type definitions it created internally. Transforming the ASN.1 name to a Go name produced AX.

In the case of nesting levels greater than two, all of the intermediate element names are used to form the final name.
For example, consider the following type definition that contains three nesting levels:

 X ::= SEQUENCE {
 a SEQUENCE {
 aa SEQUENCE { x INTEGER, y BOOLEAN },
 bb INTEGER
 }
 }

In this case, the generation of compiler-generated types results in the following equivalent type definitions:

 X-a-aa ::= SEQUENCE { x INTEGER, y BOOLEAN }

 X-a ::= SEQUENCE { aa X-a-aa, bb INTEGER }

 X ::= SEQUENCE { X-a a }

Note that the name for the aa element type is X-a-aa. It contains both the name for a (at level 1) and aa (at level 2).
The concatanation of all of the intermediate element names can lead to very long names in some cases. To get around
the problem, the -shortnames command-line option can be used to form shorter names. In this case, only the type
name and the last element name are used. In the example above, this would lead to an element name of X-aa. The
disadvantage of this is that the names may not always be unique. If using this option results in non-unique names, an
_n suffix is added where n is a sequential number to make the names unique.

Although the compiler can handle embedded constructed types within productions, it is generally not considered good
style to define productions this way. It is much better to manually define the constructed types for use in the final
production definition. For example, the production defined at the start of this section can be rewritten as the following
set of productions:

ASN.1 To Go Type Mappings

38

 X ::= SEQUENCE {
 a1 INTEGER,
 a2 BOOLEAN
 }

 A ::= SEQUENCE {
 x X,
 y OCTET STRING (SIZE (10))
 }

This makes the generated code easier to understand for the end user.

OPTIONAL keyword

Elements within a sequence can be declared to be optional using the OPTIONAL keyword. This indicates that the
element is not required. Optional elements are handled in Go using pointer types. If the pointer to the element value
is nil, it means the element is not present.

For example, the elements in the following production are marked as optional:

 Aseq ::= SEQUENCE {
 x INTEGER OPTIONAL,
 y BOOLEAN OPTIONAL
 }

In this case, the following Go type is generated:

 type Aseq struct {
 X *int64
 Y *bool
 }

When this structure is populated for encoding, if the element is present, the developer must set the pointer value to
point at a value. This can be done using new or by assigning the value to a local variable and then storing the address
of the variable in the generated structure. Conversely, when a message is decoded into this structure, the developer
must test to see if the elements are nil to see if they were present in the message.

DEFAULT keyword

The DEFAULT keyword allows a default value to be specified for elements within the SEQUENCE. ASN1C will
generate a non-pointer type for elements using DEFAULT if the type is one of several simple types (BOOLEAN,
INTEGER, ENUMERATED, REAL, BIT STRING, OCTET STRING, and character string types). In other cases,
ASN1C will generate a pointer type, the same as it does for an element with OPTIONAL; a nil pointer is interpreted
as representing the default value.

For PER, elements set to their default value MUST be encoded as ABSENT. In the cases where ASN1C generates
a non-pointer type, the compiler automatically generates code to meet this requirement. In the cases where ASN1C
generates a pointer type, the programmer must set the pointer to nil rather than populate the field with the default value.

Extension Elements

If the SEQUENCE type contains an open extension field (i.e., a ... at the end of the specification or a ..., ... in the middle),
a special element will be inserted to capture encoded extension elements for inclusion in the final encoded message.
This element will be of type [][]byte and have the name ExtElem1. This holds an array of encoded components.

ASN.1 To Go Type Mappings

39

The -noOpenExt command line option can be used to alter this default behavior. If this option is specified, the ExtElem1
element is not included in the generated structure; any extension data that may be present in a decoded message is
skipped.

If the SEQUENCE type contains an extension marker and extension elements, then the actual extension elements will
be present in addition to the ExtElem1 element. These elements will be treated as optional elements whether they
were declared that way or not. The reason is because a version 1 message could be received that does not contain
the elements.

If version brackets are present, a struct is generated for each extension element group. This struct has type name of the
form <container>ExtGrpV<n> where <container> is the name of the container type and <n> is the version number
of the group. This type is then referenced as an optional element in the container type.

An example of a type with version brackets is as follows:

 TestSequence ::= SEQUENCE {
 item-code INTEGER (0..254),
 item-name IA5String (SIZE (3..10)) OPTIONAL,
 ... ! 1,
 urgency ENUMERATED { normal, high } DEFAULT normal,
 [[alternate-item-code INTEGER (0..254),
 alternate-item-name IA5String (SIZE (3..10)) OPTIONAL
]]
 }

In this case, a structure named TestSequenceExtGrpV3 is generated for the items in the version brackets. The
number 3 is used because 2 would be the version extension number of the urgency field. The generated Go types for
this construct would be as follows:

 type TestSequenceExtGrpV3 struct {
 AlternateItemCode uint64
 AlternateItemName *string
 }

 type TestSequence struct {
 ItemCode uint64
 ItemName *string
 Urgency *uint64
 ExtGrpV3 *TestSequenceExtGrpV3
 ExtElem1 [][]byte
 }

The presence or absence of the entire version block would be determined by whether the ExtGrpV3 element pointer
is set.

SEQUENCE OF/SET OF
An ASN.1 SEQUENCE OF or SET OF type is mapped to a Go slice. The general form is []<element type> where
<element type> would be replaced with the Go type of the SEQUENCE OF element.

SEQUENCE or SET OF Element in a Constructed Type

If an element in a SEQUENCE, SET, or CHOICE directly references a SEQUENCE OF or SET OF type, a slice
type is generated inline. A separate type is not generated to be referenced by the element. For example, consider the
following type definitions:

ASN.1 To Go Type Mappings

40

 SeqOfInt ::= SEQUENCE OF INTEGER

 Seq ::= SEQUENCE {
 a SeqOfInt,
 b SEQUENCE OF BOOLEAN
 }

This results in the following Go types being generated:

 type SeqOfInt []int64

 type Seq struct {
 A SeqOfInt
 B []bool
 }

Note that a separate type is not generated for the inline SEQUENCE OF BOOLEAN, the bool slice is generated inline.

SEQUENCE OF Constructed Type

As with other constructed types, the <Type> in SEQUENCE OF Type can be any ASN.1 type, including constructed
types. Therefore, it is possible to have a SEQUENCE OF SEQUENCE, SEQUENCE OF CHOICE, etc.

In such cases, the compiler interally creates an ASN.1 type for the nested, constructed type. The format of the name
for this type is as follows:

 <ProdName>Element

In this definition, <ProdName> refers to the Go name of the production containing the SEQUENCE OF type.

For example, a simple (and very common) single level nested SEQUENCE OF construct might be as follows:

 A ::= SEQUENCE OF SEQUENCE { a INTEGER, b BOOLEAN }

In this case, a type is generated for the element of the SEQUENCE OF production. Internally, this is transformed into
the equivalent ASN.1:

 A-element ::= SEQUENCE { a INTEGER, b BOOLEAN }

 A ::= SEQUENCE OF A-element

These types are then converted into the equivalent Go types using the standard mapping that was previously described.

SET OF
The ASN.1 SET OF type is mapped to a slice type, just the same as described previously for SEQUENCE OF.

CHOICE
The ASN.1 CHOICE type is converted into a Go struct containing an integer for the choice tag value (T) followed
by a struct (U) with a field for each of the CHOICE elements. This differs from C/C++, where a union type is used
for the set of alternatives. There is no union type in Go, so a struct containing pointer values for all of the alternatives
is used. The T field indicates which of the alternatives is chosen and which of the fields in the U struct shall be non-
nil; exactly one field shall be non-nil at a time.

ASN.1 To Go Type Mappings

41

The tag value is simply a sequential number starting at one for each alternative in the CHOICE. A Go constant is
generated for each of these values. The format of this constant is <name><element-name>TAG where <name>
is the name of the ASN.1 production and <element-name> is the name of the CHOICE alternative.

The fields of the U struct, corresponding to the alternatives for the CHOICE type, are generated much the same as
for the elements of a SEQUENCE type (described earlier), except that pointer types are used. The compiler internally
pulls out any nested constructed types and creates an ASN.1 type for it, and that is reflected in the generated code.

ASN.1 production:

 <name> ::= CHOICE {
 <element1-name> <element1-type>,
 <element2-name> <element2-type>,
 ...
 }

Generated Go code:

 const (
 <name>_<element1-name>TAG = 1
 <name>_<element2-name>TAG = 2
 ...
)

 type <name> struct {
 T uint64
 U struct {
 <type1> *<element1-name>
 <type2> *<element2-name>
 ...
 }
 }

Open Type
An Open Type as defined in the X.680 standard is specified as a reference to a Type Field in an Information Object
Class. The most common form of this is when the Type field in the built-in TYPE-IDENTIFIER class is referenced
as follows:

 TYPE-IDENTIFIER.&Type

See the section in this document on Information Objects for a more detailed explanation.

The Open Type is converted into a Go byte slice ([]byte). The slice is assumed to contain previously encoded ASN.1
data. When a message containing an open type is decoded, a copy of the encoded data is made.

If the -tables or -table-unions command line option is selected and the ASN.1 type definition references a table con-
straint, the code generated is different. In this case, instead of a byte slice, a union-type structure is used, similar to what
is done for a CHOICE type. Each information object in the information object set referenced by the table constraint
specifies an actual ASN.1 type that can be used for the open type; taken together, these objects represent all of the
possible alternatives for the open type.

Character String Types
All ASN.1 character string types, including multi-byte types such as BMPString and UniversalString, are mapped to
the Go string type. The Go string will be interpreted by the generated code as UTF-8.

ASN.1 To Go Type Mappings

42

The useful character string types in ASN.1 are as follows:

 UTF8String ::= [UNIVERSAL 12] IMPLICIT OCTET STRING
 NumericString ::= [UNIVERSAL 18] IMPLICIT IA5String
 PrintableString ::= [UNIVERSAL 19] IMPLICIT IA5String
 T61String ::= [UNIVERSAL 20] IMPLICIT OCTET STRING
 VideotexString ::= [UNIVERSAL 21] IMPLICIT OCTET STRING
 IA5String ::= [UNIVERSAL 22] IMPLICIT OCTET STRING
 UTCTime ::= [UNIVERSAL 23] IMPLICIT GeneralizedTime
 GeneralizedTime ::= [UNIVERSAL 24] IMPLICIT IA5String
 GraphicString ::= [UNIVERSAL 25] IMPLICIT OCTET STRING
 VisibleString ::= [UNIVERSAL 26] IMPLICIT OCTET STRING
 GeneralString ::= [UNIVERSAL 27] IMPLICIT OCTET STRING
 UniversalString ::= [UNIVERSAL 28] IMPLICIT OCTET STRING
 BMPString ::= [UNIVERSAL 30] IMPLICIT OCTET STRING
 ObjectDescriptor ::= [UNIVERSAL 7] IMPLICIT GraphicString

Time String Types
The ASN.1 GeneralizedTime and UTCTime types are mapped to the Go string type.

EXTERNAL
The ASN.1 EXTERNAL type is a useful type used to include non-ASN.1 or other data within an ASN.1 encoded
message. This type is described using the following ASN.1 SEQUENCE:

 EXTERNAL ::= [UNIVERSAL 8] IMPLICIT SEQUENCE {
 direct-reference OBJECT IDENTIFIER OPTIONAL,
 indirect-reference INTEGER OPTIONAL,
 data-value-descriptor ObjectDescriptor OPTIONAL,
 encoding CHOICE {
 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type,
 octet-aligned [1] IMPLICIT OCTET STRING,
 arbitrary [2] IMPLICIT BIT STRING
 }
 }

The ASN.1 EXTERNAL type is mapped to a Go struct, generated from the above SEQUENCE definition.

EMBEDDED PDV
The ASN.1 EMBEDDED PDV type is a useful type used to include non-ASN.1 or other data within an ASN.1 encoded
message. This type is described using the following ASN.1 SEQUENCE:

 EmbeddedPDV ::= [UNIVERSAL 11] IMPLICIT SEQUENCE {
 identification CHOICE {
 syntaxes SEQUENCE {
 abstract OBJECT IDENTIFIER,
 transfer OBJECT IDENTIFIER
 },
 syntax OBJECT IDENTIFIER,
 presentation-context-id INTEGER,
 context-negotiation SEQUENCE {

ASN.1 To Go Type Mappings

43

 presentation-context-id INTEGER,
 transfer-syntax OBJECT IDENTIFIER
 },
 transfer-syntax OBJECT IDENTIFIER,
 fixed NULL
 },
 data-value OCTET STRING
 }

The ASN.1 EMBEDDED PDV type is mapped to a Go struct, generated from the above SEQUENCE definition.

Parameterized Types
The ASN1C compiler can parse parameterized type definitions and references as specified in the X.683 standard.
These types allow dummy parameters to be declared that will be replaced with actual parameters when the type is
referenced. This is similar to templates in C++.

A simple and common example of the use of parameterized types is the declaration of an upper bound on a sized
type as follows:

 SizedOctetString{INTEGER:ub} ::= OCTET STRING (SIZE (1..ub))

In this definition, ub would be replaced with an actual value when the type is referenced. For example, a sized octet
string with an upper bound of 32 would be declared as follows:

 OctetString32 ::= SizedOctetString{32}

The compiler would handle this just as if the original type was declared to be an octet string of size 1 to 32. That is,
it will map the type to a go byte slice ([]byte) and do constraint checks before encoding and after decoding to ensure
the value is within the specified range.

Another common example of parameterization is the substitution of a given type inside a common container type. For
example, security specifications frequently contain a 'signed' parameterized type that allows a digital signature to be
applied to other types. An example of this is as follows:

 SIGNED { ToBeSigned } ::= SEQUENCE {
 toBeSigned ToBeSigned,
 algorithmOID OBJECT IDENTIFIER,
 paramS Params,
 signature BIT STRING
 }

An example of a reference to this definition would be as follows:

 SignedName ::= SIGNED { Name }

where Name would be another type defined elsewhere within the module.

The compiler performs the substitution to create the proper Go type for SignedName:

 type SignedName struct {
 ToBeSigned Name
 AlgorithmID []uint64
 ParamS Params
 Signature asn1.BitString

ASN.1 To Go Type Mappings

44

 }

When processing parameterized type definitions, the compiler will first look to see if the parameters are actually used
in the final generated code. If not, they will simply be discarded and the parameterized type converted to a normal
type reference. For example, when used with information objects, parameterized types are frequently used to pass
information object set definitions to impose table constraints on the final type. Since table constraints do not affect
the code that is generated by the compiler when table constraint code generation is not enabled, the parameterized
type definition is reduced to a normal type definition and references to it are handled in the same way as defined type
references. This can lead to a significant reduction in generated code in cases where a parameterized type is referenced
over and over again.

For example, consider the following oft-repeated pattern from the UMTS 3GPP specifications:

 ProtocolIE-Field {RANAP-PROTOCOL-IES : IEsSetParam} ::= SEQUENCE {
 id RANAP-PROTOCOL-IES.&id ({IEsSetParam}),
 criticality RANAP-PROTOCOL-IES.&criticality ({IEsSetParam}{@id}),
 value RANAP-PROTOCOL-IES.&Value ({IEsSetParam}{@id})
 }

In this case, IEsSetParam refers to an information object set specification that constrains the values that are allowed
to be passed for any given instance of a type referencing a ProtocolIE-Field. The compiler does not add any extra
code to check for these values, so the parameter can be discarded (note that this is not true if the -tables compiler option
is specified). After processing the Information Object Class references within the construct (refer to the section on
Information Objects for information on how this is done), the reduced definition for ProtocolIE-Field becomes
the following:

 ProtocolIE-Field ::= SEQUENCE {
 id ProtocolIE-ID,
 criticality Criticality,
 value ASN.1 OPEN TYPE
 }

References to the field are simply replaced with a reference to the ProtocolID-Field type.

If -tables is specified, the parameters are used and a new type instance is created in accordance with the rules above.

Value Mappings
ASN1C can parse any type of ASN.1 value specification, but it will only generate code for following value specifi-
cations:

• BOOLEAN

• INTEGER

• REAL

• ENUMERATED

• Binary String

• Hexadecimal String

• Character String

• OBJECT IDENTIFER

ASN.1 To Go Type Mappings

45

ASN.1 value specifications are mapped to Go constant declarations of various types with the name transformed to start
with prefix 'Asn1v' followed by the value name transformed as per Go naming rules.

BOOLEAN Value
A BOOLEAN value is mapped to a Go true or false constant declaration:

ASN.1 production:

 <name> BOOLEAN ::= <value>

Generated code:

 const Asn1v<name> bool = <value>;

ASN.1 BOOLEAN values are the uppercase names TRUE and FALSE. The equivalent Go names are true and false.

INTEGER Value
An INTEGER type is mapped to a Go integer value constant:

ASN.1 production:

 <name> INTEGER ::= <value>

Generated code:

 const Asn1v<name> int64 = <value>

If the integer type is constrained to be nonnegative, than uint64 is used as the Go type for the constant.

REAL Value
A REAL type value is mapped to a Go floating point constant:

ASN.1 production:

 <name> REAL ::= <value>

Generated code:

 const Asn1v<name> float64 = <value>

ENUMERATED Value
The mapping of an ASN.1 enumerated value declaration to Go is to an integer constant.

ASN.1 production:

 <name> <EnumType> ::= <value>

Generated code:

 const <name> = <int value>

Where <int value> is the integer value associated with the ASN.1 enumerated value.

ASN.1 To Go Type Mappings

46

BIT STRING Value
ASN.1 values of type BIT STRING are mapped to Go variables of type asn1.BitString. The ASN.1 values may be
defined using binary strings, hexadecimal strings, or using sets of named bits:

ASN.1 production:

 <name> BIT STRING ::= '<bstring>'B

Generated code :

 var Asn1v<name> asn1.BitString = asn1.BitString{ BitLength: <len>, Bytes: []byte{<data>}}

where <len> would be the length in bits and <data> would be a comma-separated list of hexadeciaml byte constants.

OCTET STRING Value
ASN.1 values of type OCTET STRING are mapped to Go variables of type []byte. The ASN.1 values may be defined
using binary or hexadecimal strings. If a binary string is used and the bit count is not evenly divisible by eight, the last
byte is zero-padded on the right with zero bits to form a full byte.

ASN.1 production:

 <name> OCTET STRING ::= '<hstring>'H

Generated code :

 var Asn1v<name> []byte = []byte{<data>}}

where <data> would be a comma-separated list of hexadeciaml byte constants.

Character String Value
All ASN.1 character string type values are mapped to Go string constants.

ASN.1 production:

 <name> <string-type> ::= <value>

Generated code:

 const Asn1v<name> string = <value>

Object Identifier Value Specification
ASN.1 values of type OCTET STRING are mapped to Go variables of type []uint64.

ASN.1 production:

 <name> OBJECT IDENTIFIER ::= <value>

Generated code:

 var Asn1v<name> []uint64 = []uint64{<arcs}>;

Where <arcs> is a comma-separated list of the OID integer arc values.

ASN.1 To Go Type Mappings

47

For example, consider the following declaration:

oid OBJECT IDENTIFIER ::= { ccitt b(5) 10 }

This would result in the following definition in the Go source file:

 var Asn1vOid []uint64 = []uint64{ 0, 5, 10 }
 }

Constructed Type Values
Generation of Go variables or constants for constructed type value specifications is not supported in this release.

Table Constraint Related Structures
The following sections describe changes to generated code that occur when the -tables or -table-unions option is
specified on the command-line or when Table Constraint Options are selected from the GUI. This option causes
additional code to be generated for items required to support table constraints as specified in the X.682 standard. This
includes the generation of structures and classes for Information Object Classes, Information Objects, and Information
Object Sets as specified in the X.681 standard.

Most of the additional items that are generated are read-only tables for use by the run-time for data validation purposes.
However, generated structures for types that use table constraints are different than when table constraint code gener-
ation is not enabled. These differences will be pointed out.

For Go, the table constraint code generation model is roughly equivalent to C when the -table-unions option is used.
That is, the generated structures are very similar to what would be generated for CHOICE constructs.

Unions Table Constraint Model
The unions table constraint model originated from common patterns used in a series of ASN.1 specifications in-use in
3rd Generation Partnership Project (3GPP) standards. These standards include Node Application Part B (NBAP) and
S1AP and X2AP protocols in 4G network (LTE) standards. This pattern is repeated in 5G standards such as NGAP.

Generated Go Type Definitions for Message Types

The standard message type used by many specifications that employ table constraints is usually a SEQUENCE type
with elements that use a relational table constraint that uses fixed-type and type fields. The general form is as follows:

 <Type> ::= SEQUENCE {
 <element1> <Class>.&<fixed-type-field> ({<ObjectSet>}),
 <element2> <Class>.&<fixed-type-field> ({<ObjectSet>)){@element1}
 <element3> <Class>.&<type-field> ({<ObjectSet>)){@element1}
}

In this definition, <Class> would be replaced with a reference to an Information Object Class, <fixed-type-
field> would be a fixed-type field wtihin that class, and <type-field> would be a type field within the class.
<ObjectSet> would be a reference to an Information Object Set which would define all of the possibilities for
content within the message. The first element (<element1>) would be used as the index element in the object set
relation.

An example of this pattern from the S1AP LTE specification is as follows:

 InitiatingMessage ::= SEQUENCE {

ASN.1 To Go Type Mappings

48

 procedureCode S1AP-ELEMENTARY-PROCEDURE.&procedureCode
 ({S1AP-ELEMENTARY-PROCEDURES}),
 criticality S1AP-ELEMENTARY-PROCEDURE.&criticality
 ({S1AP-ELEMENTARY-PROCEDURES}{@procedureCode}),
 value S1AP-ELEMENTARY-PROCEDURE.&InitiatingMessage
 ({S1AP-ELEMENTARY-PROCEDURES}{@procedureCode})
 }

In this definition, procedureCode and criticality are defined to be enumerated fixed types, and value is
defined to be an open type field to hold variable content as defined in the object set definition.

The generated Go structure is similar to what is used to represent a CHOICE type. The structure consists of a choice
selector value (T) followed by an inner structure (U) containing pointers to all of the alternative types that can appear
in the field. This is the general form:

 type <Type> struct {
 <element1> <Element1Type>
 <element2> <Element2Type>

 /**
 * information object selector
 */
 T uint64

 /**
 * <ObjectSet> information objects
 */
 U struct {
 /**
 * <element1> : <object1-element1-value>
 * <element2> : <object1-element2-value>
 */
 <object1-name> *<object1-element3-type>

 /**
 * <element1> : <object2-element1-value>
 * <element2> : <object2-element2-value>
 */
 <object2-name>; *<object2-element3-type>

 ...
 }
 }

In this definition, the first two elements of the sequence would use the equivalent Go type as defined in the fixed-
type field in the information object. The open type field (element3) would be expanded into the union structure as
is shown. The T value would hold a sequential number which is generated to represent each of the choices in the
referenced information object set. The union struct then contains an entry for each of the possible types as defined in
the object set that can be used in the open type field. Comments are used to list the fixed-type fields corresponding
to each open type field.

An example of the code that is generated from the S1AP sample ASN.1 snippet above is as follows:

const (
 S1APPDUDescriptionsS1APELEMENTARYPROCEDURESUNDEFTAG = 0

ASN.1 To Go Type Mappings

49

 S1APPDUDescriptionsS1APELEMENTARYPROCEDURESHandoverPreparationTAG = 1
 S1APPDUDescriptionsS1APELEMENTARYPROCEDURESHandoverResourceAllocationTAG = 2
 S1APPDUDescriptionsS1APELEMENTARYPROCEDURESPathSwitchRequestTAG = 3
 etc..
)

 type InitiatingMessage struct {
 ProcedureCode uint64
 Criticality uint64
 Value struct {
 /**
 * information object selector
 */
 T uint64

 /**
 * S1AP-ELEMENTARY-PROCEDURES information objects
 */
 U struct {
 /**
 * procedureCode: id-HandoverPreparation
 * criticality: CriticalityReject
 */
 // T = 1
 HandoverPreparation *HandoverRequired

 /**
 * procedureCode: id-HandoverResourceAllocation
 * criticality: CriticalityReject
 */
 // T = 2
 HandoverResourceAllocation *HandoverRequest

 /**
 * procedureCode: id-PathSwitchRequest
 * criticality: CriticalityReject
 */
 // T = 3
 PathSwitchRequest *PathSwitchRequest

 etc..

 }
 }

Note that the long names generated for the TAG constants can be reduced by using the <alias> configuration element.

Generated Go Type Definitions for Information Element (IE) Types

In addition to message types, another common pattern in 3GPP specifications is protocol information element (IE)
types. The general form of these types is a list of information elements as follows:

 <ProtocolIEsType> ::= <ProtocolIE-ContainerType> { <ObjectSet> }

ASN.1 To Go Type Mappings

50

 <ProtocolIE-ContainerType> { <Class> : <ObjectSetParam> } ::=
 SEQUENCE (SIZE (<size>)) OF <ProtocolIE-FieldType> {{ObjectSetParam}}

 <ProtocolIE-FieldType> { <Class> : <ObjectSetParam> } ::= SEQUENCE {
 <element1> <Class>.&<fixed-type-field> ({ObjectSetParam}),
 <element2> <Class>.&<fixed-type-field> ({ObjectSetParam}{@element1}),
 <element3> <Class>.&<Type-field> ({ObjectSetParam}{@element1})
 }

There are a few different variations of this, but the overall pattern is similar in all cases. A parameterized type is used
as a shorthand notation to pass an information object set into a container type. The container type holds a list of the
IE fields. The structure of an IE field type is similar to a message type: the first element is used as an index element
to the remaining elements. That is followed by one or more fixed type or variable type elements. In the case defined
above, only a single fixed-type and variable type element is shown, but there may be more.

An example of this pattern from the S1AP LTE specification follows:

 HandoverRequired ::= SEQUENCE {
 protocolIEs ProtocolIE-Container { { HandoverRequiredIEs} },
 ...
 }

 ProtocolIE-Container {S1AP-PROTOCOL-IES : IEsSetParam} ::=
 SEQUENCE (SIZE (0..maxProtocolIEs)) OF ProtocolIE-Field {{IEsSetParam}}

 ProtocolIE-Field {S1AP-PROTOCOL-IES : IEsSetParam} ::= SEQUENCE {
 id S1AP-PROTOCOL-IES.&id ({IEsSetParam}),
 criticality S1AP-PROTOCOL-IES.&criticality ({IEsSetParam}{@id}),
 value S1AP-PROTOCOL-IES.&Value ({IEsSetParam}{@id})
 }

In this case, standard parameterized type instantiation is used to create a type definition for the protocolIEs element.
This results in the following element declaration in the HandoverRequired type:

 ProtocolIEs []HandoverRequiredProtocolIEsElement

The type for the protocol IE list element is created in much the same way as the main message type was above:

 type HandoverRequiredProtocolIEsElement struct {
 Id uint64
 Criticality uint64
 Value struct {
 /**
 * information object selector
 */
 T uint64

 /**
 * HandoverRequiredIEs information objects
 */
 U struct {
 /**
 * id: id-MME-UE-S1AP-ID
 * criticality: CriticalityReject
 * presence: PresenceMandatory

ASN.1 To Go Type Mappings

51

 */
 // T = 1
 HandoverRequiredIEsIdMMEUES1APID *uint64

 /**
 * id: id-eNB-UE-S1AP-ID
 * criticality: CriticalityReject
 * presence: PresenceMandatory
 */
 // T = 2
 HandoverRequiredIEsIdENBUES1APID *uint64

 ...
 }
 }
 }

In this case, the protocol IE id field and criticality are generated as usual using the fixed-type field type definitions.
The open type field once again results in the generation of a union structure of all possible type fields that can be used.

Note in this case the field names are automatically generated (HandoverRequiredIEsIdMMEUES1APID, etc.). The
reason for this was the use of inline information object definitions in the information object set as opposed to defined
object definitions. This is a sample from that set:

 HandoverRequiredIEs S1AP-PROTOCOL-IES ::= {
 { ID id-MME-UE-S1AP-ID CRITICALITY reject TYPE MME-UE-S1AP-ID PRESENCE mandatory } |
 { ID id-HandoverType CRITICALITY reject TYPE HandoverType PRESENCE mandatory } |
 ...

In this case, the name is formed by combining the information object set name with the name of each key field within
the set.

52

Chapter 7. Generated BER/DER Functions

Generated BER/DER Encode Functions
BER/DER encode functions are generated when the -ber (basic encoding rules) or -der (distinguished encoding rules)
switch is specified on the command line. Encoding for BER and DER is quite similar, with the more restrictive DER
being also acceptable as a BER encoding. To produce a valid DER encoding, you must use -der, which will generate
DER encode functions insted of BER encode functions. For the remainder of this section, unless otherwise noted, you
may understand BER to refer to DER in the case that -der was used.

For each ASN.1 production defined in the ASN.1 source file, a BER encode function is generated. This function will
convert a populated Go variable of the given type into a BER encoded ASN.1 message.

Generated Go Function Format and Calling Parameters
The primary interface to encode data in Go is through the use of the generated Marshal function. This function has
the same signature as that found in the Go encoding/asn1 package:

func Marshal(val interface{}) ([]byte, error)

The val argument holds a value of the type to be encoded. Note that the Marshal function only encodes types determined
to be Protocol Data Unit (PDU) types. By default, a PDU type in a schema is a type not found to be referenced by
any other type. This behavior can be overridden by using the -pdu command-line option to explicitly select types as
PDU types.

The Marshal function returns the encoded message in memory as a byte slice. If any errors occur during encoding, the
error result is returned in the error return value. The encoded value byte slice will be nil in this case.

Example of Calling the Go Marshal Function
The following code snippet was derived from the golang/sample_ber/employee sample program in the ASN1C dis-
tribution:

package main

import (
 "employee/asn1gen"
 "encoding/hex"
 "fmt"
 "io/ioutil"
 "os"
)

func main() {
 var pdu asn1gen.PersonnelRecord

 // populate PDU type variable to be encoded
 fillName(&pdu.Name, "John", "P", "Smith")

 pdu.Title = "Director"
 pdu.Number = 51
 pdu.DateOfHire = "19710917"

Generated BER/DER Functions

53

 fillName(&pdu.NameOfSpouse, "Mary", "T", "Smith")

 // fill first child record

 var childInfo asn1gen.ChildInformation
 fillName(&childInfo.Name, "Ralph", "T", "Smith")
 childInfo.DateOfBirth = "19571111"
 pdu.Children = append(pdu.Children, childInfo)

 // fill second child record

 fillName(&childInfo.Name, "Susan", "B", "Jones")
 childInfo.DateOfBirth = "19590717"
 pdu.Children = append(pdu.Children, childInfo)

 // Marshal

 encodedData, err := asn1gen.Marshal(pdu)

 if err == nil {
 fmt.Printf("PersonnelRecord encoded successfully\n")
 fmt.Printf("%s\n", hex.Dump(encodedData))
 err = ioutil.WriteFile("message.per", encodedData, 0777)
 } else {
 fmt.Printf("Encoding failed: %s\n", err)
 }

How Marshal Works And Alternatives
The Marshal function is the most convenient way to encode, but taking a look at how it works also provides alternatives,
should you want them.

First, we'll look at the other BER encode functions that are generated. There are two general forms:

 func BerEncode<type name>(pctxt *asn1rt.OSRTContext, value <go type>) (err error)

 func (pvalue *<type name>) BerEncode(pctxt *asn1rt.OSRTContext) (err error)

Here are two examples from the employee sample:

 func BerEncodeEmployeeNumber(pctxt *asn1rt.OSRTContext, value int64) (err error)

 func (pvalue *Name) BerEncode(pctxt *asn1rt.OSRTContext) (err error)

The first form is used when the Go type for the ASN.1 type is a built-in Go type - so basically it is used for the simple,
nonconstructed ASN.1 types. The second form is used when the Go type is a generated type.

Now we can look at the Marshal function to see what it does and how these functions are used:

 // Create context object to manage encoding
 pctxt := new(asn1rt.OSRTContext)

Generated BER/DER Functions

54

 pctxt.InitBerEncode(1024) // Initialize for encoding
 ...
 err = v.BerEncode(pctxt) // Invoke the encode function; v is a generated type
 ...
 pctxt.FlushBuffer()

 return pctxt.GetBerEncData(), err // access the encoded data

Generated BER/DER Decode Functions
BER or DER decode functions are generated when the -ber (basic encoding rules) or the -der (distinguished encoding
rules) switch is specified on the command line. BER and DER decode functions are similar. The only difference is
that the DER functions contain additional checks to make sure the encoding is in the required canonical form. For the
remainder of this section, the acronym BER will be used to mean either BER or DER.

For each ASN.1 production defined in the ASN.1 source file, a BER decode function is generated. This function
decodes an encoded ASN.1 message contained in a message buffer (byte slice) and stores the results in a data variable
of a Go type corresponding to the ASN.1 production type.

DER Restriction Violations
The DER decode functions validate that the encoding follows the restrictions imposed by DER (e.g. that SET
OF components are sorted). If a restriction was violated by the encoder, the DER decode function will add a
CanonicalError to the context's warnings (asn1rt.OSRTContext.Warnings). The warnings are held in an
asn1rt.OSRTWarnings object. Note the following properties of asn1rt.OSRTWarnings:

• It implements interface error. As noted below, Unmarshal will return it as an error.

• Its Remove function may be used to remove all CanonicalError objects from the list, should you wish to
ignore those warnings and treat anything that remains as an error.

• Its RemoveAllExcept function may be used to remove all objects except for CanonicalError objects, should
you wish to treat canonical violations, and not other warnings, as an error.

Generated Go Function Format and Calling Parameters
The primary interface to decode data in Go is through the use of the generated Unmarshal function. This function has
the same signature as that found in the Go encoding/asn1 package:

func Unmarshal(b []byte, val interface{}) (rest []byte, err error)

The b argument is used to pass a byte slice into the function containing the message to be decoded. The val argument
holds a pointer to a variable of the type into which the message is to be decoded. Note that the Unmarshal function only
supports decoding of types determined to be Protocol Data Unit (PDU) types. By default, a PDU type in a schema is a
type not found to be referenced by any other type. This behavior can be overridden by using the -pdu command-line
option to explicitly select types as PDU types>

The Unmarshal function returns any unused bytes after the message is decoded in the rest argument. This makes it
possible to decode a buffer containing multiple messages by looping to decode a message and then assigning the rest
result to the message buffer. When the buffer is empty, decoding would be terminated. If any errors occur during
decoding, the error result is returned in the err error return value.

In the case of DER, if the Unmarshal function does not encounter any errors but does encounter warnings (such as for
DER violations), it will return those warnings as an error, in the form of an asn1rt.OSRTWarnings object. If you
do not want to treat those warnings as an error, you will need to ignore the returned error object when it is of that type.

Generated BER/DER Functions

55

Example of Calling the Go Unmarshal Function
The following code snippet was derived from the golang/sample_ber/employee sample program in the ASN1C dis-
tribution:

package main

import (
 "employee/asn1gen"
 "encoding/hex"
 "fmt"
 "io/ioutil"
 "os"
)

func main() {
 var pdu asn1gen.PersonnelRecord
 encoding, err := ioutil.ReadFile("message.ber")
 if err != nil {
 fmt.Printf("Read message.ber failed: %s\n", err)
 return
 }

 _, err = asn1gen.Unmarshal(encoding, &pdu)

 if err == nil {
 fmt.Printf("Decoding was successful:\n")
 } else {
 fmt.Printf("Decoding failed: %s\n", err)
 }

How Unmarshal Works And Alternatives
The Unmarshal function is the most convenient way to decode, but taking a look at how it works also provides alter-
natives, should you want them.

First, we'll look at the other BER decode functions that are generated. There are two general forms:

 func BerDecode<type name>(pctxt *asn1rt.OSRTContext, impltag bool, impllen *asn1rt.BerLength) (value <go type>, err error)

 func (pvalue *<type name>) BerDecode(pctxt *asn1rt.OSRTContext, impltag bool, impllen *asn1rt.BerLength) (err error)

Here are two examples from the employee sample:

 func BerDecodeDate(pctxt *asn1rt.OSRTContext, impltag bool, impllen *asn1rt.BerLength) (value int64, err error)

 func (pvalue *Name) BerDecode(pctxt *asn1rt.OSRTContext, impltag bool, impllen *asn1rt.BerLength) (err error)

The first form is used when the Go type for the ASN.1 type is a built-in Go type - so basically it's used for the simple,
nonconstructed ASN.1 types. The second form is used when the Go type is a generated type. The 'impltag' and 'impllen'

Generated BER/DER Functions

56

arguments are for dealing with implicit tags. A user calling a function of this form at the top level would almost always
set these arguments to 'false' and 'nil' respectively.

Now we can look at the Unmarshal function to see what it does and how these functions are used:

 // Create context object to manage encoding
 pctxt := new(asn1rt.OSRTContext)
 pctxt.InitDecodeBytes(b) // Initialize for decoding; b holds the encoded data
 ...
 err = v.BerDecode(pctxt, false, nil) // Invoke the decode function; v is a generated type
 ...
 return pctxt.BufferRemBytes(), err

57

Chapter 8. Generated PER Functions

Generated PER Encode Functions
PER encode functions are generated when the -per (packed encoding rules), -aper (aligned packed encoding rules),
or -uper (unaligned packed encoding rules), switch is specified on the command line. For Go, -per and -aper have the
same meaning - aligned PER encoders will be generated. The -uper option is used to generate unaligned decoders.
There is no option to switch between aligned and unaligned at run-time as there is for some other languages. For the
remainder of this section, the acronym PER will be used to mean either aligned or unaligned PER.

For each ASN.1 production defined in the ASN.1 source file, a PER encode function is generated. This function will
convert a populated Go variable of the given type into a PER encoded ASN.1 message.

Generated Go Function Format and Calling Parameters
The primary interface to encode data in Go is through the use of the generated Marshal function. This function has
the same signature as that found in the Go encoding/asn1 package:

func Marshal(val interface{}) ([]byte, error)

The val argument holds a value of the type to be encoded. Note that the Marshal function only encodes types determined
to be Protocol Data Unit (PDU) types. By default, a PDU type in a schema is a type not found to be referenced by
any other type. This behavior can be overridden by using the -pdu command-line option to explicitly select types as
PDU types.

The Marshal function returns the encoded message in memory as a byte slice. If any errors occur during encoding, the
error result is returned in the error return value. The encoded value byte slice will be nil in this case.

Example of Calling the Go Marshal Function
The following code snippet was derived from the golang/sample_per/employee sample program in the ASN1C dis-
tribution:

package main

import (
 "employee/asn1gen"
 "encoding/hex"
 "fmt"
 "io/ioutil"
 "os"
)

func main() {
 var pdu asn1gen.PersonnelRecord

 // populate PDU type variable to be encoded
 fillName(&pdu.Name, "John", "P", "Smith")

 pdu.Title = "Director"
 pdu.Number = 51
 pdu.DateOfHire = "19710917"

Generated PER Functions

58

 fillName(&pdu.NameOfSpouse, "Mary", "T", "Smith")

 // fill first child record

 var childInfo asn1gen.ChildInformation
 fillName(&childInfo.Name, "Ralph", "T", "Smith")
 childInfo.DateOfBirth = "19571111"
 pdu.Children = append(pdu.Children, childInfo)

 // fill second child record

 fillName(&childInfo.Name, "Susan", "B", "Jones")
 childInfo.DateOfBirth = "19590717"
 pdu.Children = append(pdu.Children, childInfo)

 // Marshal

 encodedData, err := asn1gen.Marshal(pdu)

 if err == nil {
 fmt.Printf("PersonnelRecord encoded successfully\n")
 fmt.Printf("%s\n", hex.Dump(encodedData))
 err = ioutil.WriteFile("message.per", encodedData, 0777)
 } else {
 fmt.Printf("Encoding failed: %s\n", err)
 }

How Marshal Works And Alternatives
The Marshal function is the most convenient way to encode, but taking a look at how it works also provides alternatives,
should you want them.

First, we'll look at the other PER encode functions that are generated. There are two general forms:

 func PerEncode<type name>(pctxt *asn1rt.OSRTContext, value <go type>) (err error)

 func (pvalue *<type name>) PerEncode(pctxt *asn1rt.OSRTContext) (err error)

Here are two examples from the employee sample:

 func PerEncodeEmployeeNumber(pctxt *asn1rt.OSRTContext, value int64) (err error)

 func (pvalue *Name) PerEncode(pctxt *asn1rt.OSRTContext) (err error)

The first form is used when the Go type for the ASN.1 type is a built-in Go type - so basically it's used for the simple,
nonconstructed ASN.1 types. The second form is used when the Go type is a generated type.

Now we can look at the Marshal function to see what it does and how these functions are used:

 // Create context object to manage encoding

Generated PER Functions

59

 pctxt := new(asn1rt.OSRTContext)
 pctxt.InitEncode() // Initialize for encoding
 pctxt.NewBitFieldList() // Optional: enable bit tracing
 ...
 err = v.PerEncode(pctxt) // Invoke the encode function; v is a generated type
 ...
 pctxt.FlushBuffer()
 pctxt.PrintBitFieldList("pdu") // Optional: print bit trace

 return pctxt.BufferData(), err // access the encoded data

Generated PER Decode Functions
PER decode functions are generated when the -per (packed encoding rules), -aper (aligned packed encoding rules),
or -uper (unaligned packed encoding rules), switch is specified on the command line. For Go, -per and -aper have the
same meaning - aligned PER decoders will be generated. The -uper option is used to generate unaligned encoders.
There is no option to switch between aligned and unaligned at run-time as there is for some other languages. For the
remainder of this section, the acronym PER will be used to mean either aligned or unaligned PER.

For each ASN.1 production defined in the ASN.1 source file, a PER decode function is generated. This function
decodes an encoded ASN.1 message contained in a message buffer (byte slice) and stores the results in a data variable
of a Go type corresponding to the ASN.1 production type.

Generated Go Function Format and Calling Parameters
The primary interface to decode data in Go is through the use of the generated Unmarshal function. This function has
the same signature as that found in the Go encoding/asn1 package:

func Unmarshal(b []byte, val interface{}) (rest []byte, err error)

The b argument is used to pass a byte slice into the function containing the message to be decoded. The val argument
holds a pointer to a variable of the type into which the message is to be decoded. Note that the Unmarshal function only
supports decoding of types determined to be Protocol Data Unit (PDU) types. By default, a PDU type in a schema is a
type not found to be referenced by any other type. This behavior can be overridden by using the -pdu command-line
option to explicitly select types as PDU types>

The Unmarshal function returns any unused bytes after the message is decoded in the rest argument. This makes it
possible to decode a buffer containing multiple messages by looping to decode a message and then assigning the rest
result to the message buffer. When the buffer is empty, decoding would be terminated. If any errors occur during
decoding, the error result is returned in the err error return value.

Example of Calling the Go Unmarshal Function
The following code snippet was derived from the golang/sample_per/employee sample program in the ASN1C dis-
tribution:

package main

import (
 "employee/asn1gen"
 "encoding/hex"
 "fmt"
 "io/ioutil"

Generated PER Functions

60

 "os"
)

func main() {
 var pdu asn1gen.PersonnelRecord
 encoding, err := ioutil.ReadFile("message.per")
 if err != nil {
 fmt.Printf("Read message.per failed: %s\n", err)
 return
 }

 _, err = asn1gen.Unmarshal(encoding, &pdu)

 if err == nil {
 fmt.Printf("Decoding was successful:\n")
 } else {
 fmt.Printf("Decoding failed: %s\n", err)
 }

How Unmarshal Works And Alternatives
The Unmarshal function is the most convenient way to decode, but taking a look at how it works also provides alter-
natives, should you want them.

First, we'll look at the other PER decode functions that are generated. There are two general forms:

 func PerDecode<type name>(pctxt *asn1rt.OSRTContext) (value <go type>, err error)

 func (pvalue *<type name>) PerDecode(pctxt *asn1rt.OSRTContext) (err error)

Here are two examples from the employee sample:

 func PerDecodeEmployeeNumber(pctxt *asn1rt.OSRTContext) (value int64, err error)

 func (pvalue *Name) PerDecode(pctxt *asn1rt.OSRTContext) (err error)

The first form is used when the Go type for the ASN.1 type is a built-in Go type - so basically it's used for the simple,
nonconstructed ASN.1 types. The second form is used when the Go type is a generated type.

Now we can look at the Unmarshal function to see what it does and how these functions are used:

 // Create context object to manage encoding
 pctxt := new(asn1rt.OSRTContext)
 pctxt.InitDecodeBytes(b) // Initialize for decoding; b holds the encoded data
 pctxt.NewBitFieldList() // Optional: enable bit tracing
 ...
 err = v.PerDecode(pctxt) // Invoke the decode function; v is a generated type
 ...
 pctxt.AlignBuffer() // Optional: prepare to decode a second message
 pctxt.PrintBitFieldList("pdu") // Optional: print bit trace

Generated PER Functions

61

PER Bit Tracing
To print out a bit trace using ASN1C, invoke the appropriate functions after encoding or decoding a message and a
marked-up binary dump of the PER encoded data is produced.

To enable bit tracing logic to be embedded in the generated code, the -trace option needs to be specified on the
ASN1C command-line. If using the GUI, the Add tracing diagnostic messages to code box must be checked under
the 'Constraints and Debugging' tab.

If enabled, a display similar to the following will be printed out from within the Marshal or Unmarshal function:

 Dump of decoded bit fields:
 employee childrenPresent
 1xxxxxxx -------- -------- -------- 80------ .---

 employee.name.givenName length
 -------- 00000100 -------- -------- --04---- -.--

 employee.name.givenName data
 -------- -------- 01001010 01101111 ----4a6f --Jo
 01101000 01101110 -------- -------- 686e---- hn--

Here, a description can be seen of the field that was decoded, followed by 4 columns of a base 2 representation of the
relevant input data, followed by a column with a hexadecimal representation of the same data, followed by a column
with an ASCII representation of the same data. The hexadecimal and ASCII representations are only printed after all
bits for a full byte have been processed, so these representations might not be printed on every line, and when they are
printed, might correspond to binary bits on several preceeding lines.

The x values indicate padding bits used in aligned PER.

62

Chapter 9. Generated JSON Functions
The Go language contains built-in support for Marshaling/Unmarshaling data to and from JSON format. However,
the default representation of the data is not always compliant with the JSON encoding rules (JER) as defined in ITU-
T X.697.

Go provides mechanisms to customize the default marshalling behavior so that alternate JSON formats, including JER,
can be supported. This is done through two code alterations:

• Setting custom JSON attributes

• Creating custom JSON Marshal/Unmarshal functions for specific types.

The following sections describe what is done in each of these areas and also general procedures for encoding and
decoding JSON data.

Custom JSON Attributes
Custom JSON attributes are mainly used to alter the marshaling and unmarshaling of elements within a SEQUENCE
or SET. They allow the following alterations to be performed:

• Change element name. This allows the ASN.1 name to be substituted for the Go element name.

• Omit empty items from the encoding (omitempty). This allows optional elements to be omitted.

• Remove elements (-). This allows elements to be removed that cannot be represented in JER (for example, an
unknown extension).

Custom JSON Marshal/Unmarshal Functions
Custom JSON marshal and unmarshal functions are used to alter the encoded content for certain types. For example,
the content of a BIT STRING is JER does not match what would be encoded by default. The JER encoding has a
'length' and 'value' member. A cusomized Marshal and Unmarshal method are therefore generated in the run-time to
modify the encoded value to be in the JER format.

Invoking JSON Marshal/Unmarshal Functions
JSON marshal and unmarshal functions are invoked using the standard Go JSON calling conventions defined in en-
coding/json. For Marshal the format is:

func Marshal(v interface{}) ([]byte, error)

where v is the value to be encoded. The encode result is returned as a byte slice.

For Unmarshal, the format is:

func Unmarshal(data []byte, v interface{}) error

where data is a byte buffer containing the encoded JSON data to be unmarshaled (decoded) and v is the target variable
into which the decoded data will be stored.

63

Chapter 10. Generated Print Functions

Generated Print Functions
The following options are available for generating code to print the contents of variables of generated types:

-print - This is the standard print option that causes print functions to be generated that output data to the standard
output device (stdout).

-genPrtToStr - This option causes print functions to be generated that write their output to a string variable.

Print to Standard Output
The -print option causes functions to be generated that print the contents of variables of generated types to the standard
output device. In this case, a function named Print is generated in the Marshal.go file with the following signature:

func Print(val interface{})

The val argument holds a value of the type to be printed. Note that the Print function only prints types determined to be
Protocol Data Unit (PDU) types. By default, a PDU type in a schema is a type not found to be referenced by any other
type. This behavior can be overridden by using the -pdu command-line option to explicitly select types as PDU types.

Print to String
The -prttostr option causes functions to be generated that print the contents of variables of generated types to a string
variable. In this case, a function named PrintToString is generated in the Marshal.go file with the following signature:

func PrintToString(val interface{}) string

The val argument holds a value of the type to be printed. As was the case for the Print function, only variables of PDU
types may be passed to the function for printing.

64

Chapter 11. IMPORT/EXPORT of Types
ASN1C allows productions to be shared between different modules through the ASN.1 IMPORT/EXPORT mecha-
nism. The compiler parses but ignores the EXPORTS declaration within a module. As far as it is concerned, any type
defined within a module is available for import by another module.

When ASN1C sees an IMPORT statement, it first checks its list of loaded modules to see if the module has already
been loaded into memory. If not, it will attempt to find and parse another source file containing the module. The logic
for locating the source file is as follows:

1. The configuration file (if specified) is checked for a <sourceFile> element containing the name of the source file
for the module.

2. If this element is not present, the compiler looks for a file with the name <ModuleName>.asn where module name
is the name of the module specified in the IMPORT statement.

In both cases, the –I command line option can be used to tell the compiler where to look for the files.

To avoid having ASN1C search for additional source files, simply provide the definition of each imported module
in one of the source files specified as input to ASN1C. The imported module may be defined in its own source file,
or multiple module definitions can be located in a single source file. Here is an example of combining modules into
a single source file:

 ModuleA DEFINITIONS ::= BEGIN
 IMPORTS B From ModuleB;

 A ::= B

 END

 ModuleB DEFINITIONS ::= BEGIN

 B ::= INTEGER
 END

This entire fragment of code would be present in a single ASN.1 source file.

	ASN1C
	Table of Contents
	Chapter 1. Overview of ASN1C for Go
	Chapter 2. ASN1C Command Line Interface (CLI)
	Running ASN1C
	ASN1C Go Command Line Options
	Compiler Configuration File
	Compiler Error Reporting

	Chapter 3. ASN1C GUI Users Guide
	Quick Start
	Activating a License Key
	Creating a New Project

	
	
	
	Interface
	Editor
	Project Window
	ASN.1 Tree Window
	Error Log Window
	Project Settings
	Language tab
	Output tab
	Function Generation tab
	Constraints and Debugging tab
	Code Modifications tab
	Language-specific tab
	Build Options tab

	Chapter 4. Generated Go Source Code
	General Hierarchy of Generated Go Source Files
	General Form of a Generated Go Source File

	Chapter 5. Generated Go Main File (main.go)
	Chapter 6. ASN.1 To Go Type Mappings
	Type Mappings
	BOOLEAN
	INTEGER
	BIT STRING
	Named Bits
	Contents Constraint

	OCTET STRING
	Contents Constraint

	ENUMERATED
	Example - Enumerated Type Assignment
	Example - Enumerated Type Referenced in Element

	NULL
	Example

	OBJECT IDENTIFIER
	Standard case (slice of integers)
	String case

	RELATIVE-OID
	REAL
	Example

	SEQUENCE/SET
	OPTIONAL keyword
	DEFAULT keyword
	Extension Elements

	SEQUENCE OF/SET OF
	SEQUENCE or SET OF Element in a Constructed Type
	SEQUENCE OF Constructed Type

	SET OF
	CHOICE
	Open Type
	Character String Types
	Time String Types
	EXTERNAL
	EMBEDDED PDV
	Parameterized Types

	Value Mappings
	BOOLEAN Value
	INTEGER Value
	REAL Value
	ENUMERATED Value
	BIT STRING Value
	OCTET STRING Value
	Character String Value
	Object Identifier Value Specification
	Constructed Type Values

	Table Constraint Related Structures
	Unions Table Constraint Model
	Generated Go Type Definitions for Message Types
	Generated Go Type Definitions for Information Element (IE) Types

	Chapter 7. Generated BER/DER Functions
	Generated BER/DER Encode Functions
	Generated Go Function Format and Calling Parameters
	Example of Calling the Go Marshal Function
	How Marshal Works And Alternatives

	Generated BER/DER Decode Functions
	DER Restriction Violations
	Generated Go Function Format and Calling Parameters
	Example of Calling the Go Unmarshal Function
	How Unmarshal Works And Alternatives

	Chapter 8. Generated PER Functions
	Generated PER Encode Functions
	Generated Go Function Format and Calling Parameters
	Example of Calling the Go Marshal Function
	How Marshal Works And Alternatives

	Generated PER Decode Functions
	Generated Go Function Format and Calling Parameters
	Example of Calling the Go Unmarshal Function
	How Unmarshal Works And Alternatives

	PER Bit Tracing

	Chapter 9. Generated JSON Functions
	Custom JSON Attributes
	Custom JSON Marshal/Unmarshal Functions
	Invoking JSON Marshal/Unmarshal Functions

	Chapter 10. Generated Print Functions
	Generated Print Functions
	Print to Standard Output
	Print to String

	Chapter 11. IMPORT/EXPORT of Types

